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This textbook is at the high-school level, but it is written without the condescending tone typical 

of American high-school textbooks.  It is divided into two volumes, Geometry without 

Multiplication: White through Red Belt and Geometry with Multiplication: Blue and Black Belt.  

Our purpose is to instruct students in logic; thus, their arguments will be sound. 

 

I rank high-school geometry students analogous to the way Tang–Soo–Do students are ranked.  

With these ranks and by addressing the student as Grasshopper, like in the old TV series Kung Fu 

(now on Nickelodeon), I hope to motivate students to strive for each successive colored belt.       

“A soldier will fight long and hard for a bit of colored ribbon,” quoth Napoleon Bonaparte.   

 

White Belt  Foundations   Red Belt Famous Theorems           

Yellow Belt Congruence   Blue Belt Quadrature Theory 

Orange Belt Parallelograms  Cho–Dan  Harmonic Division 

Green Belt Triangle Construction  Yi–Dan  Circle Inversion  

 

The white-belt chapter teaches the geometry needed by all construction workers.  Students learn 

how to make a foundation square with no auxiliary lines outside it.  This is because it may be in 

a hole if it is for a basement, or it may be surrounded by trees or cliffs if a plot of land was cleared 

and graded for a house being built in a forest or cut into a hillside.  Also, students learn how to 

construct strong and inexpensive wooden gantries and gates wide enough for farm equipment 

to go through.  Bridges for both pedestrians and vehicles are described, and the basics of 

fortresses are explained as a lead-in for the machine gun emplacement lessons to come.  The 

yellow-belt chapter provides a theoretical foundation for the later chapters and concludes with 

geometry needed by architects for designing custom-made mansions, churches, museums, etc.  

The orange-belt chapter teaches geometry needed by asphalt men and the theory needed by 

architects.  The green-belt chapter teaches geometry needed by sea captains and military 

officers.  Many triangle construction problems are solved.  There is detailed instruction on 

navigating a ship with a sextant and on setting ambushes with heavy machine guns.  Students are 

trained for the International Mathematical Olympiad (IMO).  Red belt presents theorems difficult 

enough that they went unsolved for decades and are now named after famous mathematicians.  

We consider the work of Miquel, Wallace, Torricelli, Napoleon, Fagnano, Euler, et. al.  Students 

get serious about the IMO, though they cannot expect to win it until they become black belts. 
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Volume Two begins with the blue-belt chapter, which teaches the quadrature theory needed by 

surveyors to calculate the area of irregularly shaped farm fields.  Multiplication is presented 

midway through, and the power of a point is defined.  With this theorem, the Cramer-Castillon 

Problem is solved, which my friend Milan Zlatanović found a much better solution to than 

Castillon did in 1776.  Castillon had a lengthy and difficult solution that cites Menelaus’ Theorem, 

which is quite advanced, while Zlatanović has a short and elegant solution.  For the benefit of 

Volume One readers, I put his proof in the red-belt appendix, A Look Ahead: Blue Belt!  After blue 

belt comes Cho–Dan (1st degree black belt), which is harmonic division.  Yi–Dan (2nd degree black 

belt) is circle inversion and Sam–Dan (3rd degree black belt) is projective geometry.  We conclude 

with an exam of problems taken from past International Mathematical Olympiad competitions. 

 

Coxeter (1961) wrote, “For the last thirty or forty years, Americans have somehow lost interest 

in geometry.  The present book constitutes an attempt to revitalize this sadly neglected subject.  

The four parts correspond roughly to the four years of college work.”  But, if it was college work, 

then why did he call it Introduction to Geometry?  To revitalize geometry, he should have replaced 

Hall and Stevens’ School Geometry, which had been in use in Canadian high schools since 1918.  

My revitalization effort is to bring high-school students up to the point where they can read 

Coxeter, Altshiller-Court or Johnson when they get to college.  A secondary objective is to oppose 

economists who hate deductive logic.  The editor1 of the Real-World Economics Review writes: 

 

It is a completely mistaken idea that scientific theory is based on deductions from 

a series of postulates – that is the description of the methodology of 

mathematics…  There is no science which uses axioms and logical deductions to 

derive scientific theory.   

 

Mathematics is not a “science” since it is not based in any direct way on 

observational evidence.  Unlike scientific laws, mathematical laws are not 

affirmed observational evidence.  Recognition of the possibility that there are 

bodies of knowledge which are not science would lead to greater tolerance and 

pluralism which is currently desperately needed. 

 

Tolerance?  No.  Such outrageous talk by the World Economics Association has brought war and 

discord to our once quiet study of triangles.  The editor of the Real-World Economics Review is 

an influential man, and he wields this terrifying power to no other end than to ban all mention 

of deductive logic.  I was not the one who brought war to the study of geometry but, by teaching 

it as a martial art, I intend to win that war.  Logic alone stands in the path of the WEA! 

 
1 www3.unifr.ch/econophysics/?q=content/deification-science-its-disastrous-consequences  

http://www3.unifr.ch/econophysics/?q=content/deification-science-its-disastrous-consequences
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Preface 

 

In 2000, the Post-Autistic Economics Network was founded; it denounced this author and every 

other mathematician involved in economics as “autistic.”  In May 2011, they changed their name 

to the World Economics Association.  The blacklisting of mathematicians had been going on for 

some time; Gerard Debreu renounced General Equilibrium in 1974 and blubbered an apology in 

1983 at his Nobel awards ceremony, described here2 as “Debreu’s axiomatic method” as though 

Debreu invented it and that he and it rise and fall together.  But Alan Kirman describes a “palace 

revolution” in 1974 as mathematicians piled on and Debreu backpedaled.  He quotes Debreu’s 

1983 Nobel introduction, “Gerard Debreu symbolizes the use of a new mathematical apparatus,” 

but fails to point out how absurd this must have sounded to mathematicians who had ejected 

the man ten years earlier for bringing shame to a very old mathematical apparatus. 

 

In 1974, the axiomatic method fell with such suddenness that oxygen masks deployed from the 

office ceilings of geometry teachers worldwide.  In the year or two that it takes to replace high-

school textbooks, geometry was no longer taught as an axiomatic science.  In 1987, when the 

U.S. stock market fell, economists – without any evidence – railed against deductive logic as the 

cause of economic collapse, a refrain that we would hear again in 2008; this3 is typical rhetoric. 

 

Today, 2016, I hope to bring geometry back to its axiomatic roots, as first employed by Euclid 

2300 years past, while carefully distancing myself from that hated man, Gerard Debreu. 

 

Postulate and axiom are synonymous, but I use the former term to refer to those stated by Euclid 

and the latter term to those added later regarding abstract algebra.  Some geometers use these 

terms to distinguish Euclid’s controversial parallel postulate from his others, but I feel that, if we 

are going to teach Euclidean geometry, then we will refer to them all the same way.  The work of 

Lobachevski, Bolyai and Riemann can exist peacefully alongside our work; consistency is not 

applicability.  Also, I use the term axiom to refer to the foundations of other sciences such as 

Newton’s three axioms of motion, Euler’s three axioms of ballistics, Richardson’s seven axioms 

of meteorology, Einstein’s two axioms of relativity, or my own three axioms of economics. 

 

But whether called postulates or axioms, the important point is that my theory is deduced from 

Euclid’s five postulates plus one more of my own, the axioms describing equivalence relations, 

total orderings, additive groups, and from nothing else!  I do not present – without proof – 

theorems that can only be proven with calculus in a vain attempt to convince students that I had 

 
2 Gerard Debreu; legacy: www.researchgate.net/publication/291333961_Gerard_Debreu_Ghostly_Whipping_Boy  
3 The Real-World Economics Review editor: rwer.wordpress.com/2014/12/22/the-failure-of-economics-is-due-to-

the-use-of-axiomatic-method/  He is criticizing economists from before 1974, when the WEA came to power. 

http://www.researchgate.net/publication/291333961_Gerard_Debreu_Ghostly_Whipping_Boy
https://rwer.wordpress.com/2014/12/22/the-failure-of-economics-is-due-to-the-use-of-axiomatic-method/
https://rwer.wordpress.com/2014/12/22/the-failure-of-economics-is-due-to-the-use-of-axiomatic-method/
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proven them from the axioms of geometry.  I do not casually assume the field axioms for real 

numbers, nor do I employ the method of superposition.  Robin Hartshorne (1997, p. 2) writes, 

“The method of superposition used [by Euclid] in the proof of [Book I, Proposition 4, SAS 

Congruence], which allows one to move the triangle 𝐴𝐵𝐶 so that it lies on top of the triangle 

𝐷𝐸𝐹, cannot be justified from the axioms.”  I fully agree!  I do not employ transformations, which 

are computer-generated demonstrations of the method of superposition.  And I do not use the 

Similarity/Dilation Axiom; I prove the triangle similarity theorem. 

 

Common Core geometry textbooks state the triangle similarity theorem as an axiom, called either 

the similarity axiom or the dilation axiom, and then state without proof the AA, SAS and SSS 

similarity theorems.  Triangle congruence theorems are then just special cases of the 

similarity/dilation axiom with the scale (dilation factor) being the multiplicative identity.  The 

mid-segment theorem is a special case of the similarity/dilation axiom with the scale (dilation 

factor) being half.  Along the way, the transversal theorems are also stated without proof. 

 

That is the fastest path through geometry ever!  But what did the students learn beyond 

memorizing formulas?  They certainly did not learn anything about deductive logic.  From their 

point of view, all these statements are just factoids to be memorized.  Learning about proofs is a 

charade.  The fact that their teacher and the author of their textbook have put themselves above 

the need to prove their statements does not go unnoticed.  Demanding that students “prove” 

their statements on exams by citing these unproven factoids smacks of demagoguery. 

 

The biggest difference between this textbook and Common Core textbooks is that I do not put 

myself above the need to prove what I say and that I carry out these proofs with a small number 

of clearly stated assumptions.  I do not silently assume the field axioms for real numbers; when 

the time comes (Volume Two), multiplication will be formally introduced.  Nor do I make grand 

assumptions like the similarity/dilation axiom from whence every theorem is a special case. 

 

I start with Euclid’s five postulates, plus one more of my own; also, I cite the well-known axioms 

describing equivalence relations, total orderings, and additive groups.  I go until I have proven 

everything that I know how to.  Then I stop.  That is all; nothing more, nothing less. 

 

Dedication 

 

For his decision to not use the lame textbook that he was given, I dedicate this to my old-school 

math teacher, Mr. Duane Scholl of Kremmling, Colorado.  Also, I dedicate this to the authors of 

Glencoe Geometry.  If it were not for their insistence that I add lengths to angles, I would not 

have walked out on a prestigious substitute teacher job and decided to write my own textbook. 
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Note to People Who Hate Math 

 

As a practical matter, this is everybody in America who is not an engineer.  This is an observation 

that many people have made, but the explanation invariably gets cause and effect backwards.  It 

is generally assumed that engineers enjoyed their high-school math classes and thus decided to 

major in engineering so they could get even more of the subject.  This is a self-serving explanation 

used by teachers trying to take credit for the occasional student who becomes an engineer.  

When engineers were in high school, they hated their math classes as much as the next guy.  They 

majored in engineering because of the potential money and/or because their father was not 

going to pay for college if they majored in some lame-brain course like sociology.  The reason 

they say “yes” when you ask them ten years later if they like math is because they are thinking 

back to their college math classes, not their high-school math classes, which they still hate. 

 

Why does everybody hate their high-school math classes?  Because the textbooks are bloated 

and condescending.  Module One of Houghton-Mifflin-Harcourt’s 1250-page Geometry is 60 

pages and teaches – Drum roll, please! – segment addition, finding the midpoint of a segment by 

folding the paper over, angle addition and angle bisection.  The authors (these books are always 

written by a committee) are making two big assumptions about their readers, both of which are 

wrong and, indeed, mutually exclusive.  Their first assumption is that students read about four 

years below their grade level.  This results in a condescending tone that insults everybody across 

the board; the strong students, the mediocre students, even the weak students are offended.  

The second assumption is that students will read 1,250 pages in a single school year.  This would 

not be true even if they read at grade level.  Nobody – strong, mediocre, or weak – has ever read 

1250 pages on any topic; certainly not in a single school year when they are taking four other 

classes that have equally bloated textbooks.  Old-time textbooks were not bloated like this.4 

 

When I entered high school (1979), my math teacher simply announced that the textbook was 

bloated and condescending, and we would be learning solely from his lectures.  The parents 

complained – Do parents do anything but complain? – and asked, if the textbook was so bad, why 

didn’t he buy a different one?  “Because they’re all like that,” he explained.  I am a mathematician 

today only because my old high-school teacher refused to teach from the textbook.  Had he been 

like most teachers and used the textbook, I would now hate math just as much as everybody else 

does.  When I got to college, my professor observed that, though I was his top student, I never 

read the book; he asked why not.  “Textbooks are bloated and condescending.”  “In college, they 

are not,” he said, and he was right.  Thus, I now write of high-school geometry in the college style. 

 
4 Wolf and Phelps’ Practical Shop Mathematics has an 80-page chapter with 50 theorems that exceeds Common Core 

by about forty theorems.  They write, “[it is] of much greater value to the high school student who is not going to 

college than is the usual geometry course consisting of about 150 theorems” ([1935] 1958, p. v).  Here are over 300. 
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Note to Students 

 

I received 72 credits in the math department as an undergraduate, which was every class that 

the university offered.  But even after all those classes, I can say without exaggeration that high-

school geometry was the most enjoyable math class I ever took.  Actually, inspiring is probably a 

better word, because it was geometry that made me decide to become a mathematician. 

 

Why did I find geometry so inspiring?  On reflection, I believe that this is because I am basically 

an inventor at heart.  Indeed, I have invented a number of things since graduating, including an 

economic theory, a cryptosystem, a system to play casino blackjack and a weapon to kill SAM 

crews on a skyscraper without exposing aircraft to missile fire and without risk to civilians in the 

streets below.  Other math classes taught me a lot of formulas and equations, but only geometry 

gave me the sense of inventing a self-contained science from the ground up, which is really what 

it is like – I can tell you from experience – to invent some new weapon or device. 

 

Sadly, since becoming a grown up, no conversation I have had with a high-school student or 

recent graduate has indicated that they felt this sense of invention when studying geometry.  

Without exception, they felt that geometry was a big waste of time, a class stuck incongruously 

between Algebra I and Algebra II that – in actual practice – amounted to nothing more than a 

review of Algebra I, a subject that they had already demonstrated their mastery of by acing.  It is 

my hope that this textbook will help kids discover the sense of invention that so thrilled me! 

 

A word to the wise, Grasshopper:  In the military they say, “train like you fight.”  The website that 

accompanies white and yellow belt has illustrations but, after that, you must draw your own.  

And you are advised to draw your own in white and yellow belt before consulting the website.  

Students fail because they get too relaxed when studying.  Their only movement is their eyeballs 

traversing back and forth.  They say, “I understand” after reading each proof, but their mind is 

wandering.  Then they fail the exam and say, “I’m bad at exams.”  No, they are bad at studying.   

 

You would not last long in the ring if your only experience with boxing was sitting on your butt 

watching Monday Night Fights.  And, when I write a geometry problem on the board, set a blank 

sheet of paper on your desk and say, “Solve it!” it had better not be the first time you have used 

your compass and straight edge.  You would not go into combat with a rifle you have never fired 

at the range, would you?  These are not going to be those pansy exams where they solve the 

entire problem but leave one theorem citation blank and ask you to fill it in.  We just state the 

problem and hand you a blank sheet of paper.  It is up to you to write something intelligent on it. 

 

Scared?  Then take Common Core geometry; all they ask of you is to memorize formulas.  Loser! 
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Using Geometry to Address the Boy Crisis in Education 

 

In America, we have what is known as the boy gap or the boy crisis; this means that boys are 

falling behind girls in school, especially in reading, but also in their traditional stronghold of math.  

Besides schools not teaching martial skills, this failure is because schools have been feminized: 

 

1. Lack of movement.  Boys are more antsy than girls and need to move around, but nobody 

ever goes outside to perform a geometry construction with stakes and spools of string. 

 

2. Boring review drills.  Boys enjoy the challenge of high-stakes exams and will work hard to 

prepare.  But, for those facets that they are confident in, they feel that their homework 

is just needless drudgery; thus, they fall behind in classes where homework is graded. 

 

3. No edifices to construct.  Boys like to build something that they can hold up for their 

parents and their peers to admire, while girls are fine plugging away at endless homework 

assignments.  Building an A-frame out of boards and wire rope is a good physical project 

for white belts.  Also, geometry itself is an edifice at an abstract level because it is built 

on a foundation of postulates; the theorems then pile up like the floors in a skyscraper. 

 

Zero tolerance of violence is going too far; high school is not fight club, but it is not a convent 

either.  Learning martial skills will not turn the boys into psychopathic killers.  In Geometry–Do, 

machine gun emplacement is green belt; until then, it is like a carrot in front of a donkey to keep 

the boys going even in the face of difficulty.  Insert a day when you begin your lecture only to be 

interrupted by the principal running in and shouting that the Russians have invaded, and your 

class is needed to set an ambush for them.  Shove everybody into a school bus and race them to 

a point below an elevated freeway.  Tell them that comes a convoy of trucks and BTR-80 armored 

personnel carriers (BTR is the Russian equivalent of APC) and that their 14.5 mm autocannons 

can only be depressed 4°.  With the 2° slope of the freeway – to allow water to drain off it – their 

guns can be depressed 6°.  Find an ambush site as far from the freeway as possible to avoid RPG-

7 fire from their dismounted soldiers, but close enough to be below cannon fire.  The answer is 

𝑥 =
ℎ

tan6°
.  Just measure the height of the overpass with a laser rangefinder, ℎ, and then use it to 

lay off the distance to your ambush site, 𝑥.  Being underneath cannon fire, they should not put 

all their sandbags in front, but should form a circle to protect from grenades. 

 

Tangent is trigonometry, so this problem is review of the students’ 7th grade mathematics when 

they learned the definitions of the trig functions.  But a little review never hurts!  In martial 

societies, every 12-year-old knows by heart the angle of depression of the gun on his enemy’s 

armored vehicles; he has been playing at setting ambushes like this since he was in kindergarten. 
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Laser rangefinders cost less than $100 and they are great for getting antsy boys up and moving.  

Laying off 13.7 centimeters on paper with a ruler and laying off 137 meters in a vacant lot with 

a laser and marking the endpoints by pounding in sharpened rebar are, conceptually, the same 

activity.  But the latter is fun while the former makes the boys squirm and get accused of ADHD. 

 

The Pisa Tree Problem, among the white-belt practice problems, can be done without the tree.  

Pretend that you have taken the given measurements, cite SSS to use your laser to construct a 

congruent 17 ∶ 22 ∶ 32 meter triangle in the parking lot, and then measure its altitude with your 

laser.  Note that the sun is nowhere cited; this is not the classic problem of measuring shadows 

first performed by Thales to measure the height of the Great Pyramid.  Thales’ method cites 

triangle similarity, which is beyond white-belt Geometry–Do.  Also, constructing a 17 ∶ 22 ∶ 32 

centimeter triangle on paper is not correct; scaling it up to meters requires triangle similarity. 

 

Students should understand that real-life problems are often bigger than a 25′ tape can measure.  

But a 100′ string of the type that carpenters put chalk on can be rotated around a point like a 

compass, pinched off and carried to another place to transfer lengths, and stretched from one 

point past another point to extend a segment.  You can accomplish a lot with a couple spools of 

string!  Problem 1.26 teaches the geometer’s way to square a house foundation.  Do it outdoors! 

 

An A-frame is the physical embodiment of most of what is taught to white belts.  Build one!  It 

only requires $20 of lumber, wire rope and screws.  Yellow belt ends with a discussion of Tudor 

arches.  Building one is a bit much for a geometry class, but it can be done if you join forces with 

the shop class, and especially if a boy’s father is a carpenter and will help and provide materials.  

The old man might learn something!  Not every professional carpenter knows how to do this.  A 

stone bridge can be modeled by cutting a 4" × 6" board into isosceles triangle frustums and 

gluing them together to simulate stone construction, like the old-time Tudor bridge builders.  A 

level on a tripod can be used to solve problem 2.4, measuring the distance across a river.  Do it 

at a real river!  A surveyor’s transit is more expensive, but it can be used to solve problem 2.5. 

 

Get the boys moving, avoid boring review drills, and construct edifices, either real ones made of 

brick and mortar, or conceptual ones made of postulates and theorems that cite only previously 

proven theorems.  There is no boy crisis in Geometry–Do, at least not if it is taught right.5  Danica 

McKellar wrote Girls Get Curves and boasts of helping “children” succeed in geometry, though 

she obviously means just the girls.  And behind all that boastful talk is a book that teaches no 

more geometry than what a girl could write on the palm of her hand.6  I am here to do the same 

for the boys, but with a lot more geometry content.  Plus, machine guns!  What’s not to love? 

 
5 https://boycrisis.org/  “Boys are 50 percent less likely than girls to meet basic proficiency in reading, math, and science.” 
6 Nobody ever accused Danica of leading students on a death march; she’s too busy busting glass ceilings to teach actual math. 

https://boycrisis.org/
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A Single Page of Formulas Is All It Takes to Pass Common Core Geometry 
 

Common Core “geometry” has nothing to do with geometry and everything to do with 

memorizing obscure algebra formulas that you will never use.7  The Varsity Tutors Advanced 

Geometry Exam8 also has tetrahedrons.9  Memorization is stupid and boring!  Tell them I said so. 
 

𝑟 is the radius of a sphere, a cylinder or a cone.  𝑥 is a triangle side or a tetrahedron edge. 
 

 Eq. Triangle Sphere Cylinder Cone Tetrahedron 

 
height ℎ =

√3

2
𝑥 

   

ℎ 
 

ℎ ℎ =
√6

3
𝑥 

 

slant length 

 

 
  

 

 

𝑙 = √𝑟2 + ℎ2 
 

 

base area 
   

𝐵 = 𝜋𝑟2 

 

𝐵 = 𝜋𝑟2 𝐵 =
√3

4
𝑥2 

lateral area   𝐿 = 2𝜋𝑟ℎ 𝐿 = 𝜋𝑟𝑙  

total area 
𝐴 =

√3

4
𝑥2 

 

𝐴 = 4𝜋𝑟2 
 

𝐴 = 2𝐵 + 𝐿 
 

𝐴 = 𝐵 + 𝐿 

 

𝐴 = √3𝑥2 

 

volume 
 

𝑉 =
4

3
𝜋𝑟3  

 

𝑉 = 𝐵ℎ 𝑉 =
𝐵ℎ

3
 𝑉 =

√2

12
𝑥3 

 

For kites and rhombi (a rhombus is a kite with equal sides), 𝐴 =
𝑝𝑞

2
 with 𝑝 and 𝑞 the diagonals.  

The sides of a rhombus are 𝑥 =
√𝑝2+𝑞2

2
.  You must know that a trapezoid’s area is 𝐴 = ℎ𝑤 with 

𝑤 the semisum of the base and the top (parallel sides).  The rest of the exam is basic algebra:  To 

reflect a polynomial over 𝑥 = 0, negate the odd terms; to reflect it over 𝑦 = 0, negate all the 

terms.  Know how to complete the square to get (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = 𝑟2 and the meaning 

of 𝑥0, 𝑦0, 𝑟.  Given two points, be able to find the line through them, the distance between them, 

and their midpoint.  Also, find a line through a point given its slope or given a perpendicular line.  

Know the definitions of sine, cosine, and tangent, but you will not need trigonometric identities. 

 

Isn’t that amazing?  Without knowing a single geometry theorem, you can now call yourself a 

Varsity Tutor master of “advanced geometry.”  Thus, if you are a loser who wants only to learn 

the minimum needed to graduate from an American public high school, then just photocopy this 

page and return Geometry–Do to the textbook store so somebody who is not a loser can buy it. 

 
7 The reason why Common Core is focused on memorizing obscure algebra formulas is obvious:  Bill Gates is bribing 

his way into a monopoly on educational software.  Computers are good at plugging numbers into memorized 

equations; humans not so much.  Gates can sell software whose kernel is three equations and 99% user interface. 
8 Try it with just this page!  www.varsitytutors.com/advanced_geometry_diagnostic_2-problem-89385  

9 Want to stump a Varsity tutor?  Ask him for the inradius and circumradius!  They are 𝑟 =
√6

12
𝑥 and 𝑅 =

√6

4
𝑥. 

https://www.varsitytutors.com/advanced_geometry_diagnostic_2-problem-89385
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Note to Teachers 

 

This textbook is intended for both general and honor students in both America and India.  It is in 

American English, but without the condescending tone prevalent in American textbooks.  

Military schools must require a two-year program to have time for machine gun emplacement. 

 

White and yellow belt serve three purposes:  It provides a theoretical foundation for the later 

chapters; it prepares students for a class in non-Euclidean geometry; and it teaches construction 

workers what they need to know to excel in carpentry, masonry, concrete, and asphalt work.  The 

first two are achieved by teaching only absolute geometry; that is, the theorems common to both 

Euclidean and non-Euclidean geometry.  Orange belt introduces the parallel postulate.  This may 

seem a bit abstract for construction workers, but the difference between intrinsic and metric 

geometry is illustrated by solving the same problem with two spools of string or with a tape 

measure, so it is often the construction workers who are first to accept intrinsic geometry. 

 

Everybody:  Take at least a full semester going through white and yellow belt, proving every 

theorem, and solving every problem.  For the Americans, this is 11th grade, and for the Indians, 

Level IX; the stronger students will have seen many, but not all, of these theorems before, though 

probably not treated so formally, and the weaker students will appreciate that the accompanying 

website gives step-by-step explanations.  Award an orange belt on completion. 

 

High-School Shop Class:  Everything you need to know is white and yellow belt.  Stretch it out to 

a full year by studying geometry three days a week and memorizing the building codes or doing 

field work at a construction site two days a week.  Award an orange belt on completion. 

 

Catholic Students:  Historically, the building of cathedrals and abbeys was a principal motivator 

for the study of geometry.  Orange Belt Geometry for Construction Workers at the end of yellow 

belt discusses such architecture.  Thus, follow the same program as high-school shop students 

but with less theory and more history, supplemented by photos or – if you can afford it – a field 

trip to Europe.  Advanced yellow belt is mostly the work of Saccheri, who was a Jesuit priest, as 

was Viviani, taught in early orange belt.  Students learn what it was like to be a Catholic c. 1700.  

Torricelli and Ceva were also Jesuits, though their work waits for red and blue belt, respectively. 

