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Abstract 

 

I have observed that exponents and logarithms are the stopping point for 

most failed high school math students.  In this paper I will discuss how this 

subject can be taught better.  The points I make apply to all topics in high 

school mathematics.  For instance, I offer a geometric solution for carbon 

dating problems that provides two digits of accuracy and can be done in 

seconds, which is handy on timed multiple-choice tests.  Also, I discuss what 

math is needed by tradesmen.  That such practical men feel their high school 

math classes were irrelevant is one reason why so many dislike mathematics.   

 

In the real world, this widespread dislike for mathematics is concealed by an 

almost religious belief in “data driven” research, which means statistics.  But 

their mathiness is achieved by feeding empirical data into statistical software 

that they downloaded from the internet, not by actually doing any math.  I 

have observed that the more strident a researcher is about proclaiming 

himself to be data driven, the more harshly he denounces deductivism, by 

which he means any type of mathematics other than statistics.   

 

If hate for math were restricted to people who do not need it, then we could 

just say that math is not for everyone.  But when even those who need it hate 

it, then we must look for systemic problems in how math is being taught.  

Thus, while this paper is primarily written for educators, it is of interest to 

everyone whose profession requires the use of mathematics. 
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Section 1:  Unneeded Intermediate Steps 

 

There are often many ways to express the same information, each of which differ in how 

intuitive they seem to people with different backgrounds and with different motivations for 

considering the problem.  For instance, computer programmers express the accuracy of a 

number in binary bits while nonprogrammers express accuracy in decimal digits.  This is a 

rhetorical issue that can be resolved by identifying one’s audience.  Once the issue is 

understood to be rhetorical, it can be separated, perhaps brought to a section at the end of the 

chapter that is labeled as instruction on how to explain the material to nonprogrammers. 

 

One multiplies the number of binary digits by ÌÏÇς πȢσπρπσ because ÌÏÇς ὲÌÏÇς.  

If one is using signed integers on a 16-bit computer, there are ρυ πȢσ τȢυ decimal digits of 

accuracy.  This expression of accuracy is intuitive to people who are reporting their results in 

prose because it informs them that they must type four digits of each number.  Another 

example of common logs being used for rhetorical purposes is Richter’s scale, which news 

reporters use for expressing the magnitude of earthquakes when addressing the general public. 

 

Indeed, the change of base formula, ÌÏÇὼ  ÌÏÇὼÌÏÇὦϳ , is almost always invoked due to 

rhetorical issues.  All scientists everywhere use natural logarithms.  Logarithms to other bases 

can only be described as contrived, appearing primarily so the author can demonstrate that he 

knows how to change bases.  It has been 35 years since anyone has performed multiplication 

and division by consulting a table of common (base ten) logarithms, so they can be ignored.1  

Even in their day, they were expensive.  Five-digit tables were beyond the means of students, 

yet machinists worked within this accuracy, as did loan officers calculating payments over $100. 

 

The problem is that concepts like common logs are not often recognized as being rhetorical in 

nature.  This leads an author to careen from one expression to another in the hopes that every 

reader will find at least something he has written to be intuitive.  But the actual impression that 

they get of his writing is that he is making more work for himself and for his readers; that is, he 

is padding his book.  The impression that math books are padded for length is the primary 

reason why students dislike the subject.  My high school math teacher actually told us not to 

read the textbook, but I wore out backpacks carrying it because he assigned homework from it. 

 

This impression is amplified by the tendency of textbook authors to take the euphemism “slow 

student” too literally.  There is actually no such thing; “dull student” was a more descriptive 

                                                             
1 When I took algebra (1980), there was a giant slide rule mounted above the chalk board.  The teacher said we 
would not be using it because, that year, calculators had made slide rules and logarithm tables obsolete; but for 
another year he would teach common logs because they were still on the SAT.  Thirty-five years later, they still are. 



term, though one we never hear anymore.  Learning how logarithms work is like learning how 

to do a back flip.  You either get it or you do not, but it is impossible to do it slowly.  Being 

spoon-fed this information is boring, both for the bright students and for the dull students.  The 

difference is that the former get past the boredom and learn the subject, usually unguided. 

 

This too-literal interpretation of “slow student” is especially frustrating for students who are a 

week or two behind because they stumbled over something like logarithms.  What they need is 

a succinct explanation that will bring them up to speed.  If their textbook is unclear and they go 

to the book store, what they will find are remedial books with lots of happy “math is fun” talk 

and very slow explanations that run to hundreds of pages.  The student lost a week of math 

instruction and now he is going to lose a lifetime of math instruction because that fat book 

might as well have “time to drop out” printed on the cover; this is the message he is getting. 

