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ABSTRACT

Many books on real analysis contain extensive material on
the real number system. This includes many results regarding
sequences and series of real numbers as well as results from
metric topology as they relate to the real number systemn.
Royden is brief in this respect and I will omit it entirely
since I feel it is introductory and should be prerequisite of
a real analysis course. Also, I will omit any mention of
most of the practical calculus techniques (particularly
differential calculus) which are generally taught in
introductory calculus courses. However, introductory real
analysis does not extend beyond calculus of one variable, so
multivariable calculus is not prerequisite of this essay.

I will begin by defining the Riemann integral and discuss
some of the theorems relating to it. Throughout this section
most of the sets mentioned will be intervals on the real
number line. In the next section I will discuss "measurable"
sets (still on the real number line) and functions. In the
third section I will define the Lebesque integral and discuss
some of the results of Lebesque.integration. Finally, I will
discuss how Lebesque integration extends Riemann integration,
that is, why we are not content with an integral defined only

in terms of intervals, which are more tractable than



Aguilar 2
measureable sets. Proofs will be omitted for the sake of
brevity and ease of exposition.

Since this wordprocessor does not have an epsilon symbol, I
will use alpha in a similar manner. "E represents the
complement of the set E. The symbol < means either "is less

than" or "is a subset of." The context should make it clear

which is meant.
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Section 1

Riemann Integration

The term "almost everywhere" appears throuéhout real
analysis. Almost everywhere in a set is everywhere except on
a subset of measure zero. "Measure" will be defined in
section 2 but it is possible (and useful) to define "measure
zero" seperately. A set E is of measure zero (denoted
BE = 0) if, for all a > 0, there exists a countable sequence
of open intervals I, which cover E and Z|Ip| < @. If I is an
interval then |I| represents its length. Clearly, a
countable union of sets, each of measure zero, is also of
measure zero. Also, any countable set is of measure zero.
This is remarkable considering that there is a countable set
(the rational numbers) which is dense in the reals. The
reéls are of measure . It may seem that all sets of measure
zero would be countable. However, the Cantor set is
uncountably infinite and of measure zero. This is also
remarkable because, in probability, measure zero means
(roughly) "impossible", though there may be uncountably many
counterexamples.

Several concepts must be defined in preparation for
defining the Riemann integral. Unless explicitly stated

otherwise, all intervals and functions will be assumed to be
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bounded. M[f;I] = sup f£(x) and m{f;I] = inf f(x) with x in
the interval I. o = <xkx> with i =0, 1,++¢,n is a
subdivision of [a,b] if a = xg < X1 < *** < X = b. To
simplify the notation, all integrals in this section, unless
otherwise noted, will be over [a,b]. Also, o and 7 will
always be subdivisions of this interval and Iy the interval
[Xk-1,XK]. With regards to a particular subdivision o, the

upper and lower sums of f in [a,b] are U[f;0] = SM[£f;Ik]"

Ik|
and L[f;o0] = Em[£;Ik]"

Ikl, respectively. Clearly, we have
L[f;o0)] < U[f;7]. Finally, the upper and lower Riemann
integrals are defined as sup U[f;o] and inf L[f;0] over all
subdivisions of [a,b]. From the previous result we have the
lower Riemann integral less than or equal to the upper
Riemann integral. If they are exactly equal then f is
Riemann integrable over [a,b] and this common value is its

Riemann integral, denoted

RI f(x)dx

The R will be dropped as will will consider no other kind of
integral in this section. 1In section 3 the Lebesque integral
will be defined and, from there on, only it will be
considered so there will be no need to denote it with an L.

It follows directly from the definition that ¢ € (a,b)
implies that the Riemann integrals over [a,c] and [c,b] exist
and sum to the Riemann integral over [a,b]. Also, by
defining the integral over [a,b] to be the negative of the
integral over [b,a], the statement above is true regardless

of the order of a, b, and c.
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c J f(x)dx + J g(x)dx = J cf(x) + g((x)dx
with the integrability of the function on the left implying
that of the function on the right.