 

Home School Students:  Religious children kept home because their parents fear immoral public 

schools should follow the Catholic program.  Children of engineers and scientists kept home 

because their parents are contemptuous of public-school teachers should follow the same 

program as Indian students attending a school where English is the language of instruction.  

Expelled students are probably going to wind up in the army; I can help them make it their career.  

Follow the military academy program, learn machine gun emplacement, and try to be a sergeant. 
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Common Core Students:  Spend 2nd semester memorizing all those theorems labeled CC 

(Common Core) in the index.  Finish with Single Page of Formulas and Squares and Rectangles 

and Rhombi!  Oh My! and How to Take Standardized Exams that Define Geometry in Terms of 

Motion.  Award a green stripe on their orange belts since they did not become real green belts. 

 

American Honor Students and All Indians:  Spend 2nd semester on orange belt; award a green 

belt on passing the green-belt entrance exam.  Yellow and orange are shades of white, but green 

is intermediate!  If students pass the class, but not the exam, a green stripe on their orange belts. 

 

Second–Year Geometry:  Those with green stripes on their orange belts retake the green-belt 

entrance exam.  If they fail a second time, then goodbye.  Green belt requires either going to sea 

and plotting a course with a sextant or laying some machine guns to defend one’s town.  Award 

a red belt to those who complete green belt and a blue belt to those who complete red belt.  Red 

belt is needed for black belt, but not for blue belt.  If you have no plans for a third year, you may 

consider skipping the red-belt chapter and studying blue-belt quadrature in the fourth semester. 

 

Third–Year Geometry:  Blue belt (quadrature) and Cho–Dan (harmonic division) are completed, 

and some of Yi–Dan (circle inversion).  For the Indians, this is in high school, Level XI and XII.  For 

the Americans, it is in college.  Until Volume Two is written, I recommend Altshiller-Court (2007) 

or Johnson (2007).  A fourth year completes Yi–Dan and teaches Sam–Dan (projective geometry). 

 

Geometry–Do advances a lot faster than is typical of American textbooks.  In sixty pages we have 

proven over sixty named theorems.  Module One of Haughton-Mifflin-Harcourt’s 1250-page 

Geometry is sixty pages and teaches – Drum roll, please! – segment addition, finding the midpoint 

of a segment by folding the paper over, angle addition and angle bisection.  Woo hoo!  But 

Geometry–Do students do sometimes fall behind.  A principal cause is that they did not learn 

vocabulary words before each lecture.  The terms in the glossary are color coded to the chapters 

where they are introduced.  New terms are in boldface, but I do not pause to define them.  It is 

your job to tell students at the end of each day which terms to look up in the glossary for the next 

lecture.  But do not demand that students learn vocabulary for chapters beyond them.  A 

principal reason why so many American students hate geometry is because it has been taught 

for the last half century as a vocabulary test.  Words like orthocenter that were employed in the 

days of Wentworth lost all use and became just vocabulary words – ghosts of textbooks past.  

Thus, the single best piece of advice that I can give teachers and home-school parents to keep 

their students moving forward at an acceptable pace is to demand that the students learn the 

necessary vocabulary words – and none of the unnecessary words – on their own the night before 

each lecture, so the teacher need not spend lecture time defining terms.  Homework should 

always be preparation for a lecture, never just a review of what was taught in past lectures. 
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Why Do Teachers Drop Out of the Profession? 

 

It takes five years to get a teaching certificate, yet many – maybe most – teachers do not last five 

years on the job before they quit their chosen profession.  This is why schools are scouring 

America for subs, whom they now call paraprofessionals, apparently in an attempt to entice 

people who do not know what the prefix para- means.  They will hire anyone to teach math! 

 

At the grocery store, at Target, at Starbucks, anywhere I go, if I meet someone 

who seems smart and engaging, I give them my card and say, “Be a teacher!  It 

doesn’t matter what your circumstances are.” – Traci Taylor10 

 

To hear the teacher’s union tell it, money is what is needed.  If taxpayers will just approve another 

school bond, everything will be fine.  This is not true.  Teachers make the same as tradesmen.  

Both have the potential to make $60K a year at the time of retirement.  The carpenter who starts 

at $25K a year does so; the certified teacher who starts at $35K a year quits to become a 

carpenter; the sub who starts at $15K a year quits to become… well, any job is better than that. 

 

Surveillance cameras emasculate the teacher.  Every decision that a teacher makes is subject to 

a supervisor pulling the video and then casually reversing the teacher’s decision, and doing so 

right in front of all the students to make sure they know who is in charge; it is not the teacher.  

“Empowered” is just a buzzword.  When all the teachers, both male and female, are holding a 

meeting in the men’s toilet to dodge the surveillance cameras, nobody is feeling too empowered.   
 

Sports stars can demand passing grades.  If a football player flunks a geometry test a week before 

the big game, there is a lot of pressure on the principal to fix this, and – as any plumber knows – 

feces flows downhill.  The teacher, being the low man on the totem pole, just changes the grade. 

 

Content experts are not respected.  I majored in math and yet I never met an aspiring high-school 

teacher in any Math Department class.  Their five-year program was all Education Department 

classes.  They did not study any mathematics – just endless, mind-numbingly boring edubabble.  

Many certified teachers drop out from embarrassment – they cannot face 16-year-old boys who 

knows more math than they do – while the survivors just learn to hate and fear mathematicians.  

 

Drug use is a survival mechanism.  In high school, aspiring teachers were filled with idealism; they 

sang the XCX song backwards, “I don’t wanna break the rules, I just wanna go to school.”  But, in 

college, the mind-numbing boredom of edubabble lectures changed them.  They could see a door 

opening and they knew what was behind it – insanity.  Weed helped.  As teachers, they graduated 

to pills when the boredom of monitoring standardized tests broke them.  Then they got busted. 

 
10 www.edsource.org/2017/fresno-tackles-its-shortage-of-math-and-science-teachers/581342  

http://www.edsource.org/2017/fresno-tackles-its-shortage-of-math-and-science-teachers/581342


Victor Aguilar                                                                                                        Geometry without Multiplication 

xiii 
 

What Should Replace Common Core? 

 

Common Core proponents sneer at their opponents11 for having no goal or some goof-ball goal. 

 

1. A few Common Core opponents are religious zealots that are still trying to deny evolution. 

 

2. Most of them are housewives who think they know it all when it comes to elementary 

education, but they become mysteriously silent when high-school education is discussed. 

 

In sharp contrast, the proponents of Common Core know exactly what “defeat” would mean:         

a new paymaster – some billionaire other than Bill Gates trying to bribe his way into a monopoly 

on educational software.  But nobody is as rich as Bill Gates, so they know this is not happening. 

 

One cannot help but notice that the group whose opinions are never sought are the university 

professors that will be receiving these so-called “college ready” students.  Indeed, content 

experts, as they are called, have about as much say regarding the curriculum as the high-school 

janitor does.  This point is often concealed by Common Core proponents’ boastful talk of their 

PhDs.  But their PhDs are not in the subjects that they are teaching; they are PhDs in education.12 

 

Who controlled the curriculum in the 19th century?  Wentworth ([1868] 1899, p. 180) writes: 

 

Proposition XXIII  The square on the bisector of an angle of a triangle is equal to 
the product of the sides of this angle diminished by the product of the segments 
made by the bisector upon the third side of the triangle. 
 
Proposition XXIV  In any triangle the product of two sides is equal to the product 
of the diameter of the circumscribed circle by the altitude upon the third side. 
 
This theorem may be omitted without destroying the sequence.  Props. XXIII and 
XXIV are occasionally demanded in college entrance examinations, but they are 
not necessary for proving subsequent propositions or for any of the exercises.  
Teachers may therefore use their judgement as to including them. 

 

Geometry–Do proves both theorems, but the point is that 19th century professors controlled the 

high-school curriculum by writing entrance exams.  Sadly, such entrance exams no longer exist. 

 
11 Missouri budgeted billions of dollars for the implementation of Common Core, mostly going towards the purchase 
of software being sold by you-know-who, and $8 for tin foil hats to give to the opponents of Common Core. 
12 David Conley has a BA in social sciences, an MA in multiculturalism and a PhD in school administration.  He has 
never taken a college-level mathematics class in his life.  The only actual teaching experience of this pasty-faced 
multiculturalist is an Ethnic Heritage Program in Jefferson County Public Schools from 1978 to 1982.   
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Defeat of Common Core should be easy since almost everyone hates it, the only exceptions being 

a few paid shills of software moguls and a few simpletons who are dazzled by buzzwords like 

“high achieving” or “college ready.”  Admittedly, David Conley is one of the slickest propagandists 

around; second only to the Trolls from Olgino, nobody can spit out buzzwords like Conley! 

 

The problem is that Common Core opponents do not know what they want.  Here are some goals: 

 

1. Eliminate the SAT and any other nationwide high-school test.  The SAT is the root cause 

of corruption in education; it attracts software moguls like dead cows attract flies.  Also, 

it is impossible for a single test to judge those who plan to attend a trade school, a divinity 

school, a state university, or a prestigious private college.  Every institution of higher 

learning should have its own entrance exam written by its own professors.  That is how it 

was in Wentworth’s day, and America was on top of the world back then.  Now we import 

all our techies from India while American boys vacuum the floors in their offices. 

 

2. Eliminate Capital-E Educators and revoke every education degree that has ever been 

granted.  If a college student wants to teach in high school, he must major in the subject 

that he intends to teach.  To teach high-school mathematics, one must have a B.S. in 

mathematics; to teach high-school chemistry, one must have a B.S. in – You guessed it! – 

chemistry.  No education majors!  It is a vacuous degree given to brainless people.  We 

will never fix education in America if the word “qualified” refers to Capital-E Educators, 

as it does now, but not to people who majored in the subject that they intend to teach. 

 

“Almost one third of all high school math teachers have neither a major nor a minor in math or a 

related field,” notes Heather Voke13, “One-fourth of all beginning teachers leave the classroom 

within the first four years…  Even more alarming than the turnover rates themselves are data 

suggesting that the most intelligent and effective teachers leave the profession at the highest 

rates… new teachers who scored in the top quartile on their college entrance exams are nearly 

twice as likely to leave teaching than those with lower scores.” 

 

Why are they leaving?  Voke cites Joel Spring, “In recent years the satisfaction that teachers have 

gained from autonomous decision making and creativity has been threatened by expanding 

bureaucratic structures and attempts to control teacher behavior in the classroom.” 

 

Why did I leave teaching?  Rather than teach page 256 of Glencoe Geometry that is adding lengths 

to angles, I walked out.  I have too much respect for mathematics to subvert it for a job.14 

 
13 www.ascd.org/publications/books/104138/chapters/Responding-to-the-Teacher-Shortage.aspx  
14 www.researchgate.net/publication/320696944_How_Algebra_But_Not_Geometry_Is_Based_on_Happy_Coincidences  

http://www.ascd.org/publications/books/104138/chapters/Responding-to-the-Teacher-Shortage.aspx
http://www.researchgate.net/publication/320696944_How_Algebra_But_Not_Geometry_Is_Based_on_Happy_Coincidences
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The NES formula sheet15 might explain how Traci Taylor can recruit “math teachers” at Starbucks!  

(She means substitute teachers, but she talks fast so recruits do not notice “substitute” missing.) 

 

Ware the NES document!!!  It is here to be criticized!  Do not use it for reference later in the book! 
 

 
 

15 This was written by an “educator,” not a mathematician: www.nestest.com/Content/Docs/NES_Profile_304.pdf  

http://www.nestest.com/Content/Docs/NES_Profile_304.pdf
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Preliminary Exam for the Experts 

 

Geometry–Do does not prerequisite any prior knowledge of geometry; indeed, Algebra I is strictly 

sufficient, though the extended chains of reasoning will be met most successfully by students 

with a bit more mathematical maturity than that.  The following exam is for experts with prior 

knowledge of geometry to assess where their expertise lies in the Geometry–Do hierarchy.   

 

White Belt 

 

You are an army captain in command of five platoons and tasked with defending a 16-klick 

straight segment of the border.  Position four platoons in bases with high watchtowers and the 

fifth hidden behind them to act as a reserve.  Not having a computer with graphic-design software 

and a color printer in your tent, you must use a compass and straightedge to locate the bases on 

a paper map.  The assumption is that your troops and the enemy troops move at equal speed; 

the requirement is that they must be met before they get behind your forward bases.  Also, the 

bases have mortars, so you must draw a line demarcating the free-fire zone where your troops 

need not go to get in front of an enemy incursion.  The fifth base has the same assumption and 

requirement, though it covers the entire 16-klick front in case the enemy gets past your line. 

 

Yellow Belt 

 

Your house is some distance from a long straight highway leading to a town.  Construct a curved 

driveway that is tangent to the highway, of constant turning radius, and on your own property.  

This will allow you to accelerate on the driveway to safely merge with the highway traffic. 

 

Two towns are on the same side of a straight railroad track and some distance away.  Where 

should a railway station be built to minimize the sum of the roads to the two towns? 

 

There is a roughly circular lake, a straight highway, and an abandoned farm.  You have purchased 

the farm with the idea of turning the farmhouse into a way station for fishermen.  Pave a straight 

road to the lake so the farm is at its exact midpoint. 

 

You have been tasked with constructing a sixteen-meter wide Tudor arch at the front gate leading 

to a mansion.  Write detailed instructions for the carpenter on how to build the concrete forms. 

 

Orange Belt 

 

Two country roads intersect at an arbitrary angle.  Pave an arc connecting them and going around 

the corner of a farmer’s field, which is on the angle bisector of the two roads. 
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From a house in the country, construct a dirt road to a straight paved road, the latter twice as 

fast as the former, to minimize travel time to a nearby town on the paved road. 

 

A river with parallel banks passes between two towns at an arbitrary angle.  Connect the towns 

with a minimal length road; the bridge must be perpendicular to the river. 

 

Green Belt 

 

A straight fence defines the border between two countries, and, on the enemy side, geographic 

features define a bottleneck.  Given a top traverse of 30°, the kill chord drawn across the 

bottleneck defines an arc that your gun must be positioned on.  There is a point on the fence that 

one infantry platoon is tasked with defending to the left of and another platoon to the right of.  

To avoid the appearance of favoring one platoon over the other, you wish to position your gun 

so its field of fire covers equal segments of fence to the left and to the right of this point. 

 

The enemy has three antiaircraft guns in an equilateral triangle with a munitions dump at the 

center.  Afraid to attack from the air, you are sneaking up on it with a self-propelled mortar.  You 

are afraid to reveal your position with a laser rangefinder, but you plan to aim over the munitions 

dump and then walk your shells back until you hear a secondary explosion.  How do you aim it? 

 

Red Belt 

 

The enemy has a base with three guns that form an acute triangle; their barracks is inside it.  Hit 

it with three guided bombs to meet these conditions:  Every part of the triangle is struck by 

shrapnel from at least one bomb, and the enemy barracks is struck by shrapnel from every bomb.  

The bombs are of the same type and thus they have equal-size circles of shrapnel, but to avoid 

injuring friendly troops poised nearby to overrun the base, the bombs are as small as possible. 

 

A hospital consisting of three big buildings is being built.  A diesel generator will provide electricity 

in the event of a power outage.  You have been hired to dig trenches and lay cables to bring 

power from the generator to each building.  Where should the generator be positioned to 

minimize the total length of cable, and thus also the electricity lost to resistance in the cables? 

 

You are a colonel in command of three army bases at distances of 10, 12 and 16 klicks from one 

another.  The general wishes to construct a munitions dump inside your triangle and to further 

defend it with three antiaircraft guns that form an equilateral triangle with the munitions dump 

at its center and your three bases on each of the three sides of the equilateral triangle.  He insists 

that this equilateral triangle be as large as possible.  Locate the guns and the munitions dump. 
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Table of Contents 
 

The way that you wander, is the way that you chose, 

The day that you tarry, is the day that you lose, 

Sunshine or thunder, a man will always wonder, 

Where the fair wind blows, where the fair wind blows. 

 

If you are coming to this table of contents now for the first time, it may seem as though a black 

belt in Geometry–Do is a mountain too high to climb.  But I tell you, the next three years are going 

to pass anyway, so why not go for the gold?  It is an accomplishment you can boast about for the 

rest of your life.  What else can you do as a teenager that you will be proud of as an old man? 

 

Introduction               1 

The geometric postulates and the axioms common to abstract algebra  
 

Notation             14 

 

White Belt Instruction: Foundations         15 

SAS, Isosceles Triangle Theorem and SSS are proven, in that order, to lay the 
foundation for geometry.  Basic constructions (bisecting angles and segments, 
raising and dropping perpendiculars, replicating angles, etc.) are described.  
Construction workers are taught how to square foundations and walls working 
only inside the figure, and how to build gantries, wide gates, bridges, etc. 

 

Yellow Belt Instruction: Congruence         37 

All the remaining congruence theorems are proven, and every theorem that can 
be proven without use of the parallel postulate.  This organization is for students 
preparing to take a class in non-Euclidean geometry.  The proofs are rigorous; we 
do not take similarity as an axiom, say “just set dilation to unity” and call it a 
proof.  Architects learn of Gothic arches; they take this on faith while scholars 
come back to arches after completing orange belt, when they are proven to exist. 

 

Orange Belt Instruction: Parallelograms        87 

Initially, the parallel postulate is needed because we speak of the intersection of 
lines, and we can only be sure they do in Euclidean geometry.  Midway through, 
it will be explicitly cited for the transversal theorem.  There is much problem 
solving, including minimizing the sum of non-collinear segments and drawing a 
line through circles so the chords it cuts off meet given conditions.  Soldiers learn 
how to position three guns to triangulate fire on aircraft and to enfilade roads.  
We conclude with a 20-question multiple-choice green-belt entrance exam.  Only 
10% survive, comparable to the simsa bout to get a green belt in Tang–Soo–Do. 
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Green Belt Instruction: Triangle Construction      169 

This begins second-year geometry, which is an honors-level class.  The average 
students dropped out or failed orange belt and the construction workers quit 
after yellow belt, but it is hoped that aspiring military officers remain, for there 
is much to learn about machine gun emplacement.  Mariners learn to navigate 
using lighthouses and structural engineers learn about skew bridges, but most of 
the applications are for infantry officers, which many boys find interesting even 
if they do not plan to enlist.  For aspiring mathematicians, there is much use of 
loci and we work through many of the triangle construction problems that are a 
mainstay of Russian geometry but are rarely considered in the West.  Military 
officers will be pleased that they are learning to fight the Russian way, which is 
more scientific and makes more use of automatic cannons than NATO does.  The 
positioning of Shilkas is not random; they put a lot of thought into triangulating 
fire, enfilading roads, and covering possible sniper positions. 

 

Red Belt Instruction:  Famous Theorems      217  

By advanced I mean theorems difficult enough that they went unsolved for 
decades and are now named after famous mathematicians.  Volume Two will 
assume an audience of Olympians; here, while we are still being helpful to 
engineers and military officers, we are transitioning into helping students 
compete in the International Mathematical Olympiad.  We consider the work of 
Miquel, Wallace, Torricelli, Napoleon, Fagnano, Euler, et. al.  Torricelli’s problem 
of minimizing the sum of the distances to vertices is solved; and in reverse, to 
recover the triangle.  The Euler segment theorem is proven and the Euler (nine-
point) circle is discussed.  Homothecy is introduced.  Air Force officers learn how 
to bomb the defense that Army officers designed as orange belts.  There are 
results of interest to military officers that go beyond just laying ambushes. 

 

Index of Postulates, Theorems and Constructions      307 

 

Principal Results of Geometry–Do in Alphabetical Order     359 

 

Index of Names          363 

 

References           371 
 

Glossary           375 
 

Glosario inglés–español         385 
 

Das englisch-deutsche Glossar        398 
 

Англо-русский глоссарий         413 
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A Few Words About Your Kit 

 

The adventure begins!  But, before we embark, a few words about your kit.  Pentel and Staedtler 

products are available in office supply stores; Alvin is available only in drafting supply stores. 

 

1. Pentel P205 two-pack 0.5 mm mechanical pencils      $1179 

2. Staedtler universal compass (not their student compass)       $529 

3. Staedtler Mars plastic tubular eraser holder        $249 

4. Geometry–Do center-finding and parallel-finding metric ruler  Included 

 

Old-style graphite rods used by draftsmen require constant sharpening and their lines are too 

faint to be scanned if you are e-mailing homework; I do not recommend them.  If you buy a rolling 

ruler, draw a line, mark zero on it and then roll the ruler back and forth a dozen times to see if it 

returns to its starting position.  Perform this test on the store counter before you accept the ruler.   

 

Rolling rulers can be quite handy and I have one that I use frequently, but it is in inches.  The only 

rolling ruler that is both metric and center-finding is the Alvin 295M, but I tested two of them 

and they were both defective.  So, I invented the Geometry–Do ruler, which is metric and center-

finding.  It does not roll, but it has four perpendicular scales that allow one to find a parallel line 

through a point by equating the lengths of two perpendiculars.  It also allows one to quickly draw 

an 8 ∶ 10 ∶ 12 cm triangle, which makes locating the midpoints easy; and there are holes in the 

ruler to locate this triangle’s circumcenter, medial point, orthocenter, incenter and one excenter. 

 

If you get a job in geometry, three decimal digits of accuracy requires drawing larger circles.   

 

Alvin 702V universal compass with detachable beam     $2070 

 

This compass allows one to clamp a mechanical pencil into it, which makes for darker lines than 

the old-style graphite rods, and it is large enough to draw 32 cm diameter circles, or 54 cm with 

the detachable beam.  I use the Alvin 702V for whole circles, but I also keep a friction compass 

handy for the short faint arcs needed to bisect an angle or to construct a segment’s mediator. 

 

This is old school.  Many geometers use computer software for all their figures and never draw 

anything with a pencil.  But, because of the big money that Bill Gates is throwing around to bribe 

his way into dictating the geometry curriculum, I do not advocate any computer software to avoid 

being seen as a shill for some software mogul.  If you want to use software, then do so, but 

beware of getting locked into a situation where geometry ceases to exist the moment that you 

rise from your school computer.  If you cannot bring it into the real world, then what good is it? 



Euclid’s Postulates Plus One More 
 

Segment           Two points fully define the segment between them.  

Line                      By extending it, a segment fully defines a line. 

Triangle           Three noncollinear points fully define a triangle. 

Circle            The center and the radius fully define a circle. 

Right Angle           All right angles are equal; equivalently, all straight angles are equal. 

Parallel           A line and a point not on it fully define the parallel through that point. 
 

Segments are denoted with a bar, 𝐸𝐹; rays with an arrow, 𝐸𝐹⃗⃗⃗⃗  ⃗, which have endpoint 𝐸 and are 

extended on the 𝐹 side infinitely; lines with a double arrow, 𝐸𝐹⃡⃗⃗⃗  ⃗, which are extended infinitely 

both ways; and angles as ∠𝐸𝐹𝐺 or ∠𝐹 if there is only one angle at 𝐹.  Triangles and quadrilaterals 

are also denoted with bars, as 𝐸𝐹𝐺 and 𝐸𝐹𝐺𝐻.  The postulates are in terms of fully defined, 

which means that a figure with the given characteristics exists, and it is unique.  Under defined 

means figures with the given characteristics are legion.  John Playfair stated the parallel postulate 

as I and David Hilbert do, which is equivalent to Euclid’s Fifth Postulate (Euclid, 2013, p. 2). 

 

If a straight line falling on two straight lines make the interior angles on the same 

side less than two right angles, the two straight lines, if produced indefinitely, 

meet on that side on which are the angles less than the two right angles. 

 

While Hilbert and I both found Euclid’s postulate to be convoluted and chose Playfair’s version, 

and we both reject real numbers as unsupported by our postulates, we otherwise are different. 

 

Euclid also had five “common notions,” which vaguely describe what modern mathematicians 

call equivalence relations, total orderings, and additive groups.   
 

Equivalence Relations and Total Orderings 

 

A relation is an operator, ℛ, that returns either a “true” or a “false” when applied to an ordered 

pair of elements from a nonempty set.  (We only use binary relations, so we can omit “binary.”)  

Relations must be applied to objects from the same set.  For instance, 𝐸𝐹 = ∠𝐺 is neither true 

nor false; it is incoherent.  There are four ways that relations may be characterized.  For one to 

hold, it must apply to all possible choices 𝑥, 𝑦, 𝑧 from the given set, not just some of them. 
 

Reflexive    𝑥 ℛ 𝑥      

Symmetric   𝑥 ℛ 𝑦  implies  𝑦 ℛ 𝑥   

Anti-Symmetric  𝑥 ℛ 𝑦  and  𝑦 ℛ 𝑥  implies  𝑥 =  𝑦 

Transitive   𝑥 ℛ 𝑦  and  𝑦 ℛ 𝑧  implies  𝑥 ℛ 𝑧 
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A reflexive, symmetric, and transitive relation is called an equivalence relation.  The principal 

equivalence relations considered in geometry are equality, =, which applies to segments, angles, 

or areas; congruence, ≅, which applies to triangles; similarity, ~, which applies to triangles; and 

parallelism, ∥, which applies to lines.  𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ means that 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ do not intersect.  There 

are an infinity of points in the plane; strange and useless results can be made of small finite sets. 
 

Since segments are known only by their length, 𝐸𝐹 = 𝐺𝐻 means that 𝐸𝐹 and 𝐺𝐻 are the same 

length.  Since length is the same regardless of direction, it is always true that 𝐸𝐹 = 𝐹𝐸.  But 

triangles are known, not by just one magnitude, but by six.  The vertices are ordered to show 

which ones are equal.  𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿 implies 𝐸𝐹 = 𝐽𝐾,  𝐹𝐺 = 𝐾𝐿, 𝐺𝐸 = 𝐿𝐽, ∠𝐸 = ∠𝐽, ∠𝐹 = ∠𝐾 

and ∠𝐺 = ∠𝐿; and these equalities imply congruence.  Beware!  Writing the vertices of a triangle 

out of order is one of the most common mistakes made by beginning geometers. 

 

A quadrilateral is a union of two triangles adjacent on a side such that it is convex; congruence 

or similarity holds if and only if both pairs of triangles are congruent or similar.  If 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿 

and 𝐸𝐻𝐺 ≅ 𝐽𝑀𝐿, then, 𝐸𝐹𝐺𝐻 ≅ 𝐽𝐾𝐿𝑀.  Analogously, if 𝐸𝐹𝐺~𝐽𝐾𝐿 and 𝐸𝐻𝐺~𝐽𝑀𝐿, then, 

𝐸𝐹𝐺𝐻~𝐽𝐾𝐿𝑀.  Similarity is defined as two triangles with all corresponding angles equal, so 

𝐸𝐹𝐺~𝐽𝐾𝐿 and 𝐸𝐻𝐺~𝐽𝑀𝐿 means that six pairs of corresponding angles are equal.  This is more 

than just saying that the four corresponding interior angles of 𝐸𝐹𝐺𝐻 and 𝐽𝐾𝐿𝑀 are equal; thus, 

it is not true that proving these four angles equal is sufficient to prove 𝐸𝐹𝐺𝐻~𝐽𝐾𝐿𝑀.  A counter-

example is a right square and rectangle; they have all right angles, but they are not similar.  “Four-

sided figure” is a vacuous quadrilateral definition that leads beginners to err by claiming that 

right squares and rectangles are similar.  We make quadrilaterals a logical extension of triangles. 