 

Let us consider an example of an unneeded intermediate step.  Money is often loaned for short 

periods with a fixed return.  For example, I might loan you $100 and want $110 back next 

month.  If you do not have the money, but I trust you, I might let you extend the debt another 

month.  But now the loan is of $110, so you would owe me $121 the following month. 

 

When comparing loans to each other, it makes sense to express all interest rates with the 

common unit of one year.  This is a rhetorical technique because – in the same way that in the 

previous example we assumed the reader was reporting his results in prose when we converted 

to decimal digits – we are now assuming that there are several loans to be compared.  If one 

just needs to know the proportional growth over time, then it is easier to raise one plus the rate 

to the number of recalculations, as ρȢρ υȢυφ for this loan over eighteen months.   

 

The debt described above is 10% every month or 120% every year.  After eighteen months you 

would owe 5.56 times the original amount, called the principal2, denoted ὖ, which is $100. 

 

 ρ ρ
Ȣ

Ȣ

υȢυφ   The Standard Textbook Equation (1) 

 

It is easier to raise 1.1 to the 18th power than it is to figure out that the yearly rate is 120% 

when you are just going to divide this by 12 on the next step.  The yearly interest rate, ὶ, is an 

unneeded intermediate step.  Students notice that they found ὶ by multiplying by 12 and then, 

when evaluating their equation, the first thing they did was divide it by 12.  But if they write 

ρȢρ υȢυφ, they get marked down because this is not the standard textbook equation. 

                                                             
2 Principle is a mental object, such as honesty.  Principal is a physical object, such as the leader of a school or a sum 
of money.  Note that principal describes money, not algae.  The initial quantity of nonmonetary items is ὃ or Ὢπ. 



 

Section 2:  Exponential Growth 

 

When recalculating in discrete time intervals, the debt climbs like a staircase.  What if we did 

these calculations continuously?  Would the debt not grow in a smooth curve?   

 

Let us first find the value of the money earned on 100% interest in one time period.  If 

calculated once, 100% doubles the principal.  Quarterly is ρȢςυρȢςυρȢςυρȢςυ ςȢττ 

and continuously is Ὡ ÌÉÍO ρ , the limit of ρ  as ὲ grows without bound. 

 

Raising a number to an integer power is easier if that integer is a power of two because then we 

can just square the number repeatedly.  ρ ςȢττ is 1.25 squared twice because ς τ.  

Since we are finding Ὡ, we cannot assume that we have a computer programmed to calculate 

an exponent, ὼ Ὡ , but must find a technique that works on a four-function calculator. 

 

Setting ὲ ς ςφςȟρττ yields Ὡ ςȢχρψςψ.  This is all the accuracy that high school 

students need.  Scientists use Ὡ ςȢχρψςψρψςψ, which looks like a repeating decimal, though 

the next four digits are not 1828 and it can be proven that Ὡ is irrational.  This calculation was 

first done by Jacob Bernoulli in 1683, but it is called Euler’s number because it was Euler who 

proved that it is irrational and, famously, that Ὡ ÃÏÓὼ ὭÓÉÎὼ, which is at the foundation 

of complex analysis, without which we would not have electrical engineering.  Honor goes to 

mathematicians who prove theorems using deductive logic, not to people with the patience to 

do 18 multiplications, and certainly not to “data driven” researchers who just feed empirical 

data of dubious origin into statistical software that they downloaded from the internet. 

 

Having found the value of the money earned on 100% interest in one time period, it is an easy 

step to allow the interest rate, ὶ, to be something other than 100% and the time, ὸ, to be 

something other than one time period.   

 

 ὴὸ  Ὡ      Exponential Growth    (2) 

 

ὴ is a proportion – one may multiply both side by ὖ, the principal –  ὶ is the interest rate and ὸ 

is time.  For our previous example, Ὡ ὩȢ ὩȢ Ȣ φȢπυ.  For the time unit defined 

as either a month or as a year, ὶὸπȢρ ρψ ρȢψ  or  ὶὸρȢς ρȢυ ρȢψ, the same thing. 

 

Logarithms can now be defined as the inverse of exponents, with no mention of other bases. 