For f(x) £ g(x) almost everywhere,

J f(x)dx < I g(x)dx and ‘J f(x)dx’ < J | £(x) |ax
Roughly, a subdivision cannot be made fine enough that any of
its component intervals are contained in the set of points
where g(x) < f(x).

This is also why the characteristic function of any dense
subset of measure zero (or its complement) is not Riemann
integrable. A subdivision cannot be made fine enough that
any of its component intervals are contained in the defining
set. This is clear from the definition of zero measure.

For instance, the characteristic function of rational numbers
in [a,b] is not Riemann integrable. It may seem that the
difficulty is only that its points of discontinuity are dense
in [a,b]. However, consider the function defined on [0,1]
such that, for all rational numbers x = n/d (in lowest
terms), f(x) = 1/d and, for all irrational numbers, f£(x) = 0.
Because the irrationals are dense in [0,1], there is one in
every neighborhood of a rational number so, taking a = 1/(2d)
for each rational number, they are points of discontinuity
and are dense in [0,1]. Clearly, the lower Riemann integral
of f(x) is zero. Let op be the subdivision with xx = k/n and
U[fi;on] = 1/n, that is, U[f;op] is the area of n squares,
each 1/n on a side. Sup U[f;op] for all n is 0, so the

Riemann integral of f is defined and is zero. Thus, density
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of discontinuities alone is not sufficient. As the example
in the next paragraph shows, discontinuities of measure zero
alone is not sufficient.

f is Riemann integrable iff, for all a > 0, there exists a
subdivision o such that U[f;o0] < L[f;0] + a. This is clear
from the definition but it is not useful in practice because
it would require finding such a subdivision. It is a
fundamental result of integration theory that f is Riemann
integrable iff f is almost everywhere continuous. Consider
the characteristic function of the Cantor set. The Cantor
set is the set of numbers in [0,1] with a ternary expansion
that does not contain the digit 1. At every point in the
Cantor set, this function is discontinuous. This is because,
for any larger element, there is a number not in the Cantor
set between them obtained by replacing the first 2 of the
larger element with a 1. At every point of [0,1] not in the
Cantor set, this function is continuous because, if its first
1 is in the n'th place, all the numbers equal to it in their
first n places are not in the Cantor set and form an open
interval 1/3N wide. For this same reason, the Cantor set is
not dense. For reasons given in section 2, the Cantor set is
of measure zero and, hence, Riemann integrable. For the same
reason that binary expansions are uncountably infinite, the
Cantor set is also uncountably infinite. Thus, it has as
many discontinuities as a function can have without losing
Riemann integrability.

The derivative of f(x) is f'(x) = 1lim £f(x+h) - f(x)
h=-->0 h

Considering that f is Riemann integrable iff f is almost



Aguilar 7
everywhere continuous,‘one might ask if this is true of
derivatives as well. Differentiability implies continuity
but the converse is not true. The absolute value function is
continuous but is not differentiable at zero. Periodic
triangular waveforms are everywhere continuous but are not
differentiable on a countably infinite set. By taking a
countable summation of such functions it is possible to
construct an everywhere continuous but nowhere differentiable
function. Let fq(x) = |x| in [-%,%] and fq1(x+n) = £;(x) for
all real x and integer n. For n = 2, 3,-+-, let fh(x) =
f1(4n‘1x)/4n“1. 2fh(xX) converges by the Weierstrass M-test

because |fp(x)| < 1/4071, Let h, = *1/40*1 so we have

| fn(x+hn) - £n(x)| = |bpl. Also, |fn(x+hp) - fu(x)| = |hy|
for m < n but zero for m > n. Thus, (f(x+hp) - £(x))/hp is
an even or odd integer exactly where n is even or odd and,
consequently, the derivative of f(x) does not exist.