 

Relations that are anti-symmetric can only be defined if we have already defined equality, 

because equality is referenced in its definition.  (Equality is the only relation that is both 

symmetric and anti-symmetric.)  A relation that is not symmetric but has the other three 

characteristics is called a total ordering.  The adjective total is redundant because we said 

relations must hold for every pair of elements.  (Partial orderings, such as subset, exist in other 

branches of mathematics.)  Geometers only use less than or equal to, ≤.  (≥ could be, though we 

usually order from small to large; < and > are irreflexive and so are not orderings.)  A nonempty 

set with both an equivalence relation, =, and a total ordering, ≤, is called a magnitude.  

Geometers consider three magnitudes:  lengths, angles, and areas. 
 

Note that our definition of magnitude does not imply that real numbers can be associated with 

lengths, angles, or areas; only that the relations = and ≤ exist and have the required properties.  

(In real-life applications I use integer lengths, denoted by absolute value, e.g., |𝐸𝐹| = 5 m.)  It 

does imply that magnitudes are unique, which is what the replication axiom below is stating.   



Victor Aguilar  Geometry without Multiplication 

3 
 

Equal magnitudes are an equivalence relation and can be reproduced wherever needed; that is, 

compasses do not collapse when lifted from the paper but are like holding a chain at a length.  

Compasses that collapse would be like surveyors who can walk a chain around an arc but, the 

moment the center guy moves, their chain turns to smoke.  This is a parlor game, not a science!  

 

An equivalence class is defined as a subset of all the elements that have an equivalence relation 

with each other.  It can be shown that any two equivalence classes either coincide or are disjoint, 

hence the collection of equivalence classes form a partition of the set.  For example, if the set is 

all the lines in the plane, it is partitioned by parallelism; each equivalence class is composed of 

lines stacked on top of each other (parallel) but tilted relative to the lines in the other classes.  

Equivalence classes can be defined in reference to an existing equivalence class.  For instance, if 

an equivalence class is defined as all the angles equal to a given angle, then all the angles 

complementary to any member of that class are equal to each other; that is, they form their own 

equivalence class.  All the angles supplementary to any member of that class are also equal to 

each other.  If an equivalence class is defined as all the lines parallel to a given line, then all the 

lines perpendicular to any member of that class are parallel to each other.  All the circles with 

radii equal to any member of an equivalence class of equal segments are an equivalence class. 
 

Equivalence also refers to statements that can be proven if the other one is assumed, and in 

either order.  For instance, Euclid’s fifth postulate and Playfair’s postulate are equivalent 

because, assuming either to be true, it is possible to prove that the other is true.  The equivalence 

of theorems can be expressed by separating them with the phrase “if and only if,” which can be 

abbreviated “iff.”  Proof in the other direction is called the converse; that is, if 𝑝 implies 𝑞, then 

the converse is that 𝑞 implies 𝑝.  If 𝑝 and 𝑞 are equivalent, then both implications are true.   
 

Proof by contradiction when there is only one alternative that must be proven impossible is called 

a dichotomy.  A trichotomy (e.g. ASA congruence) has three alternatives.  A magnitude can either 

be less than, equal to or greater than another, and only one of these three is desired; thus, by 

proving the other two to be impossible, we know that it is the one that makes the theorem true. 

 

Additive Groups 

 

We define an additive group as a nonempty set that is closed under an operation that we will 

denote + and which has these properties for all 𝑥, 𝑦, 𝑧 that are members of that set: 
 

Associative property (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 

Commutative property 𝑥 + 𝑦 = 𝑦 + 𝑥 

Existence and uniqueness of an identity 𝑥 + 0 = 𝑥 = 0 + 𝑥 

Existence of unique inverses (identity is its own) 𝑥 + (−𝑥) =  0 = (−𝑥) + 𝑥 
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There exist magnitudes that are not additive groups, such as economic value.  Given a choice 

between 𝑥 or 𝑦, it is always possible for a person to choose one.  But, because 𝑥 may substitute 

for or be a complement to 𝑦, they are not independent the way geometric magnitudes are.  There 

are also additive groups that cannot be ordered, such as matrices.  Matrices of the same 

dimension are an additive group, but we cannot say 𝑿 ≤ 𝒀 for any two distinct matrices. 

 

On the first day of class I ask the students to look back to a time eight or ten years prior, when 

they were little kids and knew only how to add and subtract; multiplication and division was still 

scary for them.  I assure them that geometry will be like going back to 1st grade.  Sticking segments 

together end to end or angles together side by side is no more difficult than 1st grade problems 

about adding chocolates to or subtracting chocolates from a bowl of candies.  How easy is that? 

 

Replication Axiom 

Given 𝐸𝐹 and 𝐽𝐾⃗⃗⃗⃗ , there exists a unique point 𝐿 on 𝐽𝐾⃗⃗⃗⃗  such that 𝐸𝐹 = 𝐽𝐿. 

Given ∠𝐸𝐹𝐺 and 𝐾𝐽⃗⃗⃗⃗ , there exist rays 𝐾𝐿⃗⃗⃗⃗  ⃗ and 𝐾𝐿′′⃗⃗⃗⃗⃗⃗⃗⃗  such that ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 = ∠𝐽𝐾𝐿′′. 

 

The symbol < is defined by the terms “between” and “inside,” as stated in the two axioms below.  

But this symbol can also be applied to magnitudes.  |𝐸𝐹| < |𝐽𝐾| means that the number of units 

that can be laid off inside 𝐸𝐹 is less than the number that can be laid off inside 𝐽𝐾.  The absolute 

value signs denote these numbers, so we use + when combining them; |𝐸𝐹| + |𝐽𝐾| is the sum 

of these lengths.  Degrees or radians measure angles and can be added, but that is undefined in 

this book; it is trigonometry.  We measure area though; |𝐸𝐹𝐺| + |𝐽𝐾𝐿| is their combined area. 

 

Interior Segment Axiom 

If 𝑀 is between 𝐸 and 𝐹, then 𝐸𝑀 < 𝐸𝐹 and 𝑀𝐹 < 𝐸𝐹 and 𝐸𝑀 ∪ 𝑀𝐹 = 𝐸𝐹.  (∪ means union.) 

 

Interior Angle Axiom 

If 𝑃 is inside ∠𝐸𝐹𝐺, then ∠𝐸𝐹𝑃 < ∠𝐸𝐹𝐺 and ∠𝑃𝐹𝐺 < ∠𝐸𝐹𝐺 and ∠𝐸𝐹𝑃 ∪ ∠𝑃𝐹𝐺 = ∠𝐸𝐹𝐺. 

 

To be between 𝐸 and 𝐹 means to be on the segment they define, 𝐸𝐹, but at neither endpoint.  

To be inside ∠𝐸𝐹𝐺 (not straight) means to be between points on 𝐹𝐸⃗⃗⃗⃗  ⃗ and on 𝐹𝐺⃗⃗⃗⃗  ⃗, with neither 

point being 𝐹.  It is instinctive that all humans know what it means for a point to be between two 

points and – in the case of Pasch’s axiom – also what it means for a segment to be continuous; 

that is, with no gaps where another segment might slip through.  Triangles and quadrilaterals are 

defined to be convex; this means that they are not allowed to be concave or degenerate.  Interior 

angles are greater than zero and less than straight (indeed, all angles are because of “between” 

in the definition), so triangles are never segments, and quadrilaterals are never triangles or darts. 
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Pasch’s Axiom 

If a line passes between two vertices of a triangle and does not go through the other vertex, then 

it passes between it and one of the two vertices. 

 

In Geometry–Do, plane, point, shortest path and straight are undefined terms.  These are 

concepts that a parent does not have to explain to a child; they are just giving names to what is 

already in the child’s mind.  Specifically, a plane is undefined because rigorously defining 

uncountably infinite, flat, and of exactly two dimensions is beyond the scope of this book.  

Euclidean area is defined as the measure of the size of a triangle or a union of disjoint triangles.  

Like the ancients, we do not have a rigorous definition of limits but just rely on intuition; wheat 

plants are infinitesimal compared to fields, so weighing the wheat is almost like calculating a 

limit.  Thus, area too is something that small children can understand without explanation.  

Defining area as the product of a right rectangle’s sides waits for Volume Two: Geometry with 

Multiplication.  This definition of area is not intuitive to small children, who know nothing of 

multiplication.  For now, just know that area is a magnitude. 

 

Degrees of angle or radians will not be defined in either volume because doing so is trigonometry. 

 

Triangle Inequality Theorem      (Euclid, Book I, Prop. 20, 22) 

Three lengths can be of triangle sides if and only if the sum of the lengths of any two sides is 

greater than the length of the third side. 

 

In ancient Greece, Epicurus scoffed at Euclid for proving a theorem that is evident even to an ass 

(donkey), who knows what the shortest path to a pile of hay is.  Some textbooks call it an axiom, 

and some prove only one direction – they start with the existence of the triangle and prove the 

inequalities – but that is not the direction needed for SSS, which cites it.  Beginners here should 

just take it as an axiom; also, they should take the continuity theorem (below) as an axiom.  Its 

proof requires the Cantor axiom, which assumes a knowledge of set theory that is not expected 

of beginning geometers.  Experts can find detailed proofs in an appendix at the end of this book. 

 

Continuity Theorem 

1. A line that passes through a point inside a circle intersects the circle exactly twice. 

2. A circle that passes through points inside and outside a circle intersects it exactly twice. 

 

The foundations explained above are sufficient through red-belt study.  In these early chapters, 

students will learn to bisect, trisect and quadrisect a segment, and to multiply it by small natural 

numbers by using repeated addition.  No more of these repeated additions are needed than four, 

for construction of the Egyptian or 3 ∶ 4 ∶ 5 right triangle, except that we mention in passing the 
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5 ∶ 12 ∶ 13 right triangle, which is used by plumbers when installing 22.5° elbows.  Elementary 

school teachers are wrong when they define multiplication as repeated addition; this is why so 

many students are later confounded by real numbers like √2 or 𝜋.  The repeated addition used 

in 3 ∶ 4 ∶ 5 right triangles has nothing to do with multiplying lengths as defined in Volume Two. 

 

Blue belts will learn of similarity and prove the triangle similarity theorem.  They will go beyond 

bisecting and trisecting segments to constructing segments whose length relative to a given unit 

is any rational number.  Another axiom is needed for this.  A nonempty set with both an 

equivalence relation, =, and a total ordering, ≤, is called a magnitude.  But to construct segments 

whose length relative to a given unit is any rational number, length must also be Archimedean. 
 

Archimedes’ Axiom 

Given any two segments 𝐸𝐹 < 𝐺𝐻, there exists a natural number, 𝑛, such that 𝑛|𝐸𝐹| > |𝐺𝐻|. 
 

This may seem trivially true, but Galois (finite) fields are not Archimedean.  Every schoolboy is 

taught that Archimedes claimed that, given a long enough lever and a fulcrum to rest it on, he 

could move the world.  They typically receive no clear answer from their teacher on why it 

matters, since no such fulcrum exists, and Archimedes seems to ignore that gravity is attractive.  

The point that Archimedes is making is that, if there were such a fulcrum and much gravity under 

it, he would need a lever 6 × 1022 longer on his side of the fulcrum to balance his mass against 

the Earth.  If the fulcrum were one meter from Earth, Archimedes would be in the Andromeda 

galaxy if he stood on the other end of that long lever.  6 × 1022 is a big number, but it does exist. 
 

We said above that undefined terms are concepts that one does not have to explain to a child; 

the adult is just giving names to concepts that are already in the child’s mind.  But defining natural 

numbers as 1, 2, 3, … is only intuitive up to as many fingers as the child has.  We think 6 × 1022 

exists because countably infinite fields are consistent; but so are big Galois fields.  This axiom is 

why it is traditional in America to tell children that every snowflake is unique; it helps them 

visualize big numbers.  (Dinosaurs help them visualize vast gulfs of time.)  That Archimedes’ axiom 

is not intuitive to small children is one reason why similarity is delayed until blue belt. 
 

But these are issues of concern to black belts; first, the student must take a short jog through the 

colored belts, which are concerned with what Mihalescu (2016) refers to as the remarkable 

elements of triangles and quadrilaterals.  By this we initially mean the principal triangle centers.  

The medians intersect at the medial point, the angle bisectors intersect at the incenter, the 

altitudes intersect at the orthocenter, and the mediators intersect at the circumcenter.  In this 

introduction the student does not need to know what any of these things are, only that medians 

– the segment from a vertex to the midpoint of the opposite side – and the bisectors of vertex 

angles are always inside their vertex angle.  In 𝐸𝐹𝐺, if the vertex is 𝐹, then they are inside ∠𝐸𝐹𝐺. 
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Crossbar Theorem 

A ray from a triangle vertex that is inside this angle intersects the opposite side inside of it. 

 

The infoot (plural: infeet) is where an angle bisector cuts the opposite side of a triangle; in 𝐸𝐹𝐺 

they are denoted 𝐸∗, 𝐹∗, 𝐺∗.  Since the angle bisector is inside the angle – indeed, it is exactly 

halfway inside – the crossbar theorem implies that infeet are always inside the sides of a triangle; 

they are never at a triangle vertex or on the extension of a side like altitude feet might be.  Also, 

if a point is visible under an angle, then the ray from this triangle vertex that passes through this 

point cuts the opposite side of the triangle inside it, not at its endpoint or on its extension. 

 

Proof of the crossbar theorem is deferred to the appendix, Foundations of Geometry Revisited. 
 

The midpoints of segments16 are denoted by the letter 𝑀 with a double subscript, which are the 

endpoints of the segment.  Thus, two medians of the triangle 𝐸𝐹𝐺 are 𝐸𝑀𝐹𝐺  and 𝐹𝑀𝐺𝐸 .  Consider 

the triangle 𝐸𝑀𝐹𝐺𝐺.  The line 𝐹𝑀𝐺𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ passes between the vertices 𝐺 and 𝐸 because 𝑀𝐺𝐸  is 

between 𝐺 and 𝐸, and it does not pass through the other vertex, 𝑀𝐹𝐺 , because 𝑀𝐹𝐺  is not 𝐹.  

Thus, the conditions of Pasch’s axiom are met and 𝐹𝑀𝐺𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ must intersect either 𝐸𝑀𝐹𝐺  or 𝑀𝐹𝐺𝐺.  

Since it intersects 𝑀𝐹𝐺𝐺⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   at 𝐹, it cannot also intersect this line in the segment 𝑀𝐹𝐺𝐺.  Thus, it 

intersects  𝐸𝑀𝐹𝐺 .  This proves that the medial point of a triangle is always inside the triangle. 
 

Analogously, the incenter of a triangle is always inside the triangle.  The only difference in the 

proof is that, instead of knowing that the bisectors of vertex angles 𝐸 and 𝐹 intersect the opposite 

sides at 𝑀𝐹𝐺  and 𝑀𝐺𝐸 , respectively, we must first invoke the crossbar theorem to prove that they 

intersect the opposite sides somewhere on them, and give these points labels; say, 𝐸∗ and 𝐹∗. 

 

By the triangle postulate, three noncollinear points fully define a triangle and, since the medial 

point and the incenter have now been proven to be inside the triangle, they are fully defined.  

Because we nowhere invoked the parallel postulate, medial points and incenters always exist in 

neutral geometry and are thus topics of discussion for white and yellow belts.  But what about 

the orthocenter?  A triangle’s apex altitude is inside it only if the base angles are acute, so white 

and yellow belts may only discuss the orthocenter if the triangle is known to be acute.  By a 

somewhat more involved argument, the circumcenter also exists for acute triangles.  Sometimes 

these centers exist for triangles that are slightly obtuse, though giving a precise meaning to 

“slightly obtuse” is beyond the scope of this book; thus, white and yellow belts are advised to 

just defer most discussions of these triangle centers to orange belt. 

 
16 Midpoints are defined in Construction 1.2, and their existence inside the segment assured.  Triangle centers will 

be defined later, and their existence assured.  Here we speak casually of things that will be treated rigorously later. 
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This concludes our discussion of the postulates of geometry.  But you may still be wondering, 

what is geometry about?  The first line of a book is often the only thing people remember about 

it.17  Like Herman Melville, Euclid is also famous for his first line – but not in a good way.  “A point 

is that which has no part.”  Beginning geometry students are like, “Oh, so this is a book about 

Japanese koans?”  In the first paragraph of Geometry–Do, there are a dozen boldface terms for 

the student to look up in the glossary, so you may be thinking, “Oh, so this is a book about 

memorizing vocabulary?  It is like learning a language spoken in a country that I will never visit?” 

 

When I was a freshman in college, I rather inadvisably took an upper-division course on groups, 

rings and fields.  Why not?  If not with knowledge, I was at least filled with ambition!  Most of the 

material in this introduction came from that textbook, but what I remember most is the first line: 

 

 

The main business of mathematics is proving theorems. 
 

 

John Fraleigh (1989) set this sentence between horizontal lines, just as I have done above.  He 

must have thought it important!  He is right; the business of mathematicians is proving theorems. 

 

Example Theorem   

The sum of quadrilateral diagonals exceeds the sum of either pair of opposite sides. 

 

Let us try proving a theorem, and do so now, before the add/drop date, while there is still time 

for students to make a run for it!  This will be fun.  We will do it step by step, so I can lead the 

reader by the hand through a genuine geometry proof.  It is easy, and it requires only the basics. 

 

Step One:  The first step is to remind yourself of the definitions of terms that you already know, 

and to look up any terms that you have not yet learned.  We read about the quadrilateral earlier; 

but let us look it up to make sure that we know it.  Look up adjacent, convex, and diagonal too! 

 

Quadrilateral    The union of two triangles adjacent on a side such that it is convex; 𝐸𝐹𝐺𝐻 

 

Adjacent    Two disjoint triangles with a common side (common for its full length) 

   

Convex    Any segment between two points interior to two sides is inside the figure 

 

Diagonal  Segments connecting non-consecutive quadrilateral vertices 

 
17 For instance, “Call me Ishmael” is the first line of Moby Dick.  I think it is about a whale – I don’t remember. 
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Step Two:  The next step is to draw the figure, and to do so in a way that the definitions of terms 

are satisfied.  For instance, if our two triangles are like the blades on an arrowhead, then the 

figure is not convex; a segment between the trailing edges of the two blades would not be inside 

the figure.  This is not a quadrilateral; the proof below does not work for it because its diagonals 

do not intersect.  In the figure below, we see that 𝐸𝐺, the side common to the two triangles, 𝐸𝐹𝐺 

and 𝐺𝐻𝐸, is a diagonal; indeed, because it defines the quadrilateral, it is called the definitional 

diagonal.  The same quadrilateral can be defined two ways, with two different pairs of adjacent 

triangles.  Sometimes it matters which diagonal is definitional, but the problem at hand mentions 

both diagonals, so draw both, 𝐸𝐺 and 𝐹𝐻, and label the cut segment lengths 𝑝1, 𝑝2, 𝑞1, 𝑞2.  The 

intersection of the diagonals is labeled 𝑇, and two of the side lengths are labeled 𝑠1 and 𝑠2.  

Lowercase letters denote lengths and can be added; they are not a symbol for the segment itself.  
 

 
 

Step Three.  The next step is to go through the index and look for relevant postulates, axioms, 

and theorems.  The index is fifty pages long; so, later, this can be a daunting task.  Intuition and 

experience when carrying out this search is what divides passing green- and red-belt geometers 

from failing ones.  But, at this early stage in your career, the index for the introduction amounts 

to only two pages, so it is not a long search.  The problem is about comparing two sums, so let us 

remind ourselves about additive groups.  By segment addition, the two diagonals are 𝑝1 + 𝑝2 and 

𝑞1 + 𝑞2.  Their sum is (𝑝1 + 𝑝2) + (𝑞1 + 𝑞2).  We are comparing two magnitudes; so, relevant is 

a theorem about one magnitude being less than another.  It is the triangle inequality theorem! 

 

Step Four:  The final step is to carry out the proof.  There are two triangles with their sides labeled.  

In 𝐸𝑇𝐻, by the triangle inequality theorem, 𝑠1 < 𝑝1 + 𝑞1.  In 𝐹𝑇𝐺, by the triangle inequality 

theorem, 𝑠2 < 𝑝2 + 𝑞2.  Add the two inequalities together: 𝑠1 + 𝑠2 < (𝑝1 + 𝑝2) + (𝑞1 + 𝑞2).  

We do not have to go through this for the other pair of opposite sides; just say, “analogously.”  

 

Thus, you have seen the business of mathematicians.  If you have not concluded that being a 

waiter with a psychology degree is the life for you, then I will see you tomorrow!  We will prove 

the dreaded side–angle–side (SAS) theorem, which stumped both Euclid and David Hilbert! 
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 Experts only!!!  (Those uninterested in Hilbert’s Foundations skip to the notation section.) 

 

Hilbert’s “straight line” is redundant; there is no such thing as an unstraight line, so we will just 

say “line.”  Hilbert uses the letters 𝐴, 𝐵, 𝐶, … for points, but these will be changed to 𝐸, 𝐹, 𝐺, … to 

be compatible with Geometry–Do, where the first four letters have special meanings.  “Always 

completely determine” is the same thing as “fully define,” so we will use the Geometry–Do term.  

“Situated in the same line” means collinear; indeed, “situated on a line” can just be “on a line.”  

“Passes through a point of the segment” means “intersect.”  I am trying to make this easy! 

 

One reason why beginners are uncomfortable with Hilbert’s axioms is their verbosity; sadly, this 

has often resulted in any mention of foundations being delayed until the students have become 

advanced.  But going back and filling in foundations later is not the right way to teach geometry.  

This verbosity is largely because German is difficult to translate into English.  Economists who 

have read Carl Menger and philosophers who have read Friedrich Nietzsche have also noticed 

this.  The solution is to not translate quite so literally, which is what I have done below. 

 

I. Axioms of Connection 

1. Two distinct points fully define a line. 

2. Any two distinct points of a line fully define it. 

3. Three points not collinear fully define a plane. 

4. Any three points of a plane not collinear fully define the plane. 

5. If two points of a line are in a plane, then every point of the line is in the plane. 

6. If two planes have a common point, then they have at least one other common point. 

7. Lines have at least two points, planes at least three noncollinear points, and space at 

least four noncoplanar points. 

 

II. Axioms of Order 

1. If 𝐸, 𝐹, 𝐺 are collinear and 𝐹 is between 𝐸 and 𝐺, then 𝐹 is also between 𝐺 and 𝐸. 

2. If 𝐸 and 𝐺 are two points on a line, then there exists at least one point 𝐹 that is between 

𝐸 and 𝐺 and at least one point 𝐻 so situated that 𝐺 is between 𝐸 and 𝐻. 

3. Of any three collinear points, there is exactly one between the other two. 

4. Any four collinear points 𝐸, 𝐹, 𝐺, 𝐻 can always be arranged so 𝐹 is between 𝐸 and 𝐺; 

also, between 𝐸 and 𝐻.  Furthermore, 𝐺 is between 𝐸 and 𝐻; also, between 𝐹 and 𝐻. 

5. If 𝐸, 𝐹, 𝐺 are not collinear and a line in the plane they determine does not pass through 

any of them and it intersects 𝐸𝐹, then it will also intersect either 𝐸𝐺 or 𝐹𝐺. 

 

Some jokers have noticed that Euclid never said there had to be more than one point, and so 

they defined their own geometry with exactly one point.  Every segment is of zero length and is 
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at the same point; analogously, every circle has zero radius and has the same center.  They took 

navel gazing to a whole new level, just staring at that one point, and seeing how many geometry 

theorems are true about it!  This must have been meant as a joke, but I think Hilbert was a little 

too concerned about excluding these degenerate geometry theories and got a bit pedantic doing 

so with his axioms.  Geometry–Do is comfortable leaving terms like plane and point undefined 

and assuming that the students are not going to play any jokes by twisting their meanings; they 

are just trying to learn some geometry that will be useful in their everyday lives.  Thus, I. 7 is not 

made explicit.  II. 1 – 3 are the glossary definition of “between” except that II. 1 has “between” 

assume collinearity rather than imply it.  II. 4 is redundant and is omitted in Geometry–Do.  II. 5 

is Pasch’s Axiom, which I include among the secondary axioms at the end of the introduction.   

 

I. 5, 6 are omitted because Geometry–Do does not include solid geometry.  Two reasons: 

 

1. High-school students have enough on their plates with plane geometry.  Geometry–Do is 

a three-year course, assuming I can squeeze blue belt, Cho–Dan and Yi–Dan into a single 

year.  It is possible, especially if Sam–Dan is included, that this will be a four-year course. 

 

2. Traditional solid geometry (e.g., Wentworth or Kiselev) is not very useful.  This material is 

better taught as an application of Calculus III.  Wolfe and Phelps have an advanced version 

of Practical Shop Mathematics that is about solid geometry, but it does not cite any of 

Wentworth’s theorems; civilian machinists are just not that into cones and spheres.   

 

Indeed, while Wentworth is harmless, teaching teenagers too much about machining cones and 

paraboloids is risky because of their use in shaped charges and explosively formed projectiles.  In 

high school, the volume formulas are just food for memorization.  In Calculus III, these formulas 

can be derived, and the students are mature enough not to do anything crazy like making an EFP. 

 

Geometry–Do postulates comparable to Hilbert’s Axioms of Connection and Order 

 

Segment Two points fully define the segment between them. 

Line  By extending it, a segment fully defines a line. 

Triangle Three noncollinear points fully define a triangle. 

 

We are left with I. 1, 2, 3, 4, which are comparable to my segment, triangle, and line postulates.  

Hilbert’s axioms are about points and lines; he defines segment almost as an afterthought.  But 

Geometry–Do follows Euclid by having distinct segment and line postulates.  This is wise because 

segments are foundational; they should not just be tossed in later.  Also, I. 1, 2 are redundant; 

two points define a unique line, and a line is defined by any two points on it is just one postulate.  