 



Section 3:  Exponential Decay 

 

Recall the Law of Sines from trigonometry: 

 

         Law of Sines     (3) 

 

Here, a and b are sides of a triangle and α and β are the opposite angles.  I have devised a law 

of similar appearance and proven in a similar manner describing exponential decay: 

 

          Law of Logs     (4) 

 

Here, ὸ and ὸ are two different times in the future and ὴ and ὴ are the proportions 

remaining at those times.  Equation (2) is called exponential decay when ὶ is negative. 

 

Proof: 

 

 ὴ  Ὡ        Equation (2) 

 

 ὶ    Log both sides and solve for ὶ. 

 

  ὶ     Do the same for ὴ and ὸ; set equal.  ʉ

 

We can now eliminate the parameter ὶ.  This is similar to the proof of the Law of Sines where 

the equations for the sine of ‌ and of ‍ are both solved for height, which is then eliminated, 

leaving .  Incidentally, just to keep things confusing, scientists call rate Ὧ instead of ὶ.  

But we are eliminating rate from our equation, so we do not care what it is called.  

 

Example:  The half-life of carbon-14, a radioactive isotope of carbon, is υχσπ years.  This is the 

same thing as saying that its rate is πȢπππρςρ or πȢπρςρϷ per year.  Observe: 

 

  Ὡ Ȣ    Carbon-14 with ὴ       (5) 

 

ÌÏÇ  πȢφωσ.  Half-life is conventional, though, for a rhetorical reason, this convention was 

poorly chosen.  The geometric interpretation (Section 5) defines decay in terms of tenth-life. 

 



Half-life, not rate, is always given in problems about radioactive isotopes.  This is because they 

vary far more than interest rates do.  Bankers see 1% as a small rate and 20% as a financial 

crisis; but radioactive isotopes may take anywhere from seconds to millions of years to decay.  

Also, some are dangerous and half-life gives one an intuitive feel for when it will be safe again. 

 

Discussing both half-life and rate in the same problem is another example of authors careening 

from one expression to another in the hopes that every reader will find at least something they 

have written to be intuitive.  It is a rhetorical issue.  Textbook authors should just decide if they 

are addressing scientists or bankers and then use the appropriate terminology. 

 

  
Ȣ

        Law of Logs for Half-Life   (6) 

 

We use the equals sign in (6) because it cannot be made more accurate than half-life, Ὕ, which 

is never known to more than three digits; Ὕ υχςπ makes tenth-life an even ρωȟπππ years.   

Using  would imply that (6) can be made arbitrarily accurate by citing ÌÏÇ to more digits. 

 

 

    
Ȣ

        Law of Logs for Half-Life of Carbon-14 (7) 

 

Clearly, if you are given half-life, there are only two questions that can be posed on exams.  

Either they give you the time and ask of you the proportion remaining, or they give you the 

proportion remaining and ask of you the time to attain it.  In both cases you cross multiply. 

 

Example of being given the time and asked for the proportion: 

 

If the time since an organism died is 3310 years, what proportion of carbon-14 

remains?  Answer:  Cross multiply (7) and then Å the result, -0.4, to get 67%. 

 

Example of being given the proportion and asked for the time: 

 

If the proportion of carbon-14 is 45%, how much time has passed since the 

organism died?  Answer:  Log 0.45 and then cross multiply to get 6600 years. 

 

The half-life of iodine-131, used for detecting water leaks and treating thyroid cancer, as well as 

being released in weapons use, is 8.02 days.  Long-term cancer risk is from breathing or 

ingesting caesium-137, whose half-life is σπȢς years.  By cross multiplying the Law of Logs, we 

get the Century Law:  Every century after a nuclear attack reduces the radiation level tenfold.   



 

Section 4:  Rule of 69 

 

Calculating how long it takes for money at loan to double is of no practical consequence.  Such 

questions are contrived for the purpose of associating the growth of money at interest with the 

decay of radioactive isotopes.  Let us define Ὠ to be doubling time.  (It is conventional for T and 

d to represent half-life and doubling time, though they can also be represented as ὸȢ and ὸ.) 

 

 πȢφωσὶὨ     Rule of 69     (8) 

 

Proof: 

 

 ὴὸ  Ὡ      Equation (2) 

 

 ς  Ὡ     Consider doubling time. 

 

 πȢφωσὶὨ    Log both sides.     ʉ

 

If the interest rate is 3%, it takes about 23.1 years to double one’s money.  In general, doubling 

time for 1% interest is about 69 years, and inversely proportional for other interest rates. 