For a function to have a derivative almost everywhere on
[a,b], it must be, not just continuous, but absolutely
continuous. That is, given a > 0, there exists § > 0 such
that =|xj'-xi| < & implies =|f(xi')-f(xi)| < @ with
{(xi'-%i)) a finite collection of non-overlapping intervals
in [a,b]. Absolute continuity is equivalent to bounded
variation, which is easier to verify. Bounded variation on
[a,b] means that sup E|f(xk)—f(xk_1)| < ., Other than direct
recourse to the definition of differentiability, there is no
way to upgrade almost everywhere to everywhere. This can be

a problem in practical applications such as Newton's Method,

which assumes the existence of derivatives.
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If a function is differentiable, will its derivative
necessarily be continuous? No. Consider f(0) = 0 and
f(x) = x2sin(1/x) elsewhere. It is differentiable but its
derivative is discontinuous at 0. If a function is
continuous it is necessarily the derivative of some function,
however. That is, if f is continuous at x then there exists
a function F such that F'(x) = f(x). Furthermore, not only
can we prove the existence of such a function but we can give
it a name.

X

F(x) = I f(t)dt with x € [a,b]
a v

Notice that, while F(x) exists, it is not unique. It depends
on one's choice of a. Furthermore, F may not be expressible
in terms of the standard transcendental functions. For
instance, f(x) = exp(-%x2)/J/(2m) is everywhere continuous and
hence has an anti-derivative F(x) = %erf(x/./2), but there is
‘no expression for the error function, F(x), other than as the
indefinite integral of f(x).

Thus, the derivative is related to the integral. This is
remarkable considering that their definitions make no mention
of one another and do not look much alike. 1In fact, it is so
remarkable that the theorem above is called the Fundamental
Theorem of Calculus.

There is another (more useful) version of the Fundamental
Theorem of Calculus which requires two preliminary theorems.
If £f'(x) = 0 on [a,b] then f(x) = ¢ on [a,b] and,
immediately, if f£'(x) = g'(x) on [a,b], then f(x) - g(x) = c

on [a,b]. And so we have our most important result: If f is
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continous on [a,b] and F an anti-derivative of it, then
b

Jf(x)dx = F(b) - F(a)
a

Differentiation is easy. Integration is harder but, having
associated derivatives with integrals, we can use the chain
rule to prove the very useful method of substitution. If
g'(x) 1is continuous on [a,b] and f(x) is continuous on
g([a,b]), then

g(b) b

f(x)ax = I f(g(x))g'(x)dx
g(a) a

Integration by parts is derived from the product rule.

f f(x)g'(x)dx = f£(x)g(x) - J £'(x)g(x)dx

Recall that all intervals and functions have been assumed
to be bounded. If we relax this requirement for intervals we
get improper integrals of the first kind. The theory of such
integrals closely parallels that of sequences and series.
Partial integrals play the part of parfial sums and absolute
convergence implies convergence but not the converse. For
non-negative, non-increasing functions the improper integral
converges iff the infinite series does. The concept of
rearranging the terms in a series does not carry over to
integration, however, because subdivisions only have a finite
number of terms. Thus,

00

00
sin(x)dx cosgx)dx 1
J X = X + 7

T T

even though the integral on the left is conditionally
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convergent and the one on the right is absolutely convergent.
This could not happen for an infinite series because, with
appropriate rearrangement of its terms, a conditionally
convergent series can be made to converge to any real number.
If we retain the requirement that intervals be bounded but
relax the requirement that functions be bounded, we have
improper integrals of the second kind. These are called
Cauchy-Riemann integrals. If the function is unbounded on a
(small) finite set of points in [a,b], one can partition
[a,b] at those points (called singularities) and evaluate
only over intervals with singularities at their boundary. If
the singularity is on the left then one takes a right-hand
limit
b
lim
a-->07t J f(x)dx
ata
Similarly with left-hand limits for singularities on the
right. These limits are handled in much the same way that

improper integrals of the first kind are. 1In fact they can

often be converted into one another as

1 1/a
lim 1dx lim 1du
a-->0% f X = q-->0% J u
Q 1

with u = 1/x. If there are a lot (or an infinity) of
singularities this process is more difficult.