I. 3, 4 is also just one postulate; let us compare it to the triangle postulate of Geometry–Do. 
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Hilbert is overreaching when he states that three noncollinear points fully define a plane.  The 

Euclidean plane and the Lobachevskian plane are different things.  Without a parallel postulate, 

existence of triangle centers is only assured inside the triangle with these vertices.  To say, “the 

plane” requires explanation of what, exactly, has been defined.  In the introduction, I write: 

 

By the triangle postulate, three noncollinear points fully define a triangle and, 

since the medial point and the incenter have now been proven to be inside the 

triangle, they are fully defined.  Because we nowhere invoked the parallel 

postulate in the preceding proofs, medial points and incenters always exist in 

neutral geometry…  But what about the orthocenter?  A triangle’s apex altitude is 

inside it only if the base angles are acute, so white and yellow belts may only 

discuss the orthocenter if the triangle is known to be acute.  By a somewhat more 

involved argument, the circumcenter also exists for acute triangles.  Sometimes 

these centers exist for triangles that are slightly obtuse, though giving a precise 

meaning to “slightly obtuse” is beyond the scope of this book. 

 

III  Axiom of Parallels 

In a plane there can be drawn through any point not on a line, one and only one line that 

does not intersect the given line.  This line is called the line’s parallel through that point. 

 

Hilbert’s third group of axioms consists of only one axiom, which is the same as in Geometry–Do.   

 

IV Axioms of Congruence 

1. If 𝐸 and 𝐹 are two points on a line and 𝐽 is a point on the same or another line, then, on 

a given side of 𝐽 on this line, there exists a unique point 𝐾 such that 𝐸𝐹 is congruent to 

𝐽𝐾, which is written 𝐸𝐹 ≡ 𝐽𝐾.  Every segment is congruent to itself; 𝐸𝐹 ≡ 𝐸𝐹. 

 

I am not an historian; but, as far as I know, this is the first time anyone ever used the term 

congruent to mean that two segments are the same length.  Euclid would have said that they are 

equal and, as evidenced by Kiselev and Wentworth, this continued to be the practice through the 

19th century in both the East and the West.  Equal refers to magnitudes because they are fully 

defined by a single measurement, e.g., the length of a segment.  Triangles have three sides and 

three angles but – only after proving some theorems – we know that it is possible to measure 

three magnitudes and have equality for all six.  Congruence is not just a single measurement. 

 

Also, Hilbert’s notation is confusing, though this may be due to the typesetting of his day.  He did 

not use overlines while we use 𝐸𝐹, 𝐸𝐹⃗⃗⃗⃗  ⃗ and 𝐸𝐹⃡⃗⃗⃗  ⃗ to mean segment, ray, and line, respectively.  He 

used only ≡ while we use =,≅ and ≡ to mean equals, congruent and coincident, respectively.   
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IV Axioms of Congruence 

1. Given 𝐸𝐹 and 𝐽𝐾⃗⃗⃗⃗ , there exists a unique point 𝐿 on 𝐽𝐾⃗⃗⃗⃗  such that 𝐸𝐹 = 𝐽𝐿. 

2. If 𝐸𝐹 = 𝐽𝐾 and 𝐸𝐹 = 𝐿𝑀, then 𝐽𝐾 = 𝐿𝑀. 

3. 𝐹 is between 𝐸, 𝐺; also, 𝐾 is between 𝐽, 𝐿.  If 𝐸𝐹 = 𝐽𝐾 and 𝐹𝐺 = 𝐾𝐿, then 𝐸𝐺 = 𝐽𝐿. 

4. Given ∠𝐸𝐹𝐺 and 𝐾𝐽⃗⃗⃗⃗ , there exist rays 𝐾𝐿⃗⃗⃗⃗  ⃗ and 𝐾𝐿′′⃗⃗⃗⃗⃗⃗⃗⃗  such that ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 = ∠𝐽𝐾𝐿′′. 

5. If ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 and ∠𝐸𝐹𝐺 = ∠𝑀𝑁𝑂, then ∠𝐽𝐾𝐿 = ∠𝑀𝑁𝑂. 

6. If ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 and 𝐸𝐹 = 𝐽𝐾 and 𝐹𝐺 = 𝐾𝐿, then ∠𝐹𝐺𝐸 = ∠𝐾𝐿𝐽 and ∠𝐺𝐸𝐹 = ∠𝐿𝐽𝐾. 

 

Hilbert’s axioms of congruence are here written using Geometry–Do notation.  I wrote all six of 

them in six lines, while Hilbert uses a total of 33 lines.  This verbosity is one reason why Hilbert is 

no longer taught to beginners, though this does not justify omitting any discussion of the 

axiomatic method or just giving it lip service, as is typical these days.   

 

Hilbert is not saying much here.  IV. 1, 4 are the replication axiom, IV. 2, 5 are transitivity, and   

IV. 3 is substitution of equals in addition, which apparently applies only to segments, but not to 

angles.  Frankly, my statement that “a set with both an equivalence relation, =, and a total 

ordering, ≤, is called a magnitude” and that there are three geometric magnitudes – lengths, 

angles, and areas – is a lot clearer and more succinct.  Also, it is more complete.  Why does IV. 3 

not have an analogous statement about angles?  What about area?  Why is only transitivity 

mentioned and not the reflexive, symmetric and anti-symmetric relations?  This is a very sketchy 

description of the properties of equivalence relations, total orderings, and additive groups. 

 

IV. 6 is SAS congruence, though Hilbert makes 𝐸𝐺 = 𝐽𝐿 a theorem.  I prove SAS by citing the 

triangle postulate, which Hilbert could not do because he said that three noncollinear points fully 

define the plane, which is not what is needed to prove SAS.  Hilbert is defining the plane to 

distinguish it from other planes in the context of solid geometry; we just want to prove SAS. 

 

There is no axiom comparable to my circle postulate; Hilbert just inserts the definition of circle 

immediately before moving on to Archimedes’ axiom, which is a bad idea for the same reason 

that casually inserting the definition of segment is.  Segments and circles are foundational and 

deserve their own postulates.   

 

Geometry–Do also has Archimedes’ axiom; it is among the secondary axioms in the introduction.   

 

Straight angles equal each other if and only if right angles equal each other.  Straight is undefined 

and we could say that it is intuitive that they are all equal, as Hilbert does, or we could use Euclid’s 

postulate, as I do.  It is the same thing; Hilbert is too hard on Euclid when he calls him wrong.  My 

right-angle postulate is, “all right angles are equal; equivalently, all straight angles are equal.” 



Geometry without Multiplication  Victor Aguilar 

14 
 

Notation 
 
𝛼, 𝛽, 𝛾, 𝛿  Angles of a triangle or quadrilateral; usually ∠𝐸, ∠𝐹, ∠𝐺, ∠𝐻, respectively. 

   If 𝛼 and 𝛽 are base angles of a triangle, then 𝛿 = |𝛼 − 𝛽|, the skew angle. 
 

𝜌, 𝜎, 𝜑    𝜌 is right, 𝜎 is straight, and 𝜑 is the interior angle in an equilateral triangle. 
 

𝐸, 𝐹, 𝐺,… ,𝑊   Points.  𝐻, 𝐼, 𝑂, 𝑅, 𝑆, 𝑇, 𝑈, 𝑉 have assigned meanings; do not use arbitrarily. 
 

𝑀, 𝐼, 𝑋, 𝑌, 𝑍  𝑀 is usually inside a segment; 𝑀𝐸𝐹 is the midpoint of 𝐸𝐹.  Otherwise, 

double subscripts denote reflection.  𝐼 is the incenter, 𝑋, 𝑌, 𝑍 are the 

excenters and, when subscripted with 𝐸, 𝐹, 𝐺, their pedal points.   
 

𝐸′, 𝐹′, 𝐺′  The feet of perpendiculars from 𝐸, 𝐹, 𝐺, particularly the altitudes of 𝐸𝐹𝐺 
 

𝐸∗, 𝐹∗, 𝐺∗  Infeet; intersections of angle bisectors with the opposite sides of a triangle 
 

𝑒, 𝑓, 𝑔    Lengths of the sides of a triangle opposite the 𝐸, 𝐹, 𝐺 vertices, respectively 
 

𝑎, 𝑏, 𝑐   The coefficients of  𝑎𝑥2 +  𝑏𝑥 + 𝑐 = 0; use 𝑢, 𝑣, 𝑤 for right triangles. 
 

𝐻, ℎ, ℎ𝐸 , ℎ𝐹 , ℎ𝐺  𝐻 is usually a triangle’s orthocenter unless it is the fourth vertex of a 
quadrilateral.  ℎ is the height of a triangle or parallelogram if given a base.  
ℎ𝐸 , ℎ𝐹 , ℎ𝐺  are the altitudes dropped from 𝐸, 𝐹, 𝐺. 

 

𝐴, 𝐵, 𝐶, 𝐷, 𝑑 𝐴 is the area of a triangle or quadrilateral, e.g., 𝐸𝐹𝐺 has area 𝐴 = |𝐸𝐹𝐺|;  

𝐵 is a solid’s base area; 𝐶 is a triangle’s medial point or a parallelogram’s 
bi-medial point; 𝐷 is the circumdiameter; and 𝑑 is the indiameter. 

 

𝑃   A point, usually interior.  𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  are the pedal vertices of 𝑃 in 𝐸𝐹𝐺. 
 

𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺    Long centers of 𝐸𝐹𝐺, where the mediators and angle bisectors meet on 𝜔 
 

𝑟, 𝑅   𝑅 is circumradius; 𝑟 is inradius or other radii if there is no incircle present. 
 

𝑠, 𝑆, 𝑇, 𝑈, 𝑉, ℓ 𝑠 is the semiperimeter; 𝑆 is the anticenter if 𝑇 is not; and 𝑇 is the bi-medial.  
𝑈 and 𝑉 are the first and second Torricelli points.  ℓ is a labeled line. 

 

𝜔,𝑂  𝜔 (omega) is a circle, usually the circumcircle; 𝑂 is usually a circle’s center 
 

≡, ∩, ∪, −, ∈, ∶=  Coincident, intersection, union, removal, element of a set, assign to a label 
 

⊥, ∥, ∦, ≅, ≇   ~  Perpendicular, parallel, not parallel, congruent, not congruent, and similar 
 

|𝑃|, |𝐸𝐹|, |𝐸𝐹𝐺|, |𝐸𝐹𝐺𝐻|, |𝑥 − 𝑦|       Power of a point, unit length, area, area, absolute value 
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White Belt Instruction:  Foundations 
 

Side–Angle–Side (SAS) Theorem     (Euclid, Book I, Prop. 4)    

Given two sides and the angle 𝜃 between them, 0 < 𝜃 < 𝜎, a triangle is fully defined. 

 

Proof 

By the segment postulate, the segments have two endpoints and, since they form an 

angle 0 < 𝜃 < 𝜎, they share an endpoint.  This is three noncollinear points so, by the 

triangle postulate, the triangle is fully defined.  Congruence is transitive, so any two 

anywhere are congruent.                 ∎ 

 

Euclid had five postulates, not six, but proof of his fourth proposition, SAS congruence, relied on 

superposition, which tacitly assumes a whole slew of additional and unmentioned postulates.  

Many have cast doubt on Euclid, pointing out that superposition – sliding figures around and 

flipping them over to position one on top of the other – is nowhere defined.  
 

Robin Hartshorne (2000, p. 2), writes, “Upon closer reading, we find that Euclid does not adhere 

to the strict axiomatic method as closely as one might hope…  The method of superposition… 

cannot be justified from the axioms… we can develop geometry according to modern standards 

of rigor.”  But, when Common Core was formulated, Hartshorne was shunted aside because Bill 

Gates was offering big money to redefine congruence in terms of transpositions – sliding figures 

around on a computer screen to superimpose them – assuring that geometry ceases to exist the 

moment a student rises from his school computer.  By this definition, is a 3 ∶ 4 ∶ 5 triangle drawn 

in this book congruent to one drawn on the wall of a 4000-year-old pyramid in Egypt?  Neither 

moved!  For that matter, did a figure in this book fly through the air and land on your homework? 
 

Isosceles Triangle Theorem      (Euclid, Book I, Prop. 5) 

If two sides of a triangle are equal, then their opposite angles are equal. 
 

 Proof 

Given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, by SAS, 𝐹𝐺𝐸 ≅ 𝐸𝐺𝐹 because 𝐹𝐺 = 𝐸𝐺 and ∠𝐹𝐺𝐸 = ∠𝐸𝐺𝐹 

and 𝐺𝐸 = 𝐺𝐹.  By congruence,  ∠𝐸𝐹𝐺 = ∠𝐹𝐸𝐺.              ∎ 
 

Observe that, when we cite SAS, the triangle vertices are ordered by the side, angle and side that 

are equal; later, in more advanced proofs, we will not write “because” and list the equalities.   

 

𝐹𝐺𝐸 and 𝐸𝐺𝐹 have the same vertices but they are different triangles.  𝐹𝐺𝐸 ≅ 𝐸𝐺𝐹 is not a trivial 

statement proven by reflexivity; it requires proof, and it has important implications.  The triangle 

postulate states that three noncollinear points fully define a triangle, but only in the order given. 
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Equilateral Triangle Theorem 

Given a triangle, the following are equivalent: (1) It is equilateral; (2) all interior angles are equal; 

(3) the medians, the altitudes, and the angle bisectors are pairwise coincident; (4) the three 

medians are equal; (5) the three altitudes are equal; (6) the three angle bisectors are equal. 

 

Half Equilateral Triangle Theorem 

A triangle is half equilateral if and only if it is right and one leg is half of the hypotenuse. 
 

Proof of the SSS theorem will use a proof by contradiction; that is, show that 𝑞 not true and 𝑝 

true is contradictory.  We have defined dichotomy and trichotomy; now we assume that 𝐺 and 𝐽 

are distinct and then consider the four places where 𝐽 can be if it is not 𝐺.  Like aiming a rifle at a 

target, there are only five alternatives: a bullseye or a miss to the left, right, above, or below.  We 

show that the latter four are impossible.  The lemma is based on what “inside” means. 
 

Lemma 1.1 

If a triangle is inside another triangle, it has less area. 
 

Side–Side–Side (SSS) Theorem       (Euclid, Book I, Prop. 8) 

Given three sides that satisfy the triangle inequality theorem, a triangle is fully defined. 

 

Proof 

Given 𝐸𝐹𝐺 and 𝐸𝐹𝐽 with 𝐸𝐺 = 𝐸𝐽 and 𝐹𝐺 = 𝐹𝐽, suppose that 𝐺 and 𝐽 are distinct.  By 

lemma 1.1, if 𝐽 is inside 𝐸𝐹𝐺 or inside the angle vertical to ∠𝐸𝐺𝐹, then |𝐸𝐹𝐽| < |𝐸𝐹𝐺| or 

|𝐸𝐹𝐽| > |𝐸𝐹𝐺|, respectively, which implies 𝐸𝐹𝐺 ≇ 𝐸𝐹𝐽.  Suppose 𝐽 is on the 𝐸 side of 𝐹𝐺⃗⃗⃗⃗  ⃗ 

but not inside 𝐸𝐹𝐺.  𝐸𝐺 = 𝐸𝐽, so 𝐸𝐺𝐽 is isosceles.  ∠𝐸𝐽𝐺 = ∠𝐸𝐺𝐽 by the isosceles triangle 

theorem.  By analogous reasoning, 𝐹𝐺𝐽 is isosceles and thus ∠𝐹𝐺𝐽 = ∠𝐹𝐽𝐺. 

 

∠𝐸𝐽𝐺 = ∠𝐹𝐽𝐺 ∪ ∠𝐸𝐽𝐹  

∠𝐸𝐽𝐺 > ∠𝐹𝐽𝐺  

∠𝐸𝐽𝐺 > ∠𝐹𝐺𝐽  

and by analogous reasoning ∠𝐹𝐺𝐽 = ∠𝐸𝐺𝐽 ∪ ∠𝐹𝐺𝐸  

∠𝐹𝐺𝐽 > ∠𝐸𝐺𝐽  

∠𝐹𝐺𝐽 > ∠𝐸𝐽𝐺  
 

A contradiction; 𝐽 on the 𝐹 side of 𝐸𝐺⃗⃗⃗⃗  ⃗ but not inside 𝐸𝐹𝐺 is also contradictory.          ∎ 
 

In the following constructions, rays and lines are announced without invoking the line postulate; 

this is in keeping with our plan to avoid tedious proofs with mincing steps.  By construction, 

midpoints, angle bisectors and perpendiculars to a line through a point are fully defined.  Metric 

geometry textbooks begin with the midpoint theorem – every segment has exactly one midpoint 

– which they prove by dividing by two.  But they never explain how a real number was assigned 

to the length or, after division, how to locate the midpoint.  It just appears! 
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Construction 1.1  Bisect an angle.     (Euclid, Book I, Prop. 9) 
 

Solution 

Given ∠𝐸𝐹𝐺, take any point 𝐽 on 𝐹𝐸⃗⃗⃗⃗  ⃗.  There exists a point 𝐾 on 𝐹𝐺⃗⃗⃗⃗  ⃗ such that 𝐹𝐽 = 𝐹𝐾.  

Construct an isosceles triangle with base 𝐽𝐾 and apex 𝐿 on the other side of 𝐽𝐾⃡⃗⃗⃗  from 𝐹.  

By SSS,  𝐽𝐹𝐿 ≅ 𝐾𝐹𝐿, which holds the equality ∠𝐽𝐹𝐿 = ∠𝐾𝐹𝐿.              ∎  
 

To construct an isosceles triangle when the base is given, a geometer sets his compass to any 

length longer than half the base and draws arcs from each endpoint.  Where these arcs intersect 

is an apex; there are two possible, one on each side of the base.  These arcs are each called a 

locus, and together, loci (lō’ sī).  To construct an isosceles triangle when the apex angle is given, 

lay off the same arbitrary length on both rays from the vertex and then connect these points.  

 

Construction 1.2  Bisect a segment.     (Euclid, Book I, Prop. 10) 
 

 Solution 

Given 𝐸𝐹, construct an isosceles triangle with 𝐸𝐹 the base and 𝐺 the apex angle.  Using 

C. 1.1, bisect the apex angle, ∠𝐸𝐺𝐹.  (When finding 𝐺, swing your compass around to find 

𝐺′′ on the other side of 𝐸𝐹⃡⃗⃗⃗  ⃗.)  Let 𝐺𝐺′′⃗⃗⃗⃗⃗⃗ ⃗⃗  cut 𝐸𝐹 at 𝑀.18  By SAS, 𝐸𝐺𝑀 ≅ 𝐹𝐺𝑀, which holds 

the equality 𝐸𝑀 = 𝐹𝑀; that is, 𝑀 is the midpoint of 𝐸𝐹, so 𝑀 ≡ 𝑀𝐸𝐹.           ∎ 

 

Construction 1.3  Raise a perpendicular from a point on a line. (Euclid, Book I, Prop. 11) 
 

 Solution 

Given a line with 𝑀 on it, lay off the same arbitrary length to the left and to the right of 

𝑀, so 𝐸𝑀 = 𝐹𝑀.  Construct an isosceles triangle with base 𝐸𝐹 and apex 𝐺.  By SSS, 

𝐸𝑀𝐺 ≅ 𝐹𝑀𝐺, which holds the equality ∠𝐸𝑀𝐺 = ∠𝐹𝑀𝐺, so these are right angles.       ∎  

 

Construction 1.4  Drop a perpendicular from a point to a line. (Euclid, Book I, Prop. 12) 
 

 Solution 

Given 𝐺 not on 𝐸𝐹⃡⃗⃗⃗  ⃗, construct an isosceles triangle with apex 𝐺 and base 𝐽𝐾 on 𝐸𝐹⃡⃗⃗⃗  ⃗.  The 

apex angle bisector, 𝐺𝐺′′⃗⃗⃗⃗⃗⃗ ⃗⃗  (construct it in the same way as in C. 1.2) cuts 𝐽𝐾 at 𝑀.  By SAS, 

𝐽𝐺𝑀 ≅ 𝐾𝐺𝑀, which holds the equality ∠𝐽𝑀𝐺 = ∠𝐾𝑀𝐺, so these are right angles.        ∎  
 

These constructions are the four basic techniques that will be used in combination throughout 

geometry.  At the most fundamental level, all four are much alike.  This is analogous to how the 

 
18 Moise (1990, p. 83) derides the “lighthearted use of the word let.”  Not us!  We proved the crossbar theorem! 
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jab, hook, uppercut, and cross are the basic techniques that are used in combination throughout 

boxing.  But all four involve giving somebody a poke in the nose, so they are much alike.  Did you 

get the equilateral triangle theorem?  You only had two theorems in your kit!  Like a carpenter 

who only owns a claw hammer, for every nail, he is either going to hit it or pry it out.  What else? 

 

Construction 1.5  Replicate an angle.     (Euclid, Book I, Prop. 23) 
 

 Solution 

Construct an isosceles triangle with the given angle as its apex angle by laying off equal 

lengths and connecting them.  By SSS, reconstruct this triangle elsewhere.          ∎ 
 

Construction 1.6  Given a ray and a point on the angle bisector, find the other ray of the angle.  
 

 Solution 

Given 𝐸𝐹⃗⃗⃗⃗  ⃗ and 𝑃 on the angle bisector, construct an isosceles triangle with apex 𝐸 and 

base 𝑃𝐽 with 𝐽 on 𝐸𝐹⃗⃗⃗⃗  ⃗ so 𝐸𝐽⃗⃗⃗⃗ ≡ 𝐸𝐹⃗⃗⃗⃗  ⃗.  By C. 1.5, construct ∠𝐾𝐸𝑃 equal to ∠𝐽𝐸𝑃 by using SSS 

to construct 𝐾𝐸𝑃 ≅ 𝐽𝐸𝑃 with 𝐽 and 𝐾 on opposite sides of 𝐸𝑃⃗⃗⃗⃗  ⃗.  𝐸𝑃⃗⃗⃗⃗  ⃗ bisects ∠𝐽𝐸𝐾.       ∎ 
 

The perpendicular bisector of a segment is called its mediator.  The perpendicular from a triangle 

vertex to the (extension of the) opposite side is the altitude.  Altitudes and angle bisectors can 

be extended past the opposite side, but when lengths are assigned to an altitude or to an angle 

bisector, it means the length of the segment from the vertex to the opposite side. 
 

Center Line Theorem  

An angle bisector and a perpendicular bisector coincide if and only if the triangle is isosceles. 
  

 Proof 

Assume the angle bisector and perpendicular bisector coincide.  By SAS (segment 

reflexivity, the right-angle postulate and segment bisection), the two right triangles are 

congruent, so their hypotenuses are equal.  Thus, the given triangle is isosceles. • 
 

Assume the triangle is isosceles.  By the isosceles triangle theorem, the base angles are 

equal.  Construct a median from the apex.  By SAS (opposite sides, opposite angles, and 

bisection), the two triangles are congruent.  The apex angle is bisected and the angles at 

the foot of the median are equal; both right because they bisect a straight angle. •         ∎ 
 

The center line is the mediator of the base and the apex angle bisector of an isosceles triangle. 

 

The center line theorem is bi-conditional and so it requires two independent proofs, concluded 

with •.  The mediator theorem will also be like this.  The two proofs may be done in either order. 
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Technically, 𝑝 and 𝑞 are equivalent even if proof that 𝑞 implies 𝑝 requires citing the previously 

proven statement that 𝑝 implies 𝑞.  However, students see it as a trick if I say, “prove that 𝑝 and 

𝑞 are equivalent,” but I do not mention that they must prove that 𝑝 implies 𝑞 first, and then prove 

that 𝑞 implies 𝑝.  No tricks!  If this is the case, then I will call the statement that 𝑝 implies 𝑞 a 

theorem, and the statement that 𝑞 implies 𝑝 its converse, but I will not call them equivalent. 

 

Interior and Exterior Angles Theorem 

The bisectors of an interior and exterior angle of a triangle are perpendicular to each other. 

 

 Proof 

Given 𝐸𝐹𝐺 and 𝐽 on 𝐸𝐹⃗⃗⃗⃗  ⃗ past 𝐹, ∠𝐸𝐹𝐺 is the interior angle and ∠𝐽𝐹𝐺 is the exterior angle 

at vertex 𝐹.  By C. 1.1, find 𝐾 and 𝐿 on the angle bisectors of ∠𝐸𝐹𝐺 and ∠𝐽𝐹𝐺, 

respectively.  ∠𝐸𝐹𝐾 = ∠𝐺𝐹𝐾 and ∠𝐽𝐹𝐿 = ∠𝐺𝐹𝐿, so ∠𝐸𝐹𝐾 ∪ ∠𝐽𝐹𝐿 = ∠𝐺𝐹𝐾 ∪ ∠𝐺𝐹𝐿.  

The union of these four angles is a straight angle and, if a straight angle is cut in two equal 

angles, then each one is right; thus, ∠𝐺𝐹𝐾 ∪ ∠𝐺𝐹𝐿 = 𝜌 and 𝐹𝐾⃗⃗⃗⃗  ⃗ ⊥ 𝐹𝐿⃗⃗ ⃗⃗ .           ∎ 

 

Mediator Theorem  

A point is on the perpendicular bisector iff it is equidistant from the endpoints of the segment. 

 

Proof 

Assume that 𝐺 is on the perpendicular bisector of 𝐸𝐹, but it is not 𝑀𝐸𝐹  (if it is, then we 

are done).  By SAS, 𝐸𝑀𝐸𝐹𝐺 ≅ 𝐹𝑀𝐸𝐹𝐺, which holds the equality 𝐺𝐸 = 𝐺𝐹. • 

 

Assume 𝐺𝐸 = 𝐺𝐹.  Connect 𝐺𝑀𝐸𝐹.  By SSS, 𝐸𝐺𝑀𝐸𝐹 ≅ 𝐹𝐺𝑀𝐸𝐹, which holds the equality 

∠𝐸𝐺𝑀𝐸𝐹 = ∠𝐹𝐺𝑀𝐸𝐹.  Thus, 𝐺𝑀𝐸𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the angle bisector of ∠𝐸𝐺𝐹 and, by the center line 

theorem, it is the perpendicular bisector of 𝐸𝐹.     •          ∎ 

 

Problem 1.1  Draw a line through a point so it cuts off equal segments from the rays of an angle. 

 

 Solution 

By the definition of isosceles, the desired line is the base of an isosceles triangle with the 

given angle at its apex.  By the center line theorem, the base is perpendicular to the apex 

angle bisector.  Bisect the angle and drop a perpendicular on it from the point.          ∎ 

 

Just solving a problem is not enough; you must also explain in what situations your solution might 

fail.  One can always drop a perpendicular on a line, but not always on a ray, so this may not work.  