 

 ὴὸ  ς     The Standard Textbook Equation  (9) 

 

It is easy to prove that (9) is implied by our Law of Logs: 

 

           Law of Logs for doubling time. 

 

 ÌÏÇὴ      Multiply by ὸ. 

 

 ὴ  ς      Ὡ both sides; recall that ὼ  ὼ .   ʉ

 

To evaluate this equation, one must log it, take note that ÌÏÇØ ώÌÏÇὼ, and then Ὡ it.  This is 

another example of introducing unneeded intermediate steps.  Also note that it only works if 

one is given time and asked the proportion remaining; a whole slew of intermediate steps must 

be added to turn the equation around if one is given the proportion remaining and asked for 

time.  The Law of Logs works equally well for both questions and is almost identical to the Law 

of Sines, both of which use cross multiplication that the student is already familiar with.   



 

Following is a photocopy of a standard textbook, side-by-side with how I would teach this.  

Note that only money can grow exponentially; algae run out of food after a day or two. 

 

Law of Logs Exposition Traditional Exposition 
 

 

 

 

 

 

 

 

        Law of Logs 

 

            Application 

 

ὴ ρρȢσ               Solve for ὴ 

 

ρρȢσ ρπ algae in two days 

 

 

 

 

 

 

 

 

 

Only the accuracy you have! 

 

 

 

This is equation (9). 

 
 
Ellis and Gulick.  1986.  Calculus and Analytic Geometry, 3

rd
 edition.  New York, NY:  Harcourt Brace Jovanovich 

 



 

Section 5:  Geometric Interpretation  

 

Geometry students are taught how to construct the fourth proportional to three given line 

segments, though they are not sure why, since a calculator is more accurate.  But, had the Law 

of Logs been invented before electronic calculators, constructions on poster-size semi-log paper 

would have been more accurate than a slide rule; a legal-size graph has two digits.  Today, the 

motivation for the geometric solution for carbon-14 dating is speed on timed exams, assuming 

that a graph qualifies as a “calculator” under exam rules.  Also, the geometric solution makes it 

clear why the decay of C-14 does not work for dating the remains of recently deceased people:  

The triangle is smaller and the percentages are much more closely spaced near the left vertex. 

 

 

We define tenth-life to be exactly ρωȟπππ years.  
By Triangle Similarity we know that 
 

ρππϷ ὸέ υπϷ

π ὸέ υχςπ ώὩὥὶί
  

ρππϷ ὸέ ρπϷ

π ὸέ ρωȟπππ ώὩὥὶί
 

 

This construction implies that  
 Ȣ  Ȣ

ȟ
 

 
because the scale is logarithmic and ÌÏÇρ π.   
 

This is a special case of     

 
Student exercise #1:  Use the graph to find the 
proportion of carbon-14 remaining after ςυπ 
and ςυȟπππ years.  Estimate the accuracy of 
your answers.  Does an eight-digit calculator 
answer both questions to the same eight digits? 
 
Student exercise #2:  Using semi-log paper, 
construct a 200-year geometric solver for 
caesium-137.  Define tenth-life to be 100 years. 

 

Modern geometry textbooks are silent on exponential decay, so we cannot compare their 

treatment of this problem to mine.  Instead, I will illustrate (next page) how modern geometry 

textbooks are padded for length by overuse of common notions while omitting actual axioms, 

which results in long proofs with mincing steps.  Common notions are axioms that, once 

established, can be skipped with a word:  simplify.  Axioms are what uniquely define a theory. 
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Bhatt and Dayton.  2014.  Geometry:  Tutorial and Practice Problems.  Indianapolis, IN:  Alpha 



 

Proof requires Euclid’s 4th postulate, that all right angles are equal; Euclid’s 15th theorem, that 

opposite angles are equal; and Euclid’s 32nd theorem, that the interior angles of a triangle sum 

to two right angles.  Proof does not require that O be the midpoint of RP.  But observe Bhatt’s 

and Dayton’s five mincing steps to prove that two right angles are equal, their needlessly 

restricting their theorem to congruent rather than just similar triangles, and their grounding all 

of their work on the unproven ASA “postulate,” so nothing they did here has a solid foundation. 