Improper integrals of both the first and second kind can be
partitioned so one first evaluates on the side with the
singularity and then does the tail. Thus, it is never

neccessary to deal with both improprieties at once, though
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both integrals must be finite for the combined integral to be

finite.



Aguilar 12

Section 2

Lebesque Measure

In section 1 virtually all the sets considered were
intervals and, in particular, all the integrals were
evaluated over bounded intervals. Even for improper
integrals of the first kind all the integrals considered were
evaluated over bounded intervals. One just took a sequence
of such integrals. In fact, for most applications involving
real numbers one only considers intervals. However,
particularly in probability, it is sometimes necessary to
consider (and measure) more complicated sets. The measure of
an interval is its length, so all that has been said in
section 1 regarding intervals still holds in the more general
setting of Lesbesque measure. We will not go beyond the real
numbers, however, so "set" will always refer to a subset of
the real number line.

The outer measure of a set is m* = inf =|Ij| with <Ip> any
countable collection of intervals which cover the set.
Clearly, the outer measure of the union of a countable
collection of sets is less than or equal to the sum of the
outer measures of all the sets, because they may overlap.
Thus, m*A < m*(A n E) + m*(A n "E). If, for all A, we also

have m*aA > m*(A nE) +n*(An "E), then E is measurable and
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wE = m*E. This definition is due to Carathéodory.
Measurability is not much of a restriction. Royden, and
every other author that I consulted, give the same highly
artificial example of a set that is not measureable. It may
be that there is no other example, or at least none that can
be constructed without using the Axiom of Choice to pick from
an uncountably infinite collection of sets, which is a
somewhat dubious procedure. Thus, for practical
applications, one can assume that all sets are measureable.
In particular, those of measure zero considered in section 1
as well as unbounded intervals and all 6pen and closed sets
are measureable.

This is not the only way to define Lebesque measure.
Because of how the general version of the Lebesque integral
is defined, we really only need to consider sets of finite
measure. Thus, one may begin by taking [a,b] rather than the
entire real line as the universal set. This does not change
the definition of outer measure, which can be abreviated as
m*E = inf |G| with G an open covering of E. Now we can
define inner measure as m«E = sup |[F| = sup (b - a - |"F|),
however, with F a closed set contained in E. Measureable
sets are exactly those whose inner and outer measure are
equal and this common value is their Lebesque measure. With
this in mind, all sets mentioned from hereon will be of
finite measure unless explicitely stated otherwise.

This definition leads directly to the Littlewood's First
Principle, that the measurability of E implies the existence

of a countable union of closed sets F and a countable
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intersection of open sets G such that F < E < ¢ and E\F and
G\E are both of measure zero. If "countable" is replaced
with "finite" then we only have p(E\F) < a and u(G\E) < a for
arbitrarily small a. Because defining both inner and outer
measure leads so easily to Littlewood's First Principle, I
prefer this definition rather than Carathéodory's definition
(cited by Royden) which uses only outer measure.
Carathéodory's definition requires proving that a relation
holds for every possible set A, which does not seem very
useful. There is even another definition which also involves
only outer méasure, that is, E is measureable iff, given

@ > 0, there exists open sets Gj and Gy such that E < Gq,

"E < Gy, and |G] n G| < a.

Actually, it does not really matter how measureability is
defined since, for all practical purposes, all sets are
measureable. With this in mind, most of the theorems about
measurable sets can be skimmed over as they establish only
existence. Countable additivity of disjoint sets is
important because it can be used to find the measure of sets.
In particular, for nested sets Eq < Eos < +++, the measure of
their union is the limit of their measures. Similarly, for
nested sets Ej > E; > +++, the measure of their intersection
is the limit of their measures. This latter result can be
used to show that the Cantor set is of measure zero. I
suspect that most sets whose measure is actually known are
the union or the intersection of nested sets. Also, having
established the measure of a set, if its symetric difference

with another set is of measure zero, then that set has the
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same measure. In other words, subsets of measure zero do not
contribute to the measure of a set.