Sometimes there are two or more solutions to a problem, and you must explain why and under 

what conditions the number of solutions changes.  This is called the discussion. 
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Problem 1.2  A fink truss consists of an equilateral triangle built on the middle third of the ceiling 

joists.  The rafters rest on the walls and meet at the triangle apex.  Beams from the feet of the 

triangle meet the rafters at right angles.  Draw it.  The boards need not have width. 

 

Here, the roof’s slope is 
𝜑

2
; steep, but very strong.  The king post and queen post trusses are more 

versatile, handling arbitrary and flatter slopes.  Look them up if you are interested. 

 

Problem 1.3  Suppose your girlfriend asks you for a wall mirror.  She is six feet tall in heels and her 

eyes are six inches below the top of her hair.  What is the smallest mirror that allows her to see 

her entire self and how high should it be above the floor?  Does it matter how far away she stands? 

 
Construct two isosceles triangles with bases from her eyes to her feet and to the top of her hair. 

 

A carpenter constructs an A-frame with 𝐸 and 𝐹 the feet, 𝐺 the apex, 𝐸𝐺 = 𝐹𝐺 and a crosspiece 

between 𝑀𝐺𝐸  and 𝑀𝐹𝐺 , just like a commercial steel A-frame.  But, when it is overloaded, the legs 

bow outward and start to pull free of the crosspiece.  Reasoning that wood can take a 

compressive load but cannot pull things together while steel is just the opposite, he determines 

to connect 𝐸𝑀𝐹𝐺  and 𝐹𝑀𝐺𝐸  with wire rope to pull the bowed legs in tight with the crosspiece. 

 

Problem 1.4  Suppose that you are the carpenter who built the A-frame described above. 

 

1. There are two different ways to prove that 𝐸𝑀𝐹𝐺 = 𝐹𝑀𝐺𝐸 .  Prove this both ways. 
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2. Another carpenter criticizes your design, stating that, if the wire ropes are both attached 

to an anchor hammered into the ground at 𝑀𝐸𝐹, he can prove that the two wires are equal 

and, thus, that this is the best design.  How do you respond? 

 

3. You wish to build the strongest possible A-frame with the given boards and believe that 

this is accomplished by having the wire rope pull on the legs perpendicular to the bow in 

the boards.  Prove that this is true if and only if 𝐸𝐹𝐺 is equilateral. 

 

4. Construct an A-frame with wire ropes from each foot to the trisection points of the 

opposite legs and with the bottom wire ropes meeting the opposite legs at right angles.19  

Constructing this is too difficult; just draw it with a base of 13 cm and legs of 15.9 cm. 

 

White Belt Exit Exam 

 

Saccheri Theorem I 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral, so ∠𝐸 = ∠𝐹 = 𝜌 and 𝐻𝐸 = 𝐹𝐺, then prove that 

1.  𝐸𝐺 = 𝐹𝐻 

2. ∠𝐺 = ∠𝐻  

3.  𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐸𝐹⃡⃗⃗⃗  ⃗  and  𝑀𝐸𝐹𝑀𝐺𝐻

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐺𝐻⃡⃗⃗⃗  ⃗ 

4. The mediators of the base and the summit coincide. 

 

Rhombus Theorem 

Given a rhombus 𝐸𝐹𝐺𝐻, connect 𝐹𝐻.  Without adding any auxiliary lines, prove that 

1. ∠𝐸𝐹𝐺 = ∠𝐺𝐻𝐸  

2. ∠𝐹𝐺𝐻 = ∠𝐻𝐸𝐹  

3. 𝐹𝐻 bisects both ∠𝐸𝐹𝐺 and ∠𝐺𝐻𝐸 

4. Draw the other diagonal, 𝐸𝐺, and prove that they are perpendicular bisectors. 

 

Isosceles Triangle Theorem Converse (White Belt) 

If two angles of a triangle are equal, then their opposite sides are equal. 

 

Perform these constructions: 

1. Construct a right triangle given one leg and the median from (a) that leg (b) the other leg. 

2. Construct an isosceles right triangle so its apex altitude lies on a given line. 

3. Construct an equilateral triangle so its apex altitude lies on a given line. 

 
19 Connect the upper trisection points with a board so you can tighten the wire ropes against it.  If you agree to call 

this the “Aguilar A-Frame,” I will make it easy for you by just telling you that the base is 81.65% of the legs’ length.  

Note that, because the solution is a ratio, this must be a blue-belt problem.  Geometry with multiplication! 
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Practice Problems:  Construct each triangle using only the information given about it. 

 

1.5 Construct a right triangle given the lengths of the legs. 

 

1.6 Construct a triangle given the lengths of the three sides. 

 

1.7 Construct a triangle given the apex angle and the lengths of the legs. 

 

1.8 Construct a triangle given the lengths of the base, the median to the base and one leg. 

 

1.9 Given 𝐸𝐹𝐺𝐻, if 𝐸𝐹 = 𝐺𝐻 and 𝐹𝐺 = 𝐻𝐸, prove that 𝐸𝐹𝐺 ≅ 𝐺𝐻𝐸 and 𝐹𝐺𝐻 ≅ 𝐻𝐸𝐹.   

 

1.10 Given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, 𝐺𝐸⃗⃗⃗⃗  ⃗ is extended to 𝐸′′ and 𝐺𝐹⃗⃗⃗⃗  ⃗ to 𝐹′′.  Prove ∠𝐹𝐸𝐸′′ = ∠𝐸𝐹𝐹′′. 

 

1.11 Given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, construct an isosceles triangle, 𝐸𝐹𝐽, with the same base but 

not necessarily congruent to 𝐸𝐹𝐺.  Prove that ∠𝐺𝐸𝐽 = ∠𝐺𝐹𝐽. 

 

1.12 Given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, find points 𝐽 and 𝐾 on 𝐸𝐹 such that 𝐸𝐽 = 𝐹𝐾.  Prove that 𝐽 

and 𝐾 are also equidistant from the vertex; that is, 𝐺𝐽 = 𝐺𝐾. 

 

1.13 The same as P. 1.12, but with 𝐽 on 𝐹𝐸⃗⃗⃗⃗  ⃗ past 𝐸, and 𝐾 on 𝐸𝐹⃗⃗⃗⃗  ⃗ past 𝐹.  
 

1.14 Given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, prove that, 

 1.  𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹 is isosceles. 

 2. ∠𝐺𝑀𝐺𝐸𝑀𝐸𝐹 = ∠𝐺𝑀𝐹𝐺𝑀𝐸𝐹 

 3. ∠𝐸𝑀𝐸𝐹𝑀𝐺𝐸 = ∠𝐹𝑀𝐸𝐹𝑀𝐹𝐺  

 

1.15 Given two lines that intersect to make one right angle, prove that the others are also right. 

 

1.16 Ancient hieroglyphics describe a 350′ tall pyramid that had all the same dimensions as the 

Luxor hotel in Las Vegas, but it was reduced to rubble thousands of years ago.  Could a 

Common Core student prove it congruent to the Luxor hotel by using superposition? 

 

1.17 Your school has a foreign exchange student – from Mars!  He accepts all our postulates 

except the parallel postulate.  The symbol of his people is a 13 ∶ 14 ∶ 15 triangle chiseled 

into a stone temple on Olympus Mons.  He insists that it is not congruent to any Earthling 

triangle.  By comparing rulers, you find that his unit of length is 3.219 cm.  Can you draw 

a triangle and prove that it is congruent to his symbol?  Can a Common Core student? 
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Pisa Tree Problem 

You bought a laser rangefinder!  Yay!  But now, your geometry seon-saeng [teacher] has 

challenged you to measure the vertical height of the Pisa Tree in front of your school, so called 

because it leans like the Tower of Pisa.  Because all the branches obscure your view, you cannot 

aim your laser straight up, so you take two measurements from either side:  From an arbitrary 

point, you measure the distance to the treetop as 17 meters and, from 32 meters away and 

directly across from a point directly below the treetop (this is called its projection), you measure 

the distance to the treetop as 22 meters.  What is the vertical height of the tree in meters?  

Beware!  We have no assurance that our world is Euclidean and not hyperbolic, at any scale. 
 

In the following constructions, you are not allowed to use a protractor.  They are inaccurate when 

the angle is extended to the size of a house.  Also, the students were not asked to buy one and 

so most of them did not.  It is unfair for some students to use equipment the others do not have. 

 

1.18 Construct an equilateral triangle, 𝐸𝐹𝐺.  In the Notation section, we define 𝜑 to be the 

interior angle of an equilateral triangle.  Is this the same thing as defining it to be a third 

of a straight angle?  Is 𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸  equilateral in hyperbolic geometry, or only Euclidean?  

Can you prove that the interior angles of 𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸 equal the interior angles of 𝐸𝐹𝐺? 
 

1.19 Given the hypotenuse, construct a half equilateral triangle.  Is this a 30–60–90 triangle?  

 

1.20 Inscribe a square in a given square.  Now inscribe a different square in the given square. 
 

1.21 Draw a king post roof truss with a right apex.  The boards need not have width. 
 

1.22 You wish to have black metal water pipes laid vertically on your roof, so the sun may heat 

water that is pumped through them.  The plumbing supply store sells 45° elbows and you 

wish to use them so your pipes bend over the apex of your roof and lay flat on both sides.  

Draw a king post roof truss with this apex angle.  The boards need not have width.   
 

1.23 The same as problem 1.22, but with 22.5° elbows.  This is quite a flat roof, so it is like the 

king post roof truss, but with the addition of vertical boards from the rafter midpoints 

dropped onto the ceiling joists because the angled boards are at such a low angle that 

they do not fully support the midpoints of the rafters.  The boards need not have width. 
 

1.24 Draw a queen post roof truss with a right apex.  In this design, lay off equal lengths from 

the apex onto the rafters, connect these points and drop perpendiculars onto the ceiling 

joist.  It is not particularly strong for holding up a snow load, but it makes for a neat box 

shape in the attic that can be paneled as a room.  The boards need not have width. 
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Comparison with Common Core Geometry 
 

Common Core teachers present the isosceles triangle theorem after showing students the button 

on Geometer’s Sketchpad for bisecting a segment.  They never demonstrate bisecting a segment 

with compass and straightedge; they rely heavily on that magical midpoint button. 

 

Common Core Proof of the Isosceles Triangle Theorem (Glencoe Geometry, p. 286) 

 ∆𝐿𝑀𝑃 with 𝐿𝑀 ≅ 𝐿𝑃    Given 

 Let 𝑁 be the midpoint of 𝑀𝑃.  Every segment has exactly one midpoint. 

 Draw an auxiliary segment 𝐿𝑁.  Two points determine a line. 

 𝑀𝑁 ≅ 𝑃𝑁     Midpoint Theorem 

 𝐿𝑁 ≅ 𝐿𝑁     Reflexive Property of Congruence 

 𝐿𝑀 ≅ 𝐿𝑃     Given 
 ∆𝐿𝑀𝑁 ≅ ∆𝐿𝑃𝑁    SSS 

 ∠𝑀 ≅ ∠𝑃     CPCTC                  
 

This is more complicated than the Geometry–Do proof: given 𝐸𝐹𝐺 with 𝐺𝐸 = 𝐺𝐹, 𝐹𝐺𝐸 ≅ 𝐸𝐺𝐹 

by SAS, so ∠𝐸𝐹𝐺 = ∠𝐹𝐸𝐺.  It requires an auxiliary line (bisecting a segment is 4 more steps, so 

12 total), but it is easier because students need not understand that the same three points can 

define different triangles depending on how they are ordered.  This is important!20 21 

 

The Common Core proof requires SSS and thus cannot be used in Geometry–Do because the 

proof of SSS requires the isosceles triangle theorem.  David Coleman dodges the charge of circular 

reasoning by the simple expedient of not proving SSS.  For him, SAS and SSS are both postulates 

or, if called theorems, they are “proven” with tracing paper.  Cheater!  Cheater!  Booger eater! 
 

Common Core states the triangle similarity theorem as an axiom – we prove it in the blue belt 

chapter – calling it either the similarity axiom or the dilation axiom, and then state without proof 

the AA, SAS and SSS similarity theorems.  SAS, SSS, ASA, AAS and HL are then just special cases of 

the similarity/dilation axiom with the scale (dilation factor) being the multiplicative identity – 

which requires assuming the field axioms for real numbers – and the mid-segment theorem is a 

special case with the scale (dilation factor) being one half.  Common Core students who claim to 

know of easier proofs to the isosceles triangle theorem and its converse can only say this because 

they did not have to prove SAS, SSS, ASA, AAS and HL.  Common Core is just boring memorization! 

 
20 “Although a good proof of the theorem was known in antiquity, it has become customary in later centuries to 

prove it in needlessly complicated ways; and probably the worst of these rambling detours is the proof that starts 

by telling you to bisect [the apex angle] (Moise, 1990, p. 83).”  C. 1.2 cites C. 1.1, so Common Core is this proof. 
21 Good job Grasshopper!  You are still with us!  Many got to page one and wailed, “He just renamed 𝐹𝐺𝐸 as 𝐸𝐺𝐹.  

It’s the same triangle!”  Then they dropped out.  When you are an engineer, one of them will vacuum your office.  
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The orange-belt chapter concludes with a section on how to pass a standardized exam of the type 

that is designed for Common Core students.  Most of the people now reading these lines will not 

survive orange belt, so I will here tell you how a Geometry–Do white belt can pass Common Core 

exams.  First, recognize that it is really an algebra exam in disguise, so review Algebra I.  But the 

big secret is to bring a center-finding metric ruler and a compass to the exam so you can construct 

the figures – the ones provided are purposefully wrong – and measure the unknown quantity. 
 

Varsity Tutors Advanced Geometry Exam22, problem #14, is solved below, first using geometry, 

and then using the algebra that masquerades as geometry in Common Core.  Which is easier? 
 

Problem 1.25  If a triangle has base 14 cm and legs 13 cm and 15 cm, what is its apex height? 
 

 Geometry Solution 

 Use SSS to construct the triangle and then measure its height.  It is 12 cm!           ∎ 
 

 Algebra Solution 

Let 𝑥 and 𝑦 be projections of the 13 cm and 15 cm legs onto the base, respectively.  Then 

𝑥 + 𝑦 = 14 cm and, by the Pythagorean theorem, 132 = 𝑥2 + ℎ2 and 152 = 𝑦2 + ℎ2.  

Solve both equations for ℎ2, set them equal and substitute 𝑦 = 14 − 𝑥 into the latter. 

169 − 𝑥2 = 225 − (14 − 𝑥)2  

169 − 𝑥2 = 225 − 196 + 28𝑥 − 𝑥2  

               0 = −140 + 28𝑥  

               𝑥 =
140

28
= 5 cm 

Substitute 𝑥 = 5 into the first Pythagorean equation, 132 = 𝑥2 + ℎ2, then solve it for ℎ. 

ℎ = √132 − 52 = √169 − 25 = √144 = 12 cm              ∎ 
 

Varsity Tutors considers this advanced because almost no American geometry student can 

answer it correctly or, if they do, it takes them thirty minutes to work through all the algebra.  

But, if you construct the geometric figure with a ruler and compass (Duh!  It is a geometry exam!), 

you can solve it in one minute using the most basic white-belt theorem you know.   
 

Teachers!  If you have read this far hoping for advice on how to get your #%$^@ students through 

the Common Core standardized exam, here it is:  Ask for the perimeter of a triangle23 with vertices 

(−2,3), (−4,−4), (−7,−1) and make it a race.  The easy way is to lay the three sides end-to-end 

on a line.  Taking the sum of three applications of the algebraic distance formula is the hard way. 

  √(−2 − (−7))
2
+ (3 − (−1))

2
+ √(−2 − (−4))

2
+ (3 − (−4))

2
+ √(−7 − (−4))

2
+ (−1 − (−4))

2
≈ 17.9 

 
22 Varsity Tutors practice exam: www.varsitytutors.com/advanced_geometry_diagnostic_1-problem-36916  
23 A printout of the day-one exam: www.axiomaticeconomics.com/day_one_exam.pdf  

http://www.varsitytutors.com/advanced_geometry_diagnostic_1-problem-36916
http://www.axiomaticeconomics.com/day_one_exam.pdf
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First-Day Exam in Geometry 

 

The first task of the high-school geometry teacher is to disabuse students of the notion that 

geometry is just a boring review of Algebra I.  (Nothing new here.  Blah!!!)  You own a triangular 

pasture with vertices (−2, 3), (−4,−4), (−7,−1), as measured in kilometers.  To the nearest 

100 meters, how long is the fence around it?  Make it a race with the first solver getting an A.   
 

 
 

The easy way is to lay the three sides end-to-end on a line.  Put the compass pin at (−7,−1) and 

rotate it to lay off the lower left side on the horizontal.  Without moving the pin, measure the 

upper left side and lay it off on the horizontal past the one you just did.  Finally, measure the 

upper right side and lay it off on the horizontal past the one you just did.  It is segment addition! 
 

 
 

Taking the sum of three applications of the algebraic distance formula is the hard way to do this. 

 

√(−2 − (−7))
2
+ (3 − (−1))

2
+ √(−2 − (−4))

2
+ (3 − (−4))

2
+ √(−7 − (−4))

2
+ (−1 − (−4))

2
  

= √(5)2 + (4)2 + √(2)2 + (7)2 + √(−3)2 + (3)2  

= √25 + 16 + √4 + 49 + √9 + 9  =  √41 + √53 + √18  ≈  6.40 + 7.28 + 4.24 ≈  17.9 km 

 

The following are very easy geometry problems that will put Common Core graduates to shame:  

  

Yellow Belt: Prove that the sum of the legs of a right triangle is less than twice the hypotenuse. 

 

Orange Belt: Given a triangle with vertices (0,0), (
25

3
, 0) and (3,4), drop an altitude from the 

right vertex.  What is the sum of the inradii of the three triangles thus formed? 
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White Belt Geometry for Construction Workers 

 

Problem 1.26  Rip a board into equal-width slats.  (Three in this example.) 

 

 Solution 

Because no carpenter has ever made it to orange belt, I will here present the two 

transversals theorem unproven:  Parallel lines that equally cut one transversal equally cut 

any transversal.  Traverse the edges twice with a ruler held so it is easy to divide; e.g., 

trisect a 5.5" wide board by angling the ruler so 0" and 6" lie on the edges.  Set the saw 

guide so two thirds of the kerf is towards the edge and one third is towards the center. ∎ 

 

George Birkhoff’s axioms are called metric because they assume the field axioms for real 

numbers; those of David Hilbert and this author are called intrinsic because they do not.  Birkhoff 

is assuming tape measures longer than one’s workspace that do not droop and protractors that 

measure angles to such precision that they can be projected across one’s workspace and the 

opposite side of the triangle is as accurate as can be measured with one’s tape.  Carpenters have 

no means of measuring angles with such precision and their tapes are only 25′ long.  The Egyptian 

triangle can verify that an angle is right, but it does not create a right angle.  Finding the corners 

of a rectangle can be frustrating for carpenters who know only this.  It works only if the sides are 

rigid and reach across the entire workspace, so there is no extrapolation error.  The only time I 

recommend that construction workers use the Egyptian triangle is if they build an 8′ wall, nail it 

to the floor, measure 6′ from it, and then have two men stretch a tape diagonally; when their 

tape measures 10′, nail the wall to the ceiling joists.  It is vertical! 

 

Squaring a 16′ cabin is easy (the diagonal is 22′ 7.5′′), but a rectangle with sides longer than a 

tape measure requires Thales’ diameter theorem.  No construction worker has ever made it that 

far, so I will break my vow against using unproven theorems and just present a cook-book recipe.  

A string can be extended six times longer than a tape measure and, because it is light weight, it 

does not droop when stretched across these long distances.  Because a rectangle may be several 

times longer than your tape measure, you will need two strings in addition to your tape.  Use a 

spring scale to put uniform tension on the string, about one Newton (100 grams) per meter. 

 

Squaring a foundation must be achieved with no auxiliary lines outside it.  This is because it may 

be in a hole if it is for a basement, or it may be surrounded by trees or cliffs if a plot of land was 

cleared and graded for a house being built in a forest or cut into a hillside.  To make the house 

face a road, give the front the same compass heading as the center line of the road.  To make the 

house face south, stand at the SW corner and aim 90° minus magnetic declination off magnetic 

north; e.g., in Los Angeles, aim for 78° east.  Note that this is a Euclidean construction. 
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Problem 1.27  Square a house’s foundation before pouring the concrete floor. 

 

 Solution 

Mark the front segment, 𝐸𝐹, with two stakes measured with a tape and oriented with a 

compass to be parallel to a road or to the east-west line; do not neglect declination.  Loop 

the end of string 𝑆1 over the 𝐸-stake, stretch it across the front and tie it to the 𝐹-stake. 

Drive a stake, 𝑂, into the ground near the center, but slightly towards the front and 

slightly towards the 𝐹-stake.  Loop the end of string 𝑆2 over the 𝑂-stake, stretch it to the 

𝐹-stake, pinch it and then swing this radius around the 𝑂-stake until the arc intersects 

𝐸𝐹.  Drive in a stake at this intersection, 𝐸1.  Do not lose your pinched-off length!  Lift the 

𝑆1 string off the 𝐸-stake and loop it over the 𝐸1-stake.  Stretch it over and past the center 

stake, 𝑂; simultaneously, swing string 𝑆2 around the 𝑂-stake to point in the opposite 

direction, away from 𝐸1.  Stretch both strings so they coincide (lie on top of each other) 

and drive a stake, 𝐺1, in at the end of the length pinched-off on 𝑆2.  ∠𝐸1𝐹𝐺1 is right by 

Thales’ diameter theorem.  Loop the end of string 𝑆1 over the 𝐹-stake, stretch it into ray 

𝐹𝐺1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and drive a stake 𝐺 on this ray past 𝐺1 to where a tape measures the length of the 

side of the house.  Pinch off this length, 𝐹𝐺, lift the 𝑆1 string off the 𝐹-stake and loop it 

over the 𝐸-stake.  Lift the 𝑆2 string off the 𝑂-stake, loop it over the 𝐹-stake, pinch off the 

length 𝐸𝐹, then lift it off the 𝐹-stake and loop it over the 𝐺-stake.  Stretch both strings 

out and where their pinched off lengths intersect, drive a stake, 𝐻.  𝐸𝐹𝐺𝐻 is a rectangle.∎ 

 

This leads directly to a rectangle while the Pythagorean theorem converse (if 𝑢2 + 𝑣2 = 𝑤2, then 

the triangle with these sides is right) is hit and miss.24  P. 1.26 and P. 1.27 are orange- and green-

belt, respectively, but we must help the carpenters, and they almost never get that far. 

  

Many come to Geometry–Do with prejudice against deductive logic.  Now is the time to rid 

ourselves of these losers!  They are baggage we will not need to bring to yellow-belt geometry.  

Put construction workers and others who come to geometry with an open mind on Team Euclid.  

Put those who have closed their minds to deductive logic and believe only in coordinate geometry 

on Team Prástaro.  In two classrooms, push the desks to the walls, staple butcher paper to the 

ceiling and draw a chalk line on it.  Give each team a yardstick, two spools of chalked string and 

two ladders.  A team that can draw a chalk line on the floor directly underneath the one on the 

ceiling gets an A, else an F.  They cannot use a plumb bob, but you will test their answers with it.  

If the losers on Team Prástaro demand a tape measure instead of a yardstick, explain that, unless 

you are building an outdoor toilet, rulers are always less than the length of one’s workspace.   

 
24 To “X it” is to measure the four sides to construct a parallelogram and then adjust it until the diagonals are equal.  

Like the Pythagorean theorem converse, it can verify a right angle, but its failure does not tell you how to adjust. 
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The Egyptian or 𝟑 ∶ 𝟒 ∶ 𝟓 Right Triangle 
 

In the preceding section I wrote, “Finding the corners of a rectangle can be frustrating for 

carpenters who know only this.”  So true!  I remember when I was eight that my father had my 

mother, my brother and I at stakes marking three corners of the foundation of the basement for 

our house.  He kept measuring sides one at a time with his only tape measure and ordering a 

stake moved a few inches this way or that.  The Pythagorean equation never came out exact and 

it offered no hints on how to move the stakes to make it exact.  Bad day!   

 

In Volume Two: Geometry with Multiplication, the Pythagorean equation will be expressed as 

𝑢2 + 𝑣2 = 𝑤2 with 𝑢, 𝑣, 𝑤 being real numbers.  However, real numbers were only introduced in 

the 1800s and the modern theory of rational numbers did not precede them by much.  Yet 

Egyptologists assure us that triangles with sides of 3, 4 and 5 units appear in four-thousand-year-

old hieroglyphics.  We will do the ancient proof and, in Volume Two, we will do it rigorously. 
 

Egyptian Triangle Theorem 

A triangle with sides three, four and five times a unit length is right. 
 

 Proof 

Let 𝐹 be on a line and 𝐺 and 𝐺′′ be on the line four units to each side of 𝐹.  Let 𝐸 be an 

intersection of circles of five-unit radii centered at 𝐺 and 𝐺′′.  Observe that |𝐸𝐹| = 3.  By 

SSS, 𝐸𝐹𝐺 ≅ 𝐸𝐹𝐺′′, which holds the equality ∠𝐸𝐹𝐺 = ∠𝐸𝐹𝐺′′.  Thus, ∠𝐸𝐹𝐺 = 𝜌.          ∎ 
 

An analogous proof shows that a triangle of sides 5, 12 and 13 is right; this was unknown to the 

Egyptians.  Plumbers can use this triangle when installing 22.5° elbows.  Integer solutions to the 

Pythagorean equation are known as Pythagorean triples.  Students should be aware that Euclid 

devised a formula that generates Pythagorean triples: 𝑢 = 𝑚2 − 𝑛2, 𝑣 = 2𝑚𝑛, 𝑤 = 𝑚2 + 𝑛2 

for positive integers 𝑚 > 𝑛.  Verification is basic algebra; that 𝑘𝑢, 𝑘𝑣, 𝑘𝑤 for 𝑘 = 1, 2, … gets 

them all is advanced.  Try it with 𝑛 = 1 and 𝑚 even, or 𝑛 = 2 and 𝑚 odd.   
 

3 ∶ 4 ∶ 5 right triangles are ubiquitous in Common Core because the programmers who compose 

their exams want to keep things neat by using only integers.  Varsity Tutors Advanced Geometry 

Exam, problem #22 gives a rhombus of sides 5 units inscribed in a rectangle with height 4 units 

and asks the area.  Problem 1.25 is the 3 ∶ 4 ∶ 5 right triangle scaled up threefold and joined to 

the 5 ∶ 12 ∶ 13 right triangle to be a 13 ∶ 14 ∶ 15 triangle.  A 13 ∶ 20 ∶ 21 triangle has a 12-unit 

altitude for the same reason.  A 15 ∶ 20 ∶ 25 triangle is right – it is the 3 ∶ 4 ∶ 5 right triangle 

scaled up fivefold; also, it is the threefold and fourfold 3 ∶ 4 ∶ 5 right triangles joined along a 12-

unit altitude; thus, it is the standard example of the geometric mean.  Draw these triangles on 

your palm before exams and you have geometry mastered as Common Core defines the subject! 