 

When asked if there were not easier means of learning geometry, Euclid famously replied that 

there is no royal road to geometry.  But modern textbooks are written for the standardized 

exams.  Bhatt and Dayton skipped over Euclid’s five postulates and then declared his 26th 

theorem a postulate, probably because they had seen exam questions on the latter but not the 

former.  Nor, apparently, do examiners ask about the sum of interior angles summing to 180°, 

and so it too was omitted; a grievous omission since it is equivalent to Euclid’s fifth postulate. 

 

Geometry today is just a jumble of statements randomly labeled as axioms (postulates) or as 

theorems (propositions) and never the same from one textbook to the next.  Postulates are 

either missing entirely or they are just propositions that the author did not want to (or know 

how to) prove.  Except for Euclid’s first postulate, I find no mention of his other four postulates.  

The index of one textbook3 indicates that “postulate” appears only once (p.  25), which I quote: 

 

Both theorems and postulates are statements of geometric truth.  The difference 
between postulates and theorems is that postulates are assumed to be true, but 
theorems must be proven to be true based on postulates and/or already-proven 
theorems.  It’s a fine distinction, and if I were you, I wouldn’t sweat it. 

 

Mark Ryan does not make this distinction.  I found a handful of Euclid’s postulates, common 

notions and propositions scattered throughout and all are just stated as facts with no attempt 

to prove them.  The student exercises have two-column “proofs” where the right-hand column 

consists of references to these facts/theorems/postulates, or whatever you want to call them.   

 

Modern geometry classes might help you win on Jeopardy, but they will not help you become a 

scientist.  Practical men do not want Alex Trebek for their teacher, but this is all that capital-E 

Educators are.  Mark Ryan (p. 7) writes, “You’ll have plenty of opportunities to use your 

knowledge about the geometry of shapes.  What about geometry proofs?  Not so much.”  The 

French core curriculum includes the ban, teut expos’e de logique formalle est exclu [any formal 

logic exposition is excluded] and Mark Ryan is just enforcing the American version of this ban. 

                                                             
3 Mark Ryan.  2011.  Geometry Essentials for Dummies.  Hoboken, NJ:  Wiley Publishing Inc. 



 

Section 6:  Mathematics for Tradesmen 

 

Not everybody is going on to college.  One reason why exponents and logarithms are the 

stopping point for so many failed high school math students is because radioactive isotopes are 

seen as science, and students who are not going to be scientists feel that they need go no 

further.  But people in all walks of life must be able to cross multiply to solve a proportion.  

Since the Law of Logs is a proportion, it is good practice for them to work with this equation. 

 

The mathematics that is most relevant to the trades is the Pythagorean Theorem and the 

Quadratic Formula.  Because the Pythagorean Theorem is a second-order equation and the 

Quadratic Formula solves second-order equations, they are to the tradesman what the one-two 

punch is to the pugilist.  Let us consider some examples from several different trades: 

 

1) A carpenter builds a rectangular cabin with inside dimensions ten feet by twenty feet.  A 

two-foot diameter stove is in the center.  The windows must be at least six feet from the 

stove lest the curtains catch fire.  How far from the corners can the windows be built? 

 

2) A trucker is to take a flatbed trailer eight and a half feet wide to the shipping yard, where he 

will pick up a corrugated steel pipe twelve feet in diameter.  He must construct braces on 

the sides of his trailer to prevent the pipe from rolling off.  How high should the braces be? 

 

3) A plumber is to run a pipe through a hole six inches high and eight inches wide.  A four-inch 

PVC pipe (o.d. 4.5”) already goes through this hole.  How large of a pipe will fit beside it? 

 

4) A machinist cuts the upper right edge off of a 3.5” square bar with a 1.5” concave radius 

that leaves a 0.75” step on the lower right edge.  He must now cut a convex radius on the 

upper left edge of the bar so it meets the concave radius and reduces the height of the bar 

to 2.75”.  What is the measure of this convex radius? 

 

The first step to employing the Pythagorean Theorem is to construct a right triangle.  In the first 

two problems, a circle overlaps a line, so drop a perpendicular from the center of the circle to 

the line and a hypotenuse to their intersection.  In the last two problems, two circles touch, so 

the hypotenuse goes from center to center.  Solutions:  1) 5’ 1”   2) ςρ”    3) 3.9”    4) 1.028” 

 

Practical problems such as these will hold the attention of students going into the trades.  They 

will also hold the attention of college-bound students because bright college boys live in fear of 

being embarrassed by a “dumb” blue-collar worker when it comes to mathematics. 