Measurable functions are ones such that, for all real ¢, x
such that f(x) 2 c¢ is a measurable set. Here, > can be
replaced with >, <, or <. Combining > and < implies that, if
a function is measureable, then x such that f(x) = ¢ is a
measurable set. Clearly, the characteristic function of a
non-measurable function is not measureable. Otherwise, the
situation parallels that of measurable sets, that is, in
practical situations one can assume that all functions are
measurable. Skimming over the existence theorems, there are
only two important result regarding measurable functions.

Littlewood's Second Principle states that, if f is
measurable on [a,b] and finite almost everywhere, there is a
step function and a continuous function that fall outside an
a-strip only on a set of measure less than a. That is, the
closer your tolerances, the less the continuous (or step)
approximation fails you. (Why can't people be like that?)

Littlewood's Third Principle states that for bounded
functions, if fh-->f pointwise almost everywhere, then <fp>
converges in measure to f. Convergence in measure means
that, given tolerances on both the narrowness of the a-strip
and on the measure of the set of failures, an N can be found
such that f, approximates f for n > N . This is equivalent
to saying that every subsequence has a subsequence that is
almost everywhere pointwise convergent. The converse of
Littlewood's Third Principle is not true, that is, almost

everywhere pointwise convergence cannot be upgraded from
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subsequences of subsequences to the sequence itself.

Consider the following (pseudo) BASIC program:

For i =1 tow \ For j = 0 to 2% - 1 \ n=2%+ j \ Next j,i.
Let f, = 1 in [j/2i, (j+1)/2i] and 0 in the rest of [0,1].
<fp> is convergent in measure but not almost everywhere
pointwise convergent. Thus, convergence in measure is the
weakest possible kind of convergence.

In summary, besides being the basis for Lebesque
integration, Lebesque measure allows us to make the following
statements about (practically) all sets and functions:

1) Sets can be approximated by an intersection of open
sets or a union of closed sets.

2) Almost everywhere bounded functions can be approximated
by continuous (or step) functions.

3) Sequences of bounded functions that only converge
pointwise (and not even everywhere) would converge uniformly
but for a small part of their domain.

As will be shown in section 4, the most important results
of Lebesque integration, and the ones which cannot be proven
using Riemann integration, are all fairly direct consequences

of Littlewood's Three Principles.
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Section 3

Lebesque Integration

Riemann integration can be thought of as approximating a
function from above and below with step functions,
integrating the step functions in the obvious way, and taking
their common value (if they have a common value) as the
Riemann integral. Lebesque integration is exactly the same
thing except with simple functions. Simple functions are
like step functions except, instead of being constant on
intervals, they are constant on measurable sets. They are
integrated in the same way that step functions are except
that the horazontal component of area is not just the length
of an interval but the measure of a (parhaps quite
complicated) set. Since intervals are one kind of set,
Riemann integration is a restriction of Lebesque integration.
If a function is Riemann integrable, then it is also Lebesque
integrable and the two integrals agree.

Another way to think of Lebesque integration is that one
subdivides the range of the integrand rather than its domain
as in Riemann integration. If the subdivision is fine enough
then the height of the points in each component interval is
constant. From the definition of measureability, x such that

f(x) 2 ¢ is a measurable set. The measures of the sets
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associated with each interval times its width can be summed
over all the component intervals in a subdivision to give an
approximation of the area under the graph of the function.

Clearly, for bounded functions, the Lebesque integral over
a set of measure zero is zero regardless of the integrand's
value on that set. Thus, one of the advantages of Lebesque
integration is that we can ignore values of a function as
long as they occur only on a set of measure zero. For this
reason, most of the results relating to Lebesque integration
are conditional on statements which do not have to hold
everywhere, only almost everywhere. This is useful because
relations such as fp(x)-->f£(x) or f(xX) < g(x) may have blips
where they fail. If the measure of such failures is zero,
the relation can still be used in a proof as though it were
true everywhere.