Geometry without Multiplication  Victor Aguilar 

30 
 

Basic Principles for Design of Wood and Steel Structures 

 

As a geometer, you may be asked to design structures like gates, towers, gantries, or bridges.   
 

 

Wrong! 

Everybody knows that a diagonal is required to 

make a rigid triangle, but a drive through the 

country indicates that few know which way it 

goes.  Wood beams can withstand a tremendous 

compressive load – 1700 psi for Douglas Fir – but 

cannot lift a load because the screws pull out.  

Steel is just the opposite; 
1

8
” wire rope can lift 340 

pounds, but stainless-steel tubes kink and fold 

under any large compressive load.25 

 

Wooden diagonals go from the foot of the gate post upwards and wire rope diagonals go from 

the top of the gate post downwards.  For a wooden tower to be rigid, it must have crossed 

wooden diagonals so there are some that are angled upwards towards any direction of wind. 

 

A gantry is two A-frames with a beam between them and a hoist that slides along the beam.  

Mimicking the all-steel commercial ones with wood does not work because, when overloaded, 

the legs spread apart and bow outwards.  The crossbar is pulling them together, which is not 

what wood does well.  Make the base of the A-frame 81.65% of the leg length and attach wire 

ropes from the feet to the trisection points; the lower one will meet the leg at a right angle.  

Install a wooden crossbeam between the upper trisection points to tighten the wire rope against. 

 

A drive through the country indicates that almost all wooden gates have collapsed.  This is 

because they have a wooden diagonal angled downwards and it reaches across the entire 12′ or 

14′ gate, making too horizontal an angle.  Also, failed gates were over-engineered on the latch 

side, adding unnecessary weight far from the hinges.  1′′ planks are all it takes to stop cattle. 

 

The gate shown below is 14′ wide for farm equipment and is designed to stop cattle, not people.  

The wire rope loops through the eyes and around both sides of the gate.  Solid lines are 2′′-thick 

boards or 4′′-thick posts, dashed lines are 1′′-thick planks.  Note that the boards and posts are 

all assembled edgewise, so their widest sides are coplanar. 

 

The 𝐶 boards are inset into 𝐵 and glued with wooden dowels to add strength.  There are five 

hinges, and the gate post is rectangular; two hinges attached to a round post are weak.  In the 

 
25 A single apostrophe means feet; a double apostrophe means inches.   



Victor Aguilar  Geometry without Multiplication 

31 
 

winter, the ground freezes to the frost line and, in the spring, the top few inches thaw but do not 

drain through the frozen ground below, which is why it is so muddy.  Water that soaks into the 

gate post can only drain out the bottom if it extends below the frost line.  Also, there should be 

gravel, not concrete, below it to aid drainage.  Gates often collapse because the post rots. 

 

 
 

For automotive bridges too high to be supported with pillars, put a 4′′ × 6′′ × 12′ post vertical 

and two 4′′ × 4′′ × 4′ posts at 45° under the center of each of the two stringers and lift them 

with 0.5′′ steel cables attached to eye bolts in the concrete footers.  The two vertical posts should 

have crossed braces – it is a mistake to look only at the side view and neglect twisting forces.  

Yellow belts will learn to build stone bridges cut from river rocks that can support truck traffic! 

 

 
 

Detailed plans for wooden foot bridges of various sizes are available.  Sorry Grasshopper, but, 

while the plans are free, the hula girl coming out to dance on your completed bridge is extra. 
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Defense Positioning and Geometry 

 

Steel cannons with rifled bores brought an end to state-sponsored castle construction, but some 

of what was learned during the time of smoothbore bronze cannons is still relevant today for 

people engaged in low-intensity conflicts.26  By low-intensity I mean, by mutual consent, both the 

home owners and the bandits restrict themselves to small arms, usually defined as 7.62 mm rifles 

and hand grenades, because they are under a real army, but it will ignore small-arms fire.  

 

The first principle of building fortifications is to build them for yourself, not for the enemy.  If you 

dig trenches or set out some Jersey barriers, they may stop the enemy’s wheeled vehicles, but 

they will also provide cover for enemy infantry.  Thus, you should have a vertical retaining wall 

facing rearward and an earthen glacis slope facing forward.  Flatten the top of a gently rounded 

hill, digging deep enough that the cut-down area requires a three- to four-foot-high retaining 

wall all around it.  The windows are high enough that the defenders can graze the slope with rifle 

fire, but the attackers cannot fire at the base of the house wall until they crest the retaining wall.   

 
The second principle is to not have blind spots.  The 

defenders should have bastions protruding from the 

corners of the building so attackers cannot press 

themselves up against the wall and be hidden from the 

windows.  But, if the bastions are round, like the turrets in 

a medieval castle, there are blind spots directly in front of 

them.  They should be tapered, like the points on a star. 

 

 

 

The third principle is that stone shatters when hit by bullets, but concrete and brick do not.  Also, 

landscape with crushed stone to make walking noisy.  Get rid of boulders that can be thrown.   

 

There is little application for geometry in the design of fortifications, but white-belt geometers 

should be familiar with the basics.  Green belts will learn of machine gun emplacement, which 

really does require geometry.  It would be embarrassing for the Geometry–Do practitioner to 

boast of these advanced techniques while showing ignorance of basics like glacis slopes. 

 
26 “Your home is like a fortress; no one comes in but the florist; the gardener and the maid.” – Pat Benatar 
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Next we turn to the positioning of troops along a frontier that is plagued with cross-border raids. 

 

Having heartily mocked the NES for getting the equation for a parabola wrong27, let us be more 

positive and look to the work of someone who knows what the terms directrix, focus and latus 

rectum mean.  Raj Gupta (1993) wrote a book about the most basic function of an army: defense 

against cross-border incursions.  It often happens that the politicians and high-ranking officers 

have the wit to understand that an all-out war would be disasterous for both countries.  But small 

units will cross the border to pillage; they have the tacit approval of their officers, but they also 

know that, if they get in trouble, their officers will not send anyone to rescue them. 

 

It is reasonable to assume that both the bandits and the defenders move with equal speed over 

the same terrain.  Thus, the set of points equally distant from the defenders’ base and from the 

border are where the enemy can be met on the run; points inside this graph are where the 

defenders can reach first, giving them a few minutes to lay machine guns and find depressions in 

the dirt for riflemen to lie in; points outside this graph are where the enemy can get past the base 

and must be intercepted by soldiers from another base.  Here we are using the perpendicular 

length theorem, which states that the perpendicular is unique and is the shortest segment from 

a point to a line.  This is proven by yellow belts; so, if you are white belt, please read ahead now. 

 

For simplicity, we will assume that the border is locally straight.  In Cartesian coordinates, we will 

make it the 𝑥-axis and label the base’s coordinates (0, 2𝑤) with 0 < 𝑤.28  Consider the parabola, 

𝑦 − 𝑘 =
1

4𝑤
(𝑥 − ℎ)2.  The point midway between the base and the border is on the desired graph 

and it is 𝑤 distant from each of them.  Make this point the vertex of the parabola so ℎ = 0 and 

𝑘 = 𝑤.  The parabola is 𝑦 − 𝑤 =
𝑥2

4𝑤
  or  𝑦 =

𝑥2+4𝑤2

4𝑤
.  The vertex is equally distant from the base 

and the border.  If we can prove this for every point on the parabola, then it defines the graph 

described in the previous paragraph.  Thus, we must prove that the distance from (𝑥, 𝑦) to 

(0, 2𝑤) is 𝑦 =
𝑥2+4𝑤2

4𝑤
, the distance from (𝑥, 𝑦) to the 𝑥-axis.  By the distance formula: 

 

√(𝑥 − 0)2 + (𝑦 − 2𝑤)2  =  √𝑥2 + (
𝑥2

4𝑤
− 𝑤)

2

 =  √
𝑢2

16𝑤2
+

𝑢

2
+ 𝑤2   with  𝑢 = 𝑥2 

 

        =  
1

4𝑤
√𝑢2 + 8𝑤2𝑢 + 16𝑤4 = 

1

4𝑤
√(𝑢 + 4𝑤2)2 = 

𝑥2+4𝑤2

4𝑤
= 𝑦 

 
27 See the preface, p. xv.  For a more thorough kicking of the National Council of Teachers of Mathematics, read my 

review:  www.researchgate.net/publication/335893456_Review_of_Essential_Understanding_of_Geometry 
28 Having the parabola upward and with ℎ = 0 is the simplest case.  𝑤 < 0 requires using absolute value; switching 

𝑥 and 𝑦 turns the parabola sideways.  The orange-belt appendix on linear algebra explains how to rotate and, in that 

case, you need to know that the distance from a point, (𝑥0, 𝑦0), to a line, 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, is 
|𝐴𝑥0+𝐵𝑦0+𝐶|

√𝐴2+𝐵2
.   

http://www.researchgate.net/publication/335893456_Review_of_Essential_Understanding_of_Geometry
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Proven!  When the bandits were teenagers, they were too busy thieving to have learned how to 

factor a quadratic.  They will surely regret sleeping through Algebra I when you get in front of 

them with five minutes to spare!  That is plenty of time to lay a squad automatic weapon and for 

your riflemen to find depressions in the dirt where they can settle into their shooting positions. 

 

The discussion above defines the parabola for a single army base located 2𝑤 klicks29 from the 

border.  But the more general question is, given the distance between army bases, how far should 

they be located from the border?  The distance between the army bases is fixed by the budget; 

for instance, unless the politicians free up some more money, you may only have enough troops 

to man bases every four klicks.  How far from the border should they be located to be sure that 

the bandits never get behind your line of bases?  The parabolas of adjacent bases must intersect 

at or in front of the line of bases.  So the question is, what must 𝑥 be so that 𝑦 = 2𝑤?  Since the 

parabolas of adjacent bases intersect halfway between them, the distance between bases is 2𝑥. 
 

2𝑤 =
𝑥2 + 4𝑤2

4𝑤
    ⇒     8𝑤2 = 𝑥2 + 4𝑤2     ⇒     4𝑤2 = 𝑥2     ⇒     2𝑤 = 𝑥 

 

Thus, the distance between bases is 4𝑤, the width of each parabola when the bases are 2𝑤 from 

the border.  In other words, the bases are twice as far from each other, 4𝑤, as they are from the 

border, 2𝑤.  In the example above, if budget constraints require bases every four klicks, then the 

line of bases must be two klicks from the border.  This is assuming that you know immediately 

when the border has been crossed – you are probably using electronic sensors – and your troops 

immediately move to intercept the bandits who are driving straight into your country.  Of course, 

if Murphy has his way, none of these things will ever quite happen, so you will probably want to 

position your bases a little farther back – surrender a little more of your territory – to avoid 

allowing the bandits to ever get behind your line.  Once into the interior, they are hard to catch. 

 

Parabolas have other applications, so we must use more abstract language.  The line that defines 

the border is called the directrix; the army base is at a point called the focus; and the segment 

parallel to the directrix that passes through the focus and has endpoints on the parabola is called 

the latus rectum.30  For the parabola 𝑦 − 𝑘 =
1

4𝑤
(𝑥 − ℎ)2, 𝑤 is the distance from the vertex to 

either the focus or the directrix, 2𝑤 is the distance from the focus to the directrix, and 4𝑤 is the 

width of the latus rectum.  For parabolas that were defined by the National Evaluation Series in 

which they got 
1

4𝑤
 upside down, the constant 𝑤 is meaningless, as is most of what they teach.31  

Screeching, “It’s just a constant!!!” is not a valid argument.  We need to end Common Core. 

 
29 Klicks is an abbreviation for kilometers; clicks refer to increments of angle adjustment on an artillery piece. 
30 No giggling allowed when you hear the word rectum!  It is Latin; it does not refer to any part of your anatomy. 
31 The NES and many textbooks use 𝑐, not 𝑤, but that is confusing because 𝑐 is the constant term in parabolas. 
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The preceeding two pages are algebra and, if taken as a review of a past Algebra I course, it can 

be taught at any time.  If the geometry teacher will be absent and must ask the algebra teacher 

to substitute, the algebra teacher can lecture from these two pages.  Next comes a Euclidean 

construction; purists will teach it in orange belt, though many will teach all four pages together. 

 

To make this really useful to a field officer, we must teach the compass-and-straightedge 

construction of a parabola.  An army captain does not have a computer in his tent with graphic-

design software that allows him to superimpose a parabola on a map image.  And he does not 

have a color printer to print out this new map.  All he actually has in his tent is a desk and a paper 

map.  The rule about the bases being twice as far from each other as they are from the border is 

something he can remember.  But to make this really useful, he must draw the parabolas on his 

map so his mortar gunners can treat the outside of the parabolas as a free-fire zone while his 

ground troops can be careful to stay inside their parabola.  Also, they may unroll concertina wire 

along the parabolas to slow the enemy, but leave gaps where – after the mortar gunners have 

ceased fire – the ground troops can exit to pursue enemy troops back to the border. 

 

This construction is Euclidean because it assumes that parallel lines are everywhere equidistant. 

 

1. With a colored pen, mark the location of the base and, if the border is not perfectly 

straight, draw a straight line that follows the border as closely as possible. 

 

2. Drop a perpendicular from the base to the border and locate its midpoint.  This is the 

parabola vertex; mark it another color.  Measure this length in centimeters and call it 𝑤. 

 

3. With a pencil, draw a line parallel to the border through the parabola vertex.  Then draw 

a series of lines parallel to this line each one centimeter apart and continue past the base. 

 

4. Set your compass to 𝑤 + 1 centimeters and, with pencil, draw arcs centered at the base 

that cut the first parallel line from the one that goes through the vertex.  Mark these 

intersections with a dot of the same colored ink that was used for the vertex. 

 

5. Repeat step #4 with a 𝑤 + 2 cm arc intersecting the second parallel, then a 𝑤 + 3 cm arc 

intersecting the third parallel, and so on for all the parallel lines. 

 

6. Connect the dots with the same color of ink.  You may want to free-hand this to make the 

parabola smoother than if it were composed of a series of straight segments. 

 

7. Repeat this construction for each of the several bases in your area of operation. 
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The “twice as far from each other as they are from the border” rule depends on there being 

multiple units, like a four-platoon company.  The captain decides where each platoon’s base is to 

be built while the lieutenant in command of an individual platoon controls his troop’s movements 

within their parabola and the shelling of targets outside their parabola.  For instance, if the 

captain has four platoons and is tasked with guarding a straight length-𝑀 segment of the front 

line where 𝑀 = 16 klicks, he will position bases 2 and 6 klicks inwards from the edges and 2 

klicks back from the border.  But what if he has only one unit to position in his area of operation? 

 

Raj Gupta writes, “For an arbitrary probability density function of attack, all defending units must 

base themselves 𝜇 along the length-𝑀 front and distance 𝜎 inward from the border (𝜎 − 𝜇 

Theorem) in order to meet and defeat the invading forces as close to the front as possible (p. 8).”  

Proof of the 𝜎 − 𝜇 Theorem is beyond the scope of this book; but suffice it to say, 𝜇 and 𝜎 are 

the mean and standard deviation of the probability density function (pdf), respectively.32  The 

pdf is an assignment of probabilities of the chance of attack at each point along the length-𝑀 

front.  The sum of the probabilities assigned to all the points on the front must add up to unity. 

 

How are these probabilities assigned?  This depends a lot on whether the enemy knows where 

your bases are.  For the first line of defense, the platoon-size bases only two klicks from the 

border and featuring tall watch towers, it is obvious that they know.  Thus, within each base’s 4-

klick wide subfront, there is zero probability of the enemy going hey diddle diddle, straight up 

the middle and a 50% probability of them attacking on either edge of the subfront.  The mean is 

in the middle of the subfront, and the standard deviation is half the width of the subfront. 

 

Thus, if each lieutenant were given the freedom of positioning his base anywhere behind his 

subfront regardless of what the other lieutenants are doing, logic would lead him and each of his 

fellow lieutenants to position their bases exactly as their captain would.  Now suppose that the 

captain has a fifth platoon held in reserve.  It does not have a watchtower and is positioned some 

distance from the front where it can move to reinforce any one of the four platoons.33  Because 

the enemy does not know where it is, its probability density function is 20% at 0, 4, 8, 12 and 16 

klicks from one edge of its 16-klick front.  Use your scientific calculator to find 𝜇 and 𝜎, but do 

not use sample standard deviation like you would if you were doing confidence intervals.  For 

this example, 𝜇 = 8 klicks, the midpoint, and 𝜎 ≈ 5.657 klicks back.  Try this with different 

numbers of platoons.  It is always optimal to have one reserve unit no matter how many bases 

there are; but the more bases, the closer the reserve can be to the front.  If the enemy does not 

fear a platoon, they may invade anywhere; in this case, 𝜎 = 𝑀/√12 ≈ 0.2887𝑀. 

 
32 𝜎 means a straight angle, but in statistics it is the symbol for standard deviation; on this page only, that is its use. 
33 Zulu chief Shaka had his reserves in a gully with their backs to the enemy and under orders that, if any turned to 

peer over the edge, they would be shot.  He did this to prevent them from attacking before they were ordered to. 
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Yellow Belt Instruction:  Congruence 

 

Angle–Side–Angle (ASA) Theorem        (Euclid, Book I, Prop. 26) 

Given two angles and the included side, a triangle is fully defined. 

 

 Proof 

Given 𝐸𝐹𝐺 and 𝐽𝐾𝐿 with ∠𝐺𝐸𝐹 = ∠𝐿𝐽𝐾, 𝐸𝐹 = 𝐽𝐾 and ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿; let us assume 

that 𝐺𝐸 and 𝐿𝐽 are not equal.  Suppose that 𝐺𝐸 > 𝐿𝐽; there is a point 𝑀 between 𝐺 and 

𝐸 such that 𝑀𝐸 = 𝐿𝐽.  𝐸𝐹𝑀 ≅ 𝐽𝐾𝐿 by SAS.  By congruence, ∠𝐸𝐹𝑀 = ∠𝐽𝐾𝐿.  But, by the 

interior angle axiom, ∠𝐸𝐹𝑀 < ∠𝐸𝐹𝐺 because 𝑀 is inside ∠𝐸𝐹𝐺, which is given to be 

equal to ∠𝐽𝐾𝐿; a contradiction.  Suppose that 𝐺𝐸 < 𝐿𝐽.  Proof that this is impossible is 

the same but has 𝑀 between 𝐿 and 𝐽.  By trichotomy, 𝐺𝐸 = 𝐿𝐽.  By SAS, 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿.   ∎ 

 

It is an easy corollary that isosceles triangles have two angle bisectors equal.  Prove it, please. 

 

Isosceles Triangle Theorem Converse    (Euclid, Book I, Prop. 6) 

If two angles of a triangle are equal, then their opposite sides are equal. 

 

 Proof 

 Given 𝐸𝐹𝐺 with ∠𝐸 = ∠𝐹, 𝐸𝐹𝐺 ≅ 𝐹𝐸𝐺 by ASA and thus 𝐺𝐸 = 𝐺𝐹.             ∎ 

 

Problem 2.1  American engineers use a hybrid of English and metric lengths; inches divided into 

ten parts.  Draw a segment 5.8′′, raise perpendiculars at each endpoint and bisect the right angles 

to form a triangle with the angle bisectors meeting at the apex.  How long are the legs in 10th of 

an inch?  Are you sure that they are equal?  Are they the same length in hyperbolic geometry? 

 

Vertical Angles Theorem      (Euclid, Book I, Prop. 15) 

Given 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺, 𝐽 on opposite sides of it, 𝐺, 𝐸, 𝐽 are collinear iff a pair of vertical angles is equal. 

 

 Proof 

Assume 𝐺, 𝐸, 𝐽 are collinear in this order and 𝐹, 𝐸, 𝐾 are collinear in this order.  Then, 

∠𝐺𝐸𝐹 and ∠𝐺𝐸𝐾 are supplementary.  ∠𝐺𝐸𝐽 is straight; thus, ∠𝐺𝐸𝐹 and ∠𝐽𝐸𝐹 are 

supplementary.  ∠𝐺𝐸𝐾 and ∠𝐽𝐸𝐹 are both supplementary to ∠𝐺𝐸𝐹 and thus equal. 

 

Assume 𝐹, 𝐸, 𝐾 are collinear in this order; also, ∠𝐺𝐸𝐾 = ∠𝐽𝐸𝐹.  𝐹, 𝐸, 𝐾 are collinear and 

thus ∠𝐺𝐸𝐾 and ∠𝐺𝐸𝐹 are supplementary.  By substitution, ∠𝐽𝐸𝐹 and ∠𝐺𝐸𝐹 are 

supplementary; hence, 𝐺, 𝐸, 𝐽 are collinear.               ∎ 
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Problem 2.2   

Given 𝐸𝐹𝐺𝐻, if the diagonals bisect each other, prove that 𝐸𝐹 = 𝐺𝐻 and 𝐹𝐺 = 𝐻𝐸.   
 

Exterior Angle Inequality Theorem     (Euclid, Book I, Prop. 16) 

An exterior angle of a triangle is greater than either remote interior angle. 
 

Given 𝐸𝐹𝐺, extend 𝐸𝐹⃗⃗⃗⃗  ⃗ past 𝐹 to 𝐽.  Prove that (1)  ∠𝐸𝐺𝐹 < ∠𝐽𝐹𝐺, and (2) ∠𝐺𝐸𝐹 < ∠𝐽𝐹𝐺. 
 

Proof  

1. Extend 𝐸𝑀𝐹𝐺
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ that much again to 𝐾, so 𝑀𝐹𝐺  is the midpoint of 𝐸𝐾.  Connect 𝐹 and 𝐾.  

By Pasch’s axiom applied to 𝐸𝐹𝐾 and 𝑀𝐹𝐺𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑀𝐹𝐺𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝐾⃡⃗⃗⃗  ⃗ is inside ∠𝐽𝐹𝑀𝐹𝐺 .  Hence, 

∠𝐾𝐹𝑀𝐹𝐺 < ∠𝐽𝐹𝑀𝐹𝐺  by the interior angle axiom.  By the vertical angles theorem and 

SAS, 𝐺𝑀𝐹𝐺𝐸 ≅ 𝐹𝑀𝐹𝐺𝐾, and thus ∠𝐸𝐺𝑀𝐹𝐺 = ∠𝐾𝐹𝑀𝐹𝐺 .  ∠𝐸𝐺𝑀𝐹𝐺 < ∠𝐽𝐹𝑀𝐹𝐺 by 

substitution.  Thus, ∠𝐸𝐺𝐹 < ∠𝐽𝐹𝐺.      • 
 

Exterior Angle Inequality Theorem Corollaries   (Euclid, Book I, Prop. 21) 

1. The base angles of an isosceles triangle are acute. 

2. A right or obtuse triangle has two acute angles. 

3. Given 𝐸𝐹𝐺 and 𝑃 inside it, ∠𝐸𝐺𝐹 < ∠𝐸𝑃𝐹. 
 

Greater Angle Theorem      (Euclid, Book I, Prop. 18) 

If two sides of a triangle are unequal, then their opposite angles are unequal, the shorter side 

opposite the smaller angle and the longer side opposite the larger angle. 
 

 Proof 

Given 𝐹𝐺 < 𝐸𝐹 in triangle 𝐸𝐹𝐺, find 𝐽 between 𝐸 and 𝐹 such that 𝐽𝐹 = 𝐹𝐺 and connect 

it to 𝐺.  By the exterior angle inequality theorem, ∠𝐹𝐸𝐺 < ∠𝐹𝐽𝐺.  By the isosceles triangle 

theorem, ∠𝐹𝐽𝐺 = ∠𝐹𝐺𝐽.  𝐽 is inside ∠𝐹𝐺𝐸, so ∠𝐹𝐺𝐽 < ∠𝐹𝐺𝐸 by the interior angle axiom.  

Thus, ∠𝐹𝐸𝐺 < ∠𝐹𝐽𝐺 = ∠𝐹𝐺𝐽 < ∠𝐹𝐺𝐸.  Simplifying, ∠𝐹𝐸𝐺 < ∠𝐹𝐺𝐸.           ∎ 

 

Greater Side Theorem      (Euclid, Book I, Prop. 19) 

If two angles of a triangle are unequal, then their opposite sides are unequal, the smaller angle 

opposite the shorter side and the larger angle opposite the longer side. 
 

The word angle or side in the name refers to the result, not the given information.   
 

Problem 2.3  Diameters are the greatest chords.  (They try not to let it go to their heads.)  Proof? 

 

The triangle inequality theorem can go here.  This is in an appendix, but we do have corollaries! 



Victor Aguilar  Geometry without Multiplication 

39 
 

Triangle Inequality Theorem Corollaries 

1. Any side of a triangle is greater than the difference of the other two sides. 

2. Given 𝐸𝐹𝐺 and 𝑃 inside it, 𝐸𝑃 + 𝑃𝐹 < 𝐸𝐺 + 𝐺𝐹. 

3. The sum of the medians is greater than the semiperimeter and less than the perimeter. 

 

Hinge Theorem       (Euclid, Book I, Prop. 24, 25) 

If two triangles have two corresponding sides equal, the included angle in one is smaller/larger 

than in the other if and only if the opposite side is shorter/longer in the former than in the latter. 

 

Orange belts study parallel lines, which are everywhere equidistant.  For this statement to mean 

something, we must define the distance from a point to a line.  There are many points on a line 

that define segments to a point not on the line.  Which segment?  The one of minimum length! 

 

Define the reflection of 𝐺 about 𝐸𝐹⃡⃗⃗⃗  ⃗ as 𝐺𝐸𝐹 such that 𝐺, 𝐺′, 𝐺𝐸𝐹 are collinear and 𝐺𝐺′ = 𝐺𝐸𝐹𝐺′.  

One can also reflect a line about a point; in problem 2.8 we reflect a highway about a farmhouse. 

 

Perpendicular Length Theorem 

The perpendicular is unique and is the shortest segment from a point to a line. 

 

 Part One 

 There is only one segment from a point to a line that is perpendicular to it. 

 

 Proof 

Let 𝐽 and 𝐺′ be the feet of distinct perpendiculars dropped on 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐺 with 𝐺′ between 

𝐽 and 𝐹.  By the right-angle postulate, ∠𝐺𝐽𝐹 = ∠𝐺𝐺′𝐹 = 𝜌.  This contradicts the exterior 

angle inequality theorem, so the assumption that 𝐽 and 𝐺′ are distinct is not true. • 

 

 Part Two 

 The perpendicular is the shortest segment from a point to a line. 

 

 Proof 

Let 𝐺′ be the foot of the perpendicular dropped on 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐺, and 𝐽 be another point on 

𝐸𝐹⃡⃗⃗⃗  ⃗.  𝐺𝐺𝐸𝐹 < 𝐺𝐽 + 𝐽𝐺𝐸𝐹  by the triangle inequality theorem.  By SAS, 𝐺𝐺′𝐽 ≅ 𝐺𝐸𝐹𝐺′𝐽, so 

𝐺𝐽 = 𝐽𝐺𝐸𝐹.  Halve both sides of 𝐺𝐺𝐸𝐹 < 𝐺𝐽 + 𝐽𝐺𝐸𝐹  to get 𝐺𝐺′ < 𝐺𝐽.   •       ∎  

 

Perpendicular Length Theorem Corollaries 

1. Distinct perpendiculars raised from a line never intersect. 

2. The hypotenuse is longer than either leg of a right triangle. 
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Angle–Angle–Side (AAS) Theorem        (Euclid, Book I, Prop. 26) 

Given two angles and a side opposite one of them, a triangle is fully defined. 

 

 Proof 

Given 𝐸𝐹𝐺 and 𝐽𝐾𝐿 with ∠𝐸 = ∠𝐽, ∠𝐹 = ∠𝐾 and 𝐹𝐺 = 𝐾𝐿; let us assume that 𝐸𝐹 and 

𝐽𝐾 are not equal.  Suppose that 𝐽𝐾 < 𝐸𝐹; there is a point 𝑀 between 𝐸 and 𝐹 such that 

𝑀𝐹 = 𝐽𝐾.  𝑀𝐹𝐺 ≅ 𝐽𝐾𝐿 by SAS; so, ∠𝐺𝑀𝐹 = ∠𝐿𝐽𝐾.  But ∠𝐿𝐽𝐾 = ∠𝐺𝐸𝐹 is given, so 

∠𝐺𝑀𝐹 = ∠𝐺𝐸𝐹.   ∠𝐺𝑀𝐹 is an exterior angle of 𝐸𝑀𝐺 equal to a remote interior angle of 

𝐸𝑀𝐺, which contradicts the exterior angle inequality theorem.  Thus, 𝐽𝐾 < 𝐸𝐹 is not true.  

Analogously, 𝐸𝐹 < 𝐽𝐾 is not true.  By trichotomy, 𝐸𝐹 = 𝐽𝐾.  By SAS, 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿.        ∎ 

 

Bill Gates34 (A Course Outline for Geometry, p. 3) writes, “AAS is not sufficient for congruence.”  

Should we tell him?  He spent hundreds of millions of dollars to buy a monopoly.  Will he listen? 

 

Isosceles Altitudes Theorem 

Two altitudes are equal if and only if the triangle is isosceles. 

 

 Proof 

 Given 𝐸𝐹𝐺, assume that 𝐸𝐺 = 𝐹𝐺.  By AAS, 𝐸′𝐺𝐸 ≅ 𝐹′𝐺𝐹, so 𝐸′𝐸 = 𝐹′𝐹. 

 

 Given 𝐸𝐹𝐺, assume that 𝐸′𝐸 = 𝐹′𝐹.  By AAS, 𝐺𝐸′𝐸 ≅ 𝐺𝐹′𝐹, so 𝐺𝐸 = 𝐺𝐹.           ∎ 

 

Hypotenuse–Leg (HL) Theorem 

Given the hypotenuse and one leg of a right triangle, it is fully defined. 

 

 Proof 

By C. 1.3, raise a perpendicular from a line the length of the leg and connect its endpoint 

to the line on both sides with segments the length of the hypotenuse.  By the isosceles 

triangle theorem, the base angles are equal, and by AAS, the triangles are congruent.   ∎ 

 

Viviani Midpoint Theorem 

A triangle is isosceles iff perpendiculars dropped from the base midpoint onto the sides are equal. 

 

ASS cannot be a congruence theorem because two incongruent triangles, 𝐸𝐹𝐺 ≇ 𝐸𝐹𝐺′′, can be 

constructed with the same angle, side and side.  But observe in the figure below that the counter-

example requires ∠𝐸 < 𝜌.  If ∠𝐸 = 𝜌, this is HL; if ∠𝐸 > 𝜌, it is OSS, which will be proven later. 

 
34 usprogram.gatesfoundation.org/-/media/dataimport/resources/pdf/2016/12/geometry-outline2014.pdf    

https://usprogram.gatesfoundation.org/-/media/dataimport/resources/pdf/2016/12/geometry-outline2014.pdf
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Counterexample to the ASS Congruence “Theorem” 

 

Faced with tremulous home-school parents who intended to teach geometry using his textbook 

but were unsure that they could, Givental35 bolstered their courage by casting a magic spell: 

 

Those reading these lines are hereby summoned to raise their children to a good 

command of Elementary Geometry, to be judged by the rigorous standards of 

the ancient Greek mathematicians. 

 

You will be pleased or perhaps appalled to learn that I too can cast magic spells… actually curses.  

The Aguilar Curse:  Students who try to use the ASS “theorem” will grow donkey ears. 

 
 

Johnny Geometer claims that any point 𝑃 on 𝐸𝐹 bisects it!  Let 𝐸𝐺 = 𝐹𝐺.  ∠𝐸 = ∠𝐹 by the 

isosceles triangle theorem and 𝑃𝐺 = 𝑃𝐺 by reflexivity.  By ASS, 𝐸𝐺𝑃 ≅ 𝐹𝐺𝑃, so 𝐸𝑃 = 𝐹𝑃.          

 
35 In 2020 I said Kiselev, but I have since learned that the translator, Givental, is putting words in Kiselev’s mouth. 



Geometry without Multiplication  Victor Aguilar 

42 
 

This completes the basic geometry that even lame-brain Common Core students learn.  The 

difference is that we prove these theorems and, hence, they must be presented in the correct 

order.  Common Core students are just given a jumble of stuff to memorize in no particular order.  

Now that we have got the basics, let us use what we know to solve some practical problems! 

 

Problem 2.4 

Without a laser rangefinder, measure the distance across a river to construct a cable ferry. 

 

 Solution 

If 𝐸 and 𝑃 are posts on opposite banks, find 𝐹 on 𝑃𝐸⃗⃗⃗⃗  ⃗ inland of 𝐸.  By P. 1.27, construct a 

rectangle 𝐸𝐹𝐺𝐻.  Find 𝑃1 on 𝐻𝐺⃗⃗⃗⃗⃗⃗  such that one can sight on 𝑃 directly over a flag at 𝑀𝐸𝐻.  

By ASA, 𝐸𝑀𝐸𝐻𝑃 ≅ 𝐻𝑀𝐸𝐻𝑃1.  So 𝐸𝑃 = 𝐻𝑃1, the length of cable needed.           ∎ 

 

This classic problem usually begins, “Construct 𝐸𝐻 ⊥ 𝐸𝑃⃡⃗⃗⃗  ⃗.”  But how, without the full rectangle?  

P. 2.4 is yellow belt because we could use a transit36, but P. 1.27 is the inexpensive way to do it. 

 

Problem 2.5 

Use a transit to construct the corners of a house equidistant to a road concealed behind a fence. 

 

 Solution 

Remove a plank or drill a hole in the fence roughly perpendicular to the middle of the 

house.  At the corner post, sight through the hole to the road.  Put the transit there and 

measure the acute angle with the road.  Move the transit to the corner post and lay off 

this angle.  By AAS, the front of the house is on this ray.  Fix the hole in the fence.          ∎ 

 

Lemma 2.1        (Euclid, Book I, Prop. 17) 

The sum of any two interior angles of a triangle is less than a straight angle. 

 

 Proof 

Consider ∠𝐸 and ∠𝐹 in 𝐸𝐹𝐺 and let 𝐽 be on 𝐸𝐹⃗⃗⃗⃗  ⃗ past 𝐹.  ∠𝐽𝐹𝐺 is exterior to 𝐸𝐹𝐺 at 𝐹.     

By the exterior angle inequality theorem, ∠𝐹𝐸𝐺 < ∠𝐽𝐹𝐺.  ∠𝐸𝐹𝐺 + ∠𝐽𝐹𝐺 = 𝜎 by 

supplementarity and, by substitution, ∠𝐸𝐹𝐺 + ∠𝐹𝐸𝐺 < 𝜎.             ∎ 

 

This lemma is absolute (neutral) geometry in the sense that Bolyai used the term to mean what 

is common to Euclidean and hyperbolic geometry.  But it is not true in elliptic geometry.  Some 

people use the term to include all three geometries.  We will use the term in Bolyai’s sense.37 

 
36 A transit is an optical device mounted on a tripod that measures angles.  A theodolite is too, but more expensive. 
37 Bolyai said “absolute” in 1832, but geometers prefer “neutral” today; neither has ever meant elliptic geometry. 
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Angle–Side–Longer Side (ASL) Theorem     

Given an angle and the side opposite the angle not less than a near side, a triangle is fully defined. 

 

 Proof 

Given 𝐸𝐹𝐺 with 𝐸𝐹 ≤ 𝐹𝐺 and 𝐽𝐾𝐿 with ∠𝐽 = ∠𝐸, 𝐽𝐾 = 𝐸𝐹 and 𝐾𝐿 = 𝐹𝐺, assume that 

𝐽𝐿 ≠ 𝐸𝐺; specifically,  𝐽𝐿 < 𝐸𝐺.  Thus, there is a 𝑀 between 𝐸 and 𝐺 such that 𝐸𝑀 = 𝐽𝐿.  

By SAS, 𝐸𝐹𝑀 ≅ 𝐽𝐾𝐿, which holds the equality 𝐹𝑀 = 𝐾𝐿.  But 𝐾𝐿 = 𝐹𝐺 is given; thus,    

𝐹𝑀 = 𝐹𝐺 by transitivity and ∠𝐹𝑀𝐺 = ∠𝐹𝐺𝑀 by the isosceles triangle theorem.  By 

lemma 2.1, their sum is less than a straight angle and, since they are equal, they are acute; 

hence, ∠𝐸𝑀𝐹 is obtuse by supplementarity.   In 𝐸𝐹𝑀, the obtuse angle ∠𝐸𝑀𝐹 is larger 

than both ∠𝑀𝐸𝐹 and ∠𝑀𝐹𝐸.  By the greater side theorem, 𝐸𝐹 is the longest side; that 

is, 𝐹𝑀 < 𝐸𝐹, which contradicts the assumption that 𝐸𝐹 < 𝐹𝐺 = 𝐹𝑀.  Thus, 𝐽𝐿 ≠ 𝐸𝐺 is 

wrong; by SSS, 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿.                 ∎ 
 

Given 𝐸𝐹𝐺 and 𝐽𝐾𝐿 with ∠𝐸 = ∠𝐽, 𝐸𝐹 = 𝐽𝐾 and 𝐹𝐺 = 𝐾𝐿, if ∠𝐺 and ∠𝐿 are both obtuse, right 

or acute, then 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿.  This is an alternative way to state the ASL theorem.  Benjamin Catalfo 

used ASL to prove that a problem on the Regents Common Core geometry exam was wrong.38   
 

Obtuse Angle–Side–Side (OSS) Theorem 

Given an obtuse angle and two sides that are not bracketing it, an obtuse triangle is fully defined. 
 

 Proof citing ASL 

By lemma 2.1, the obtuse angle is larger than either of the other angles so, by the greater 

side theorem, the side opposite it is longer than either other side.  Thus, by ASL.          ∎ 
 

 Proof citing HL 

By supplementarity, the angle exterior to the given angle is fully defined.  Drop a 

perpendicular from the vertex between the given sides to the extension of the unknown 

side.  It intersects the extension because the given angle is obtuse and forms a triangle 

outside the given triangle that, by AAS, fully defines the length of the altitude.  By HL, the 

union of the two triangles is fully defined and, by subtraction, the given one is.          ∎ 

 

Angle Bisector Theorem     

A point is on an angle bisector if and only if it is equidistant from the sides of the angle. 
 

Proof 

 Given the angle bisection, the point is equidistant by AAS; the converse by HL.          ∎ 

 
38 www.newsday.com/long-island/education/li-educators-criticize-revamped-regents-geometry-exam-1.13803229  

https://www.newsday.com/long-island/education/li-educators-criticize-revamped-regents-geometry-exam-1.13803229
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Mid–Term Exam 

 

In Geometry–Do, the final exam counts for 100% of students’ grades.  So, this mid-term does not 

count, but it does hint at the nightmarish exam lying in wait for them at the end of the semester! 

 

Problem #1 

Given 𝐸𝐹𝐺 such that 𝐸𝐺 < 𝐹𝐺, recall that 𝐺′ is the foot of the altitude from 𝐺 onto 𝐸𝐹⃡⃗⃗⃗  ⃗, 𝐺∗ is the 

intersection of the ∠𝐺 bisector with 𝐸𝐹, and 𝑀𝐸𝐹 is the midpoint of 𝐸𝐹.  Prove that: 

1. ∠𝐺𝐺∗𝐸 < ∠𝐺𝐺∗𝐹 

2.  𝐺∗𝐸 < 𝐺∗𝐹 

3. 𝐺∗ is between 𝐺′ and 𝑀𝐸𝐹 

 

Problem #2 

Given 𝑃𝑄𝐺, construct 𝐸𝐹𝐺 isosceles so the apex angles ∠𝑃𝐺𝑄 ≡ ∠𝐸𝐺𝐹 and 𝑀𝑃𝑄 ∈ 𝐸𝐹.  Prove 

that 𝐸𝑃 = 𝐹𝑄. 

 

Problem #3 

Suppose problem #2 had read, “Given 𝐸𝐹𝐺 isosceles and 𝑀 on its base, 𝐸𝐹, find 𝑃 on 𝐺𝐸⃗⃗⃗⃗  ⃗ and 𝑄 

on 𝐺𝐹⃗⃗⃗⃗  ⃗ such that 𝑀 is the midpoint of 𝑃𝑄.”  Can you do this construction without assuming the 

conclusion you will be asked to prove in part two, 𝐸𝑃 = 𝐹𝑄? 

 

Problem #4 

𝐸𝐹𝐺 is isosceles with base 𝐸𝐹.  Let 𝑃 ≠ 𝑀𝐸𝐺  be on 𝐸𝐺 and 𝑄 be on 𝐹𝐺 such that 𝐺𝑃 + 𝐺𝑄 = 𝐺𝐸.  

Prove that the mid-segment, 𝑀𝐸𝐺𝑀𝐹𝐺 , bisects 𝑃𝑄. 

 

Here are some pop quiz problems that can be inserted earlier in yellow belt.  The weak students 

who are slayed by a pop quiz are unlikely to be reading ahead, so they will probably be surprised. 

 

Pop quiz about the exterior angle inequality theorem!  Prove that 𝜑 < 𝜌. 

 

Pop quiz about the triangle inequality theorem and its corollaries!   

Prove that, if the bisector of ∠𝐺 bisects the perimeter of 𝐸𝐹𝐺, then 𝐸𝐹𝐺 is isosceles. 

 

Pop quiz about the perpendicular length theorem, its corollaries, and AAS!  

1. Given 𝑃 not on 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑃′ its perpendicular foot on 𝐸𝐹⃡⃗⃗⃗  ⃗, if 𝑃′𝐸 < 𝑃′𝐹, then is 𝑃𝐸 < 𝑃𝐹? 

2. Prove that the sum of the legs of a right triangle is less than twice the hypotenuse. 

3. Prove that, if two triangles are congruent, then their corresponding altitudes are equal. 
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Intermission (Johnny Geometer’s Big Invention)  

 

Every geometry teacher everywhere has announced that trisecting an angle is impossible with 

compass and straightedge, at which point a student’s hand popped up in the air and he 

suggested, “Make it the apex of an isosceles triangle and trisect the base.”  The teacher then 

drew an obtuse isosceles triangle with its base trisected; visual inspection made it clear that the 

outer angles equal each other, but they are much smaller than the center angle. 
 

But this left the student with too much hope.39  Unheard by the teacher, the student walked out 

of class muttering to himself, “She didn’t even give my idea a chance!  Maybe it works for acute 

angles?”  Then he went hungry because he ignored his food and spent his lunch hour squinting 

at a series of isosceles triangles with increasingly narrow apex angles.  Lacking a protractor (they 

are not allowed in intrinsic geometry), he struggled to see that his three angles were not all equal. 

 

Problem 2.6  Johnny Geometer claims that an arbitrary angle can be trisected by making it the 

apex of an isosceles triangle and then trisecting the base!  Can you prove him wrong? 

 

 Solution 

Given 𝐸𝐹𝐺 isosceles with the apex ∠𝐺, by C. 3.9 or C. 3.11 trisect the base with trisection 

points 𝐽 near 𝐸 and 𝐾 near 𝐹.  Connect 𝐺𝐽 and 𝐺𝐾.  Draw a circle centered at 𝐺 that 

passes through 𝐽 and 𝐾.  By the continuity theorem, it cannot also pass through 𝐸, so 

there is a point 𝐿 on 𝐸𝐺 such that 𝐺𝐿 = 𝐺𝐽 = 𝐺𝐾.  By exterior angle inequality theorem 

corollary #1, ∠𝐺𝐿𝐽 is acute, so its supplement ∠𝐸𝐿𝐽 is obtuse and thus ∠𝐿𝐸𝐽 < ∠𝐸𝐿𝐽.  By 

the greater side theorem 𝐿𝐽 < 𝐸𝐽 = 𝐽𝐾.  By the hinge theorem, ∠𝐿𝐺𝐽 < ∠𝐽𝐺𝐾.          ∎ 
 

There is an angle trisection technique that requires putting two scratches on your straightedge 

an arbitrary distance apart.  Most geometry textbooks will tell you that scratching your 

straightedge is not allowed in intrinsic geometry, but this is not true.  You can scratch it all you 

want, including using your compass to lay off a series of equidistant scratches to form a crude 

ruler.40  White belts did this to prove the Egyptian triangle theorem.41  What we are not allowed 

to do is assign real numbers to lengths as Birkhoff did with his ruler postulate.  Real numbers –

 
39 We are not trying to crush hope – though that is fun – we just want their hopes directed towards plausible goals. 
40 Moise & Downs (p. 530) write, “The angle-trisection problem becomes solvable if we relax the rules very slightly 

by allowing ourselves to make two marks on the straightedge.”  This makes geometry sound like a parlor game with 

arbitrary rules designed to confound players.  In the 2300 years since Euclid, for the first 2250 years rulers did not 

exist because it requires a CNC machine to scratch steel in 0.1 cm increments.  They were doing the best that they 

could.  The carpenter’s square shown on the next page did not exist before World War Two. 
41 The ancient Egyptians had aqueducts, but they did not use 22.5° elbows because they had only six scratches on 

their straightedges, not the 14 needed to construct 5 ∶ 12 ∶ 13 right triangles, as I instruct modern plumbers to do. 



Geometry without Multiplication  Victor Aguilar 

46 
 

are infinitely close to each other and no machinist can or ever will put infinitely close scratches 

on a straightedge, so there is no physical reality to Birkhoff’s ruler; it is a fictional devise.  Yellow 

belts can skip the orange-belt proof; being Euclidean is not what is wrong with this construction. 

 

Construction 2.1  Trisect an angle.           (This is not a real geometry construction!) 

 

 Solution 

Given ∠𝐸𝐹𝐺 arbitrary and a straightedge with scratch marks 𝑟 apart, draw a circle, 𝜔, of 

radius 𝑟 centered at 𝐹.  Let 𝐸′′ ≔ 𝐹𝐸⃗⃗⃗⃗  ⃗ ∩ 𝜔 and 𝐺′′ ≔ 𝐹𝐺⃗⃗⃗⃗  ⃗ ∩ 𝜔.  Extend 𝐺𝐹⃗⃗⃗⃗  ⃗ past 𝜔 to a 

point 𝑃 such that 𝑄 ≔ 𝑃𝐸′′ ∩ 𝜔 and 𝑃𝑄 = 𝑟.  Then ∠𝑄𝑃𝐹 =
1

3
∠𝐸𝐹𝐺 and, by C. 1.5, it 

can be twice replicated inside ∠𝐸𝐹𝐺 to trisect it.                           ∎ 

 

 Proof              (The exterior angle theorem is beginner orange belt.) 

Apply the exterior angle theorem to 𝑄𝐹𝑃, which is isosceles, so ∠𝐸′′𝑄𝐹 = 2∠𝑄𝑃𝐹.  Apply 

the isosceles triangle theorem to 𝐸′′𝑄𝐹, and the exterior angle theorem to 𝐹𝐸′′𝑃.        ∎ 

 

So, if scratching the straightedge is not what is wrong with this construction, then what is?  

Finding 𝑃 requires nudging the scratched straightedge around until it makes 𝑄 ≔ 𝑃𝐸′′ ∩ 𝜔 and 

𝑃𝑄 = 𝑟 true.  This is trial and error!  Trial-and-error is what computer programmers do – they 

call it a linear search – and nobody ever mistook a computer programmer for a geometer. 

 

There is another angle trisection technique employed by cabinet makers when they must trisect 

an angle.  Try it!  The need to nudge your square here and there until it fits makes it clear that 

this is trial and error.  I leave it as an (orange belt) exercise for the student to prove that it works.   
 

 
 

And now, circles!  I love circles!  So round and plump!  Nothing like triangles with their bony hips! 
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Chord Inside Circle Theorem      (Euclid, Book III, Prop. 2) 

Given a circle and any two points on it, the chord between the points is entirely inside the circle. 

 

Proof 

Given 𝐸𝐹, a chord of a circle centered at 𝑂, let 𝑀 be inside 𝐸𝐹.  ∠𝑂𝐸𝑀 = ∠𝑂𝐹𝑀 by the 

isosceles triangle theorem.  ∠𝑂𝑀𝐹 > ∠𝑂𝐸𝑀 by the exterior angle inequality theorem, 

so ∠𝑂𝑀𝐹 > ∠𝑂𝐹𝑀.  By the greater side theorem, 𝑂𝐹 > 𝑂𝑀.  Thus, the result.          ∎ 
 

Diameter and Chord Theorem     (Euclid, Book III, Prop. 3) 

A diameter bisects a chord if and only if the diameter is perpendicular to the chord. 

 

 Proof 

Given chord 𝐸𝐹 in a circle with center 𝑂, 𝑂𝑀𝐸𝐹  is on a diameter.  𝑂𝑀𝐸𝐹𝐸 ≅ 𝑂𝑀𝐸𝐹𝐹 by 

SSS.  By the mediator theorem, the diameter is perpendicular to the chord. 
 

If 𝑂𝑀⃡⃗⃗⃗⃗⃗ ⊥ 𝐸𝐹⃡⃗⃗⃗  ⃗ with 𝑀 on chord 𝐸𝐹, then, by HL, 𝑂𝑀𝐸 ≅ 𝑂𝑀𝐹.  Thus, 𝑀𝐸 = 𝑀𝐹.          ∎ 

 

Diameter and Chord Theorem Corollaries    (Euclid, Book III, Prop. 9, 10) 

1. Given a circle with center 𝑂 and 𝐸, 𝐹, 𝑇 on the circle such that 𝐸𝐹⃡⃗⃗⃗  ⃗ ⊥ 𝑂𝑇⃡⃗⃗⃗  ⃗, then 𝐸𝑇 = 𝐹𝑇. 

2. If more than two equal segments can be drawn to a circle from a point, it is its center. 

3. If two circles intersect more than twice, then they coincide and so intersect everywhere. 

4. If every possible mediator of segments with endpoints chosen from among three or more 

points are concurrent, then these points are all concyclic.   
 

Equal Chords Theorem      (Euclid, Book III, Prop. 14) 

In the same or equal circles, equal chords are equally distant from the center, and the converse. 

 

 Proof 

Let 𝐸𝐸′′ = 𝐹𝐹′′ be chords in a circle with center 𝑂; let 𝐸′, 𝐹′ be the feet of perpendiculars 

dropped on them from 𝑂, respectively.  By the diameter and chord theorem, 𝐸𝐸′ = 𝐹𝐹′.  

By HL, 𝑂𝐸′𝐸 ≅ 𝑂𝐹′𝐹, which holds the equality 𝑂𝐸′ = 𝑂𝐹′.    • 

 

Proof of the converse is left as an exercise. 
 

Unequal Chords Theorem      (Euclid, Book III, Prop. 15) 

Of two chords in a circle, the one nearer the center is longer; and the longer is nearer the center. 

 

Shortest Chord Theorem 

The shortest chord through a point in a circle is perpendicular to the diameter through that point. 
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Lemma 2.2 

A line intersects a circle in at most two points. 

 

Proof 

Let 𝐸, 𝐹, 𝐺 be intersection points of a line and a circle with 𝐹 inside 𝐸𝐺.  𝐸 and 𝐺 are on 

the circle, so 𝐸𝐺 is a chord.  By the chord inside circle theorem, 𝐹 is inside the circle.    ∎ 
 

Tangent Theorem       (Euclid, Book III, Prop. 18, 19) 

A line intersects a circle where it is perpendicular to the radius iff that is a touching point. 
 

 Proof 

Let 𝐹 be a point of intersection perpendicular to the radius and 𝑂 be the circle center.  

Suppose the line and the circle also intersect at 𝐸.  Find 𝐺 on the line such that 𝐸𝐹 = 𝐹𝐺.  

By SAS, 𝐸𝐹𝑂 ≅ 𝐺𝐹𝑂, so 𝐸𝑂 = 𝐺𝑂; 𝐺 is on the circle.  Thus, 𝐸, 𝐹, 𝐺 are distinct points on 

a line and on a circle, a contradiction by lemma 2.2, so 𝐹 is a touching point. • 

 

Assume that the line intersects only once; every other point on the line is outside the 

circle and thus farther from the center than the radius.  By the perpendicular length 

theorem, only the perpendicular is the shortest segment from a point to a line. •       ∎ 

 

Common Chord Theorem 

If two circles have a common chord, its mediator is the line of centers. 

 

 Proof 

By the diameter and chord theorem, the mediator of the chord is a diameter to both 

circles and on the line of centers.                ∎ 

 

Construction 2.2       (Euclid, Book III, Prop. 17) 

Through a point outside a circle, draw a line tangent to the circle. 
 