For bounded functions on sets of finite measure, limits can
be pulled out of integrals, that is, if |fu(x)| < M and
fh-->f almost everywhere (Royden unneccessarily says
everywhere) then

f lim
f(x)dx = n-->o J fn(x)dx

This is called the Bounded Convergence Theorem and is an
application of Littlewood's Third Principle that sequences
that only converge pointwise (and not even everywhere) would
converge uniformly but for a small part of their domain.
Uniform convergence would easily imply the result and, by
Littlewood's Third Principle, pointwise convergence is close
enough. This is the only significant result that requires

functions be bounded and integrated on sets of finite
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measure. It is really a lemma for the more powerful
convergence theorems which apply to general Lebesque
integration.

By general Lebesque integration I mean integration of
unbounded functions over infinite sets. The integral of a
non-negative f over E is defined as the supremum of
integrating h over E'. Here, h is any function that is
bounded, dominated by f, and zero outside E' with uE' < o and
E' < E. 1In general, the positive part and the negative of
the negative part must be done seperately. This definition
allows us to consider only bounded functions on sets of
finite measure, which is all that we actually know how to
integrate, when proving theorem about general Lebesque
integration. Thus, the remaining theorems in this section do
not assume any bound on sets and will establish their own
bounds on functions, when needed.

The Monotone Convergence Theorem also allows limits to be
pulled out of integral. However, unlike the Bounded
Convergence Theorem which requires |fn(x)| < M, it requires
fn(x) to be increasing and non-negative. This bounds fp(x)
above by f(x). It is this bound that is important so, if one
can show that fj(x) < f(x) for almost all x, f,(x) need not
be increasing, though that is usually the easiest way to
establish the bound. That this works is remarkable since f
need not be Lebesque integrable, that is, its integral may
not be finite. The Monotone Convergence Theorem has the very
useful corollary that infinite summations can be pulled out

of integrals.
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00

J f(x)dx = E:: I up (x)dx
n=1

where f is the sum of <up>. If the u, can be integrated in
closed form and Up is dominated by a sequence whose sum
converges, then f is Lebesque integrable. This result may be
difficult or impossible to obtain without reversing the order
of the summation and the integral. 1In the context of Riemann
integration, this is only defined for proper integrals and
requires that the partial sums of u,(x) converge uniformly to
f(x).

The Lebesque [Dominated] Convergence Theorem also allows
limits to be pulled out of integrals, but requires that f£p(x)
be bounded above and below by Lebesque integrable functions.
This is stronger than the comparable statement in Riemann
integration which is only defined for proper integrals and
requires uniform convergence of the limit before it is pulled
out of the integral. Consider fnh(x) = /x in (1/n,2/n) and
zero in the rest of [0,2]. This is bounded by the Lebesque
integrable function g(x) = J/2//x in (0,2] and zero at zero,
so <fp> satisfies the conditions of the Lebesque Convergence
Theorem but does not uniformly converge to f(x) = 0.

The Monotone Convergence Theorem is implied by the Lebesque
Convergence Theorem only if fj(x) converges to an Lebesque
integrable function. The strong point of the Monotone
Convergence Theorem is that its bound, f(x), need not be
Lebesque integrable. The strong point of the Lebesque
Convergence Theorem is that its bounds, gp(x), can be

different and more tractable functions than fp(x).
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An example of a sequence of Riemann integrable functions
which is monotonic and non-negative but converges to a
function that is not Riemann integrable will now be given.
Let I3, I3, *++, In be all the open intervals removed by the
n'th iteration of the construction of the generalized Cantor

set with uC = a. Define 9n,k(x) on [0,1] to be 1 outside Iy,
’O in [a + (b-a)/20, -(b-a)/2n + b] where a and b are the left
and right endpoints of Ix, and linear between these
intervals. Let fp(x) be the product of 9n,k(x) for k =1, 2,
e+, n. fp(x) is piecewise linear and hence Riemann
integrable. However fp(x) converges to the characteristic
function of the generalized Cantor set which is discontinuous
on a set of positive measure and hence is not Riemann
integrable. This shows that the Monotone Convergence Theorem
cannot be proven in the context of Riemann integrals.
Furthermoré, because the characteristic function of the
generalized Cantor set is Lebesque integrable, the Lebesque
Convergence Theorem cannot be proven in the context of
Riemann integrals either.

The monotone and Lebesque convergence theorems each bound
fn(x) in different ways. If f,(x) is completely unbounded
above then we cannot integrate f(x) but only bound its
integral by the limit inferior of the integrals of fj(x).
That is,

J lim
f(x)dx < n--> J fh(x)dx

This may be sufficient to establish the integrability of f,
however. This result is called Fatou's Lemma. Since

establishing Lebesque integrability is required for many of
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the results of Lebesque integration, Fatou's Lemma is an
important result.

Also for completely unbounded functions we have a theorem
similar to the statement that, for bounded functions, the
Lebesque integral over a set of measure zero is zero
regardless of the integrand's value on that set. If a
function is unbounded but Lebesque integrable then its
integral can be made arbitrarily small by reducing the
measure of the set that it is integrated over. That is,

given a > 0 there exists 6§ > 0 such that, for uE < §, we have

J f(x)dx < «
E

provided that f is Lebesque integrable. This is an easy (but
useful) result of the Bounded Convergence Theorem. It
actually has to be proven before the monotone and Lebesque
convergence theorem but is stated now for expository
purposes. Furthermore, this theorem can be strengthened to
state that, for Lebesque integrable functions with

f(x) = g(x) almost everywhere, their integrals are equal.
Confusingly, Royden never actually states this rather
fundamental theorem, stating only the weaker version above,

which is really just a lemma for the Lebesque Convergence

Theorem.
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Section 4

Conclusion

Littlewood's Third Principle states that, for bounded
functions, if fp-->f pointwise almost everywhere, then <fp>
converges in measure to f. Thus, convergence in measure is
the weakest kind of convergence. Littlewood's Second
Principle states that, for an almost everywhere bounded
function, there is a step function and a continuous function
that fall outside an a-strip only on a set of measure less
than a. With these two principles we have Fatou's Lemma, The
Monotone Convergence Theorem, and the Lebesque Convergence
Theorem all true assuming only convergence in measure. This
is in stark contrast to the comparable statements in Riemann
integration which are defined only for proper integrals and
require uniform convergence, the strongest kind.
Furthermore, the functions fj(xX) need not be bounded by some
M, as they must be in Riemann integration. Fatou's Lemma
assumes no bound at all while the monotone and Lebesque
convergence theorems assume much weaker bounds on fp(x).

For Lebesque integrable functions, the Lebesque integral
over a set of measure zero is zero regardless of the
integrand's value on that set. This conveniently ignores

blips in functions that would prohibit the application of
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Riemann integration. 1In particular, it makes possible
integration over quite complicated sets of the type found in
probability. Littlewood's First Principle states that the
measurability of E implies the existence of a countable union
of closed sets F and a countable intersection of open sets G
such that F < E < G and E\F and G\E are both of measure zero.
Thus, for nested sets E; < E5 < ¢++, the measure of their
union is the limit of their measures. Similarly, for nested
sets E; > E3 > +++, the measure of their intersection is the
limit of their measures. This establishes not only the
existence but the actual value of many complicated integrals
that cannot be done with Riemann integration. In computing

these integrals we have

c J f(x)dx + J g(x)dx = I cf(x) + g(x)dx

and, for f(x) < g(x) almost everywhere,

J f(x)dx < J g(x)dx and |J f(x)dx‘ < j If(x)|dx
This requires only that the functions be Lebesque integrable,
which is a much stronger result than the comparable
statements in Riemann integration which require that the
functions be proper Riemann integrals.

A result of Riemann integration is that, while derivatives
are not always continuous, if a function is continuous it is
necessarily the derivative of some function. That is, if f
is continuous at x then there exists a function F such that
F'(x) = f(x) and that function is

X

F(x) = J £(t)dt with x € [a,b]
a
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Furthermore, because f is Riemann integrable iff f is almost
everywhere continuous, F'(x) = f(x) almost everywhere.
Lebesque integration can upgrade this result by replacing the
requirement that f be continuous with the much weaker
requirement that f be Lebesque integrable. This is primarily
a result of Littlewood's Second Principle that, for an almost
everywhere bounded function, there is a continuous function
that falls outside an a-strip only on a set of measure less
than a. Since Lebesque integrable functions are neccessarily
Riemann integrable, we automatically have F'(x) = f(x) almost

everywhere, that is

X

d_

dx f(t)yat = f£(x) almost everywhere
a

Since the expression above would not make sense if f(x) were
not Lebesque integrable, this is not much of a restriction.
Thus, the Fundamental Theorem of Calculus is significantly
stronger in the context of Lebesque integration than in
Riemann integration. However, it still holds only almost
everywhere, which is considerably weaker than if it held
everywhere. For instance, there is a function with a dense
set of failures. Consider the function defined on [0,1] such
that, for all rational numbers x = n/d (in lowest terms),
f(x) = 1/d and, for all irrational numbers, f(x) = 0. 1In
section one it was shown that the integral of this function
is zero, so the equality above holds only for irrational
numbers and fails on the set of rational numbers, which is
dense in [0,1].

The Fundamental Theorem of Calculus puts a condition on
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f(x) to establish the existence of an indefinite integral
F(x). While F may not be expressible in terms of the standard
transcendental functions, given a function that is, what
condition must be put on it to establish the existence of a
derivative? 1In other words, how do we know if F is the
indefinite integral of some f? Recall that, for a function
to have a derivative almost everywhere on [a,b], it must be,
not just continuous, but absolutely continuous. That is,
given @ > 0, there exists § > 0 such that =|xj'-xij| < &
implies Z|F(xj')-F(xi)| < o with {(xi'-xj)} a finite
collection of non-overlapping intervals in [a,b]. Absolute
continuity is equivalent to bounded variation, which is
easier to verify. Bounded variation on [a,b] means that sup
S|F(xk)-F(xkx-1)| < ®». Since the stronger version of the
Fundamental Theorem of Calculus (in Lebesque integration)
provides that F'(x) = f(x) almost everywhere, F(x) is an
indefinite integral iff it is absolutely continuous or of
bounded variation. That is,

b

Jf(x)dx = F(b) - F(a)
a

iff sup Z|F(xk)-F(xkx-1)| < ». No comparable statement can be
made in the theory of Riemann integration.

Finally, looking ahead, define square integrable to mean
that £2(x) is Lebesque integrable over [a,b]. The
equivalence classes of square integrable functions that are
equal almost everywhere are a metric space and the norm of a

square integrable function is



Aguilar 27

N

/I \
el = \NJ £2(x)ax /
It is a fundamental result that this metric space is
complete, a result that cannot be proven in the context of
the Riemann integral. Furthermore, the set of continuous
functions on [a,b] is dense in this metric space. This leads
into the subject of orthonormal expansions, including Fourier
series and Tschebysheff polynomials, which are a principle
topic of numerical analysis, as well as Hermite polynomials
used in quantum mechanics.

For functions of more than one variable we have Fubini's
Theorem that double integrals of Lebesque integrable
functions of two (or more) variables can be iterated.
Furthermore, by the Tonelli-Hobson Theorem, the order of
integration can be switched if either of the iterated
integrals converges absolutely. Of interest to electrical
engineers is the theorem that the Laplace transform of the
convolotion of two functions is the product of their Laplace

transforns.