 Yellow Belt Solution 

Let 𝑂 be the center of the given circle, 𝑃 be the given outside point and 𝑀 be the 

intersection of 𝑂𝑃 with the circle.  Draw a concentric circle that passes through 𝑃.  By      

C. 1.3, raise a perpendicular from 𝑀 and call an intersection with the larger circle 𝑄.  Let 

𝑁 be the intersection of 𝑂𝑄 and the given circle; 𝑁 is the desired touching point.          ∎ 
 

Proof 

By SAS, 𝑀𝑂𝑄 ≅ 𝑁𝑂𝑃, which holds the equality ∠𝑀 = ∠𝑁.  ∠𝑀 is right by construction, 

so ∠𝑁 is right and, by the tangent theorem, 𝑁 is a touching point.            ∎ 
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When the point is far from the circle (e.g., a machine gun and its kill circle), the outer circle may 

go over the edge of the paper.  Also, one’s compass may not be capable of drawing this big circle.  

The green-belt solution, C. 4.4, requires an arc only half this radius and extending no farther than 

the given circle, so it will be the standard technique.  But, even if yellow belts do not have the 

most efficient method, they have a method, so everything we describe in this chapter is feasible. 

 

Common Point Theorem      (Euclid, Book III, Prop. 11, 12) 

An intersection of two circles is a touching point if and only if it is on the line of centers. 

 

 Proof 

If it is a touching point, then, by the tangent theorem, it is perpendicular to the radii from 

both centers and, by supplementarity, it is on the line of centers.  If it is on the line of 

centers, then, by the perpendicular length theorem, the tangent there is unique.          ∎ 

 

Two Tangents Theorem 

Two tangents from an external point are equal and their angle bisector intersects the center. 

 

 Proof 

By the tangent theorem, the touching points are where the radii are perpendicular to the 

tangents and so, by the perpendicular length theorem, the center is equidistant from the 

tangents.  By the angle bisector theorem, their angle bisector intersects the center.  By 

HL, the two triangles are congruent.  Hence, the tangents are equal.             ∎ 

 

Tangent Bisection Theorem I 

If two circles touch, the perpendicular to the line of centers through the circles’ touching point 

cuts their common tangents in half. 

 

Blue belts will prove tangent bisection theorem II about the extension of the common chord. 

 

Mirror Problem 

Find the point on a mirror to shine a laser at a target. 

 

 Solution 

Let 𝐽 be the laser and 𝐾 be the target.  Drop perpendiculars from 𝐽 and 𝐾 to the mirror or 

its extension with feet 𝐽′ and 𝐾′.  Extend 𝐾𝐾′⃗⃗⃗⃗ ⃗⃗  ⃗ an equal distance to 𝐾𝐽′𝐾′ the reflection of  

𝐾 about 𝐽′𝐾′⃡⃗ ⃗⃗ ⃗⃗  .  Let 𝑃:= 𝐽𝐾𝐽′𝐾′ ∩ 𝐽′𝐾′⃡⃗ ⃗⃗ ⃗⃗  .  By SAS, 𝐾𝐾′𝑃 ≅ 𝐾𝐽′𝐾′𝐾′𝑃, so ∠𝐾𝑃𝐾′ = ∠𝐾𝐽′𝐾′𝑃𝐾′.  

By the vertical angles theorem, ∠𝐾𝐽′𝐾′𝑃𝐾′ = ∠𝐽𝑃𝐽′.  By transitivity, ∠𝐾𝑃𝐾′ = ∠𝐽𝑃𝐽′, so 

aim for 𝑃; the angles of incidence, 𝜌 − ∠𝐽𝑃𝐽′, and of reflection, 𝜌 − ∠𝐾𝑃𝐾′, are equal. ∎ 



Geometry without Multiplication  Victor Aguilar 

50 
 

Note the assignment operator and the intersection symbol in 𝑃:= 𝐽𝐾𝐽′𝐾′ ∩ 𝐽′𝐾′⃡⃗ ⃗⃗ ⃗⃗  .  Lasers have the 

angles of incidence and of reflection equal, but bullets do not; they skim just over the asphalt. 
 

A reflection is a point defined by another point and a line; the target is the reflection of the point 

behind the mirror that the laser is aimed at, and vice-versa.  Because the two points are the same 

distance from the mirror, reflection is an isometry; a transformation that preserves distance.  

𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐸𝐺  are midpoints; in a tangential quadrilateral, 𝐼𝐸𝐹 , 𝐼𝐹𝐺 , 𝐼𝐺𝐻 , 𝐼𝐻𝐸  are incircle touching 

points.  These and Thébault’s notation are exceptions to double subscripts denoting reflections. 

 

Problem 2.7  Two towns are on the same side of a straight railroad track and some distance away.  

Where should a railway station be built to minimize the sum of the roads to the two towns? 

 

 Solution 

Guess at where the station should be and draw in the roads.  Draw a road from the station 

to one town’s reflection.  By SAS the reflected triangles are congruent and so their 

hypotenuses are equal.  By definition of segment, if the station is not collinear with one 

town and the other town’s reflection, it is badly guessed.  Correct it.             ∎ 
 

The roads are a physical representation of the laser beam.  Thus, the mirror property is that 

reflections preserve distance, so the laser beam in the mirror problem travels the same distance 

if it bounces off the mirror to the target or if it penetrates and goes to the target’s reflection.  To 

reflect a line across a point, reflect two points on the line across it and draw a line through them.  

One can choose any two points; but, if we take one to be the foot of the perpendicular, we get 

another method for constructing the reflection, which is sometimes taken as its definition. 

 

Line Reflection Theorem 

Two lines are reflections across a point iff the perpendicular dropped from that point onto one 

line, if extended in the opposite direction an equal distance, meets the other line at a right angle. 

 

Problem 2.8  There is a roughly circular lake, a straight highway, and an abandoned farm.  You 

have purchased the farm with the idea of turning the farmhouse into a way station for fishermen.  

Pave a straight road to the lake so the farm is at its exact midpoint.  Discuss the possibility of this. 
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Problem 2.9  Given two circles on opposite sides of a line, construct an equilateral triangle with 

one vertex on the line and the other two vertices on each of the two circles. 

 

Johnny Geometer insists that there are an infinity of solutions to P. 2.9, not just 0, 2 or 4.  Yes? 

 

Problem 2.10  Given ∠𝐸𝐹𝐺 acute and 𝑃 within it, find points on each ray such that the perimeter 

of the triangle they make with 𝑃 is minimal. 

 

 Solution 

Let 𝑃𝐹𝐸  and 𝑃𝐹𝐺  be reflections of 𝑃 about 𝐹𝐸⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗, respectively.  𝐽: = 𝑃𝐹𝐸𝑃𝐹𝐺 ∩ 𝐹𝐸⃗⃗⃗⃗  ⃗ and 

𝐾:= 𝑃𝐹𝐸𝑃𝐹𝐺 ∩ 𝐹𝐺⃗⃗⃗⃗  ⃗.  𝑃𝐽𝐾 has perimeter 𝑃𝐹𝐸𝑃𝐹𝐺 , which is of minimal length.          ∎ 

 

Constructing a triangle so its perimeter is minimal will become the bread and butter of the 

Geometry–Do practitioner; he should be able to just look at a problem like P. 2.10 and 

immediately construct the solution.  But the thought process of guessing at the solution and then 

seeing what is wrong with the picture so it can be redrawn correctly should not be forgotten.  

(Here, if we had guessed at 𝐽 and 𝐾, then drawn 𝐽𝐾⃡⃗⃗⃗ , laid off 𝑃𝐽 past 𝐽 to 𝑃𝐹𝐸  and laid off 𝑃𝐾 past 

𝐾 to 𝑃𝐹𝐺 , our “solution” would violate the perpendicular length theorem.)   

 

If the student becomes too blasé about the initially easy problems, he will later encounter a 

difficult problem and feel like he has run into a wall.  But, if he thinks carefully on the easy 

problems and treats each one as training for more difficult problems that he knows are coming, 

he will later discover himself doing problems that other geometers consider difficult without 

having ever noticed his own passage. 

 

Minimal Base Theorem 

Given the apex angle and the sum of the legs, the triangle with minimal base is isosceles. 

 

 Proof 

Construct 𝐸𝐹𝐺 so ∠𝐺 is the given apex angle and 𝐺𝐸 = 𝐺𝐹 are each half the given sum 

of legs.  Position 𝐽 and 𝐾 so 𝐸 is between 𝐺 and 𝐽, 𝐾 is between 𝐺 and 𝐹, and 𝐸𝐽 = 𝐹𝐾.  

𝐺𝐸 + 𝐺𝐹 = 𝐺𝐽 + 𝐺𝐾.  Drop perpendiculars from 𝐽 and 𝐾 to 𝐸𝐹⃡⃗⃗⃗  ⃗ with feet 𝐽′ and 𝐾′, 

respectively.  ∠𝐽′𝐸𝐽 = ∠𝐾′𝐹𝐾 by the isosceles triangle theorem and the vertical angles 

theorem.  By AAS, 𝐽′𝐸𝐽 ≅ 𝐾′𝐹𝐾, which holds the equality 𝐸𝐹 = 𝐽′𝐾′.  By perpendicular 

length theorem corollary #2, 𝐽′𝐾′ < 𝐽𝐾; thus, 𝐸𝐹 is the shortest possible base.          ∎ 

 

Common Core textbooks are fond of the acronym CPCTC, which stands for Corresponding Parts 

of Congruent Triangles are Congruent.  I do not use this acronym for two reasons: 
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1. It is wrong.  It should be Corresponding Magnitudes of Congruent Triangles are Equal, or 

CMCTE.  “Parts” is nowhere defined; they are magnitudes.  Using the term congruent for 

both triangles and magnitudes to the complete exclusion of the term equal is wrong.  

Congruence and equality are different things; there is good cause for having two words. 

 

2. It is excessively verbose.  When I say, “by SAS, 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿 and so 𝐺𝐸 = 𝐿𝐽,” the students 

know immediately from how the vertices are ordered that 𝐸𝐹 = 𝐽𝐾 and ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 

and 𝐹𝐺 = 𝐾𝐿.  Sometimes I will say, “𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿, which holds the equality 𝐺𝐸 = 𝐿𝐽.”  

Students know that we say that two triangles are congruent because congruence implies 

that corresponding magnitudes are equal; they do not need to be repetitively told this. 

 

Problem 2.11  Through one of the two points of intersection of two equal circles, draw two equal 

chords, one in each circle, forming a given angle. 

 

Solution 

Bisect the given angle and replicate this on both sides of the common chord.  The sides of 

this angle extended make two chords, one in each circle, forming the given angle.         ∎  

 

Proof 

Let 𝑂1, 𝑂2 be the centers, 𝐹𝐺 their common chord and 𝐹1, 𝐹2 the endpoints of the 

constructed chords 𝐹𝐹1, 𝐹𝐹2 in circles around 𝑂1, 𝑂2, respectively.  By the common chord 

theorem and HL, 𝑂1𝐹𝑀𝐹𝐺 ≅ 𝑂2𝐹𝑀𝐹𝐺 , and so ∠𝑂1𝐹𝑀𝐹𝐺 = ∠𝑂2𝐹𝑀𝐹𝐺 .  By angle addition, 

∠𝐹1𝐹𝐺 = ∠𝑂1𝐹𝑀𝐹𝐺 ± ∠𝑂1𝐹𝐹1 and ∠𝐹2𝐹𝐺 = ∠𝑂2𝐹𝑀𝐹𝐺 ± ∠𝑂2𝐹𝐹2.  By angle addition, 

∠𝐹1𝐹𝑂1 = ∠𝐹2𝐹𝑂2.  By the diameter and chord theorem, ∠𝑂1𝑀𝐹1𝐹𝐹 and ∠𝑂2𝑀𝐹2𝐹𝐹 are 

right.  By AAS, 𝑀𝐹1𝐹𝐹𝑂1 ≅ 𝑀𝐹2𝐹𝐹𝑂2, so 𝑀𝐹1𝐹𝐹 = 𝑀𝐹2𝐹𝐹.  Doubling, 𝐹𝐹1 = 𝐹𝐹2.              ∎ 

 

Wasn’t this proof made a lot easier by saying “and so” than by citing CMCTE?  In How Math Can 

Be Taught Better42, I mock a Common Core textbook that takes five steps to prove that two 

angles, both given as right, are equal.  Duh!  Common Core textbook authors purposefully make 

proofs as boring and tedious as possible, so nobody will lament their loss in the remaining 95% 

of the textbook when the author just starts announcing theorems without proving them.  Clever!  

 

Problem 2.12  Through one of the two points of intersection of two circles, draw a line that makes 

equal chords in the two circles. 

 

Problem 2.13  Through three concentric circles, draw a line that they cut into two equal segments. 

 
42 www.researchgate.net/publication/282947903_How_Math_Can_Be_Taught_Better  

https://www.researchgate.net/publication/282947903_How_Math_Can_Be_Taught_Better
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Let us now illustrate another method for solving geometry problems:  Solve the problem with 

algebra and then replicate the algebra with geometry.  

 

Construction 2.3  Construct two segments given their sum and their difference. 

 

 Solution 

Add the sum and the difference.  Bisect this to get the longer segment and then cut off 

the difference to get the shorter segment.               ∎ 

 

(𝑥 + 𝑦) + (𝑥 − 𝑦) = 2𝑥.  Thus, we add the sum and the difference and then bisect it to get the 

longer segment.  𝑥 − (𝑥 − 𝑦) = 𝑦.  Thus, we cut off the difference to get the shorter segment. 

 

For the most part I despise Common Core, but one practice that I will adopt is their insistence 

that math classes include some classic literature.  Who has not read The Pit and the Pendulum? 

 

I could no longer doubt the doom prepared for me by monkish ingenuity in 

torture…  [The pendulum’s] nether extremity was formed of a crescent of 

glittering steel, about a foot in length from horn to horn; the horns upward, and 

the under edge evidently as keen as that of a razor.   –   Edgar Allen Poe 

 

Problem 2.14  If the horns of Poe’s pendulum are at points 𝐸 and 𝐹 one moment and then at 

points 𝐸′′ and 𝐹′′ a minute later, where is the axle from which the pendulum is suspended? 

 

 Solution 

By the diameter and chord theorem, the mediators to chords 𝐸𝐸′′ and 𝐹𝐹′′ are diameters.  

Their intersection is the common center of the two concentric circles.              ∎ 

 

Note that 𝐸𝐹 and 𝐸′′𝐹′′ are not chords; there is no assurance that the horns rise equally above 

the blade.  The endpoints of each chord are the same vertex of the figure at different times.  Each 

point on the pendulum makes its own circle around an axle common to them all.  

 

We next introduce our first triangle center!  Other centers exist for acute triangles and, while we 

cannot define this precisely, for almost acute triangles, but they require the parallel postulate for 

general triangles.  The medial point exists in neutral geometry, but it is deferred to orange belt. 

 

Three highways cross farmland and intersect to form a triangle.  People have complained that 

cell phone service is poor in this area, so the cell phone company intends to build a tower 

equidistant from the three highways.  Where should they build it to best serve their customers? 
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Incenter Theorem       (Euclid, Book IV, Prop. 4) 

The bisectors of a triangle’s interior angles are concurrent at an interior point, the incenter, 𝐼. 

 

 Proof 

Given 𝐸𝐹𝐺, by the crossbar theorem, 𝐸∗ is inside 𝐹𝐺; thus, 𝐸𝐸∗ is inside 𝐸𝐹𝐺.  By the 

crossbar theorem applied to 𝐸𝐹𝐸∗, the bisector of ∠𝐹 cuts 𝐸𝐸∗ and this intersection, 𝐼, 

is interior to 𝐸𝐹𝐺.  By the angle bisector theorem applied to ∠𝐸 and to ∠𝐹, respectively, 

𝐼 is equidistant from 𝐸𝐺 and 𝐸𝐹 and from 𝐹𝐸 and 𝐹𝐺; thus, by transitivity, 𝐼 is equidistant 

from 𝐸𝐺 and 𝐹𝐺.  By the angle bisector theorem, 𝐼 is on the bisector of ∠𝐺.          ∎ 

 

The incircle is around the incenter and touches the sides at 𝐼𝐸 , 𝐼𝐹 , 𝐼𝐺 .  The verb “inscribe” refers 

to drawing a circle in a triangle, never a triangle in a circle; this construction is not fully defined.  

 

A city park is in the corner of two roads that intersect at an arbitrary angle; in this park, the VFW 

has erected a statue of a soldier and the city government has erected a statue of the town’s 

founder.  They wish to split the cost of a flagpole and position it where it is equally visible to 

drivers on both roads, and it is also equidistant from their respective monuments.  Where? 

 

Problem 2.15   

Given two points inside an angle, find a point equidistant from the points and from the rays. 

 

Military cadets should know what the words enfilade and defilade mean.  To enfilade a road or a 

trench is to fire down the length of it.  This is important to machine gunners because it is difficult 

to traverse a gun to lead a moving vehicle; guns only work well if the enemy is coming directly at 

you or – even better – directly away from you.  Also, this is the only way to get bullets inside a 

trench; firing across it is pointless.  Grenadiers can traverse their launch tubes more easily than 

machine gunners can traverse, so they fire from defilade; that is, from a concealed position 

alongside a road.  But grenades are slow, so they must get close enough to lead moving vehicles.  

 

The following theorem shows that an equilateral triangle with an important point at the center 

(e.g., a munitions dump) is the best defense against both enemy aircraft and enemy troops if you 

have only three anti-aircraft guns.  This motivates the Dakota defense problem, to be solved later.   

 

In neutral geometry, the circumcenter exists for acute triangles, which is sufficient for the 

following theorem.  The verb “circumscribe” always refers to drawing a circle around a triangle. 

 

Incenter and Circumcenter Theorem 

A triangle is equilateral if and only if its incenter and its circumcenter coincide. 
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Laying ambushes is great fun (unless, of course, you get killed), but we cannot immediately put 

heavy machine guns in the students’ hands.  We have more geometry to learn, so let’s get busy! 

 

Incircle Theorem 

Given 𝐸𝐹𝐺, then twice 𝐼𝐺𝑀𝐸𝐹 is the absolute difference of 𝐹𝐺 and 𝐺𝐸. 
 

 Proof 

Assume 𝐺𝐸 ≤ 𝐹𝐺 so 𝐼𝐺  is on 𝐸𝑀𝐸𝐹.  If not, just re-label 𝐸 and 𝐹.  By segment addition, 

𝐸𝐼𝐺 + 𝐼𝐺𝑀𝐸𝐹 = 𝐸𝑀𝐸𝐹 = 𝑀𝐸𝐹𝐹 = 𝐼𝐺𝐹 − 𝐼𝐺𝑀𝐸𝐹; thus, 2𝐼𝐺𝑀𝐸𝐹 = 𝐼𝐺𝐹 − 𝐸𝐼𝐺 . 
 

2𝐼𝐺𝑀𝐸𝐹 = 𝐼𝐸𝐹 − 𝐸𝐼𝐹     Two tangents theorem 

               = 𝐼𝐸𝐹 − 𝐸𝐼𝐹 + 𝐼𝐸𝐺 − 𝐼𝐹𝐺   Two tangents theorem 

               = 𝐼𝐸𝐹 + 𝐼𝐸𝐺 − 𝐸𝐼𝐹 − 𝐼𝐹𝐺  Commutative property 

               = (𝐼𝐸𝐹 + 𝐼𝐸𝐺) − (𝐸𝐼𝐹 + 𝐼𝐹𝐺)  Associative property 

               = 𝐹𝐺 − 𝐺𝐸     Segment addition           ∎ 

 

Incircle Theorem Corollary 

Given 𝐸𝐹𝐺 such that 𝐸𝐹 < 𝐹𝐺 < 𝐺𝐸, then 𝐼𝐸𝑀𝐹𝐺 = 𝐼𝐺𝑀𝐸𝐹 + 𝐼𝐹𝑀𝐺𝐸 . 
 

This one is easy to get confused in your mind.  Just remember that the segment on the middling 

side of the triangle is equal to the sum of the segments on the short and long sides of the triangle. 

 

Problem 2.16  Given 𝐸𝐹𝐺 with 𝐼 the incenter, drop a perpendicular from 𝐸 onto 𝐺𝐼⃡⃗  ⃗ with foot 𝐽 

and extend 𝐸𝐽⃗⃗⃗⃗  to 𝐾 on 𝐺𝐹⃗⃗⃗⃗  ⃗.  Prove that 2𝐼𝐺𝑀𝐸𝐹 = 𝐹𝐾. 
 

 Proof  

 By the incircle theorem, 2𝐼𝐺𝑀𝐸𝐹 = |𝐹𝐺 − 𝐺𝐸|.  By ASA, 𝐺𝐽𝐾 ≅ 𝐺𝐽𝐸, so 𝐺𝐾 = 𝐺𝐸. 

 

 If 𝐹𝐺 = 𝐺𝐸, then 2𝐼𝐺𝑀𝐸𝐹 = 0, but 𝐾 ≡ 𝐹 by the center line theorem, so 𝐹𝐾 = 0 too. 

 If 𝐹𝐺 < 𝐺𝐸, then 2𝐼𝐺𝑀𝐸𝐹 = 𝐺𝐸 − 𝐹𝐺 = 𝐺𝐸 − (𝐺𝐾 − 𝐹𝐾) = 𝐺𝐸 − 𝐺𝐾 + 𝐹𝐾 = 𝐹𝐾. 

 If 𝐹𝐺 > 𝐺𝐸, then 2𝐼𝐺𝑀𝐸𝐹 = 𝐹𝐺 − 𝐺𝐸 = 𝐹𝐾 + 𝐺𝐾 − 𝐺𝐸 = 𝐹𝐾.            ∎ 
 

Problem 2.17 

Given the base, how long must the legs of an isosceles triangle be if the incircle touches them at 

their trisection points? 
 

Recall from the introduction that quadrilaterals are the union of two triangles adjacent on a side 

such that it is convex.  They are congruent if their definitional triangles are pairwise congruent. 
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Side–Angle–Side–Angle–Side (SASAS) Theorem 

Given three sides and the two angles between them, a quadrilateral is fully defined. 

 

 Proof 

Given 𝐸𝐹 and ∠𝐹 and 𝐹𝐺 and ∠𝐺 and 𝐺𝐻, by SAS, 𝐸𝐹𝐺 is fully defined.  Quadrilaterals 

are convex, so 𝐸 is inside ∠𝐺 and, by the interior angle axiom, ∠𝐺 = ∠𝐹𝐺𝐸 + ∠𝐸𝐺𝐻.  By 

angle subtraction, ∠𝐸𝐺𝐻 is fully defined.  By SAS, 𝐸𝐺𝐻 is fully defined.           ∎ 

 

Given sides and angles, there are four other quadrilateral congruence theorems:  AAASS, AASAS, 

ASASA and ASSSS.  There are more when given one or both diagonals.  Proofs are left as exercises; 

in each case, you must prove that two triangles adjacent on a diagonal are both fully defined. 

 

Problem 2.18 

Given a segment 𝐸𝐹 that is cut by a line, ℓ, find a point 𝐺 on ℓ such that ℓ bisects ∠𝐺 in 𝐸𝐹𝐺. 

 

 Solution 

Let 𝐸′ be the foot of the perpendicular dropped from 𝐸 onto ℓ and let 𝐸′′ be the reflection 

of 𝐸 across ℓ.  Analogously, define 𝐹′ and 𝐹′′.  Assume 0 < 𝐹𝐹′ < 𝐸𝐸′; if it is not, then 

switch the labels.  By SASAS, 𝐸𝐸′𝐹′𝐹′′ ≅ 𝐸′′𝐸′𝐹′𝐹, which holds the equality ∠𝐸 = ∠𝐸′′.  

𝐸𝐸′′𝐺 is isosceles by the isosceles triangle theorem converse and ℓ is the perpendicular 

bisector of its base, 𝐸𝐸′′.  By the center line theorem, ℓ is also the apex angle bisector, so 

𝐺 is the desired point on ℓ.                 ∎ 

 

Discussion 

If ℓ is perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗, then 𝐸𝐸′𝐹′𝐹′′ and 𝐸′′𝐸′𝐹′𝐹 are degenerate.  Two cases:  

 

1. If ℓ is the bisector of 𝐸𝐹, then every point on ℓ that is not 𝑀𝐸𝐹 is a solution.  

2. If ℓ is not the bisector of 𝐸𝐹, then there are no solutions.  

  

If ℓ cuts 𝐸𝐹 at its midpoint but it is not perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗, then 𝐸𝐸′𝐹′𝐹′′ ≅ 𝐸′′𝐸′𝐹′𝐹 

are Saccheri quadrilaterals with the same base; their summits extended never intersect.  

Since 𝐸𝐹′′⃗⃗⃗⃗⃗⃗⃗⃗  and 𝐸′′𝐹⃗⃗⃗⃗⃗⃗⃗⃗  are like this, then there is no solution.  If either ℓ is perpendicular to 

𝐸𝐹⃡⃗⃗⃗  ⃗ or ℓ cuts 𝐸𝐹 at its midpoint, then the solution is not fully defined.  Thus, we assume 

𝐹𝐹′ < 𝐸𝐸′, not 𝐹𝐹′ ≤ 𝐸𝐸′, and insist that 𝐺:= 𝐸𝐹′′⃗⃗⃗⃗⃗⃗⃗⃗ ∩ 𝐸′′𝐹⃗⃗⃗⃗⃗⃗⃗⃗  exists and it is not on 𝐸𝐸′′. ∎ 

 

Tangential Quadrilateral Theorem I 

A quadrilateral is tangential if and only if any three of its angle bisectors are concurrent. 
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 Proof 

Given 𝐸𝐹𝐺𝐻, assume that the angle bisectors of ∠𝐸, ∠𝐹, ∠𝐺 are concurrent at 𝐼, then 

three uses of the angle bisector theorem on ∠𝐸, ∠𝐹, ∠𝐺 prove 𝐼 is equidistant to 𝐸𝐹 and 

𝐸𝐻; also to 𝐹𝐸 and 𝐹𝐺; also to 𝐺𝐹 and 𝐺𝐻.  By transitivity, it is equidistant to all the sides. 
 

Assume that 𝐸𝐹𝐺𝐻 is tangential.  By HL, 𝐼𝐻𝐸𝐼𝐸 ≅ 𝐼𝐸𝐹𝐼𝐸, so ∠𝐼𝐻𝐸𝐸𝐼 = ∠𝐼𝐸𝐹𝐸𝐼.  Thus, 𝐼 is 

on the angle bisector of ∠𝐸; analogously, 𝐼 is on the angle bisectors of ∠𝐹, ∠𝐺, ∠𝐻.      ∎ 

 

Pitot Theorem 

In a tangential quadrilateral, the sums of each pair of opposite sides are equal. 

 

 Proof 

Let 𝐸𝐹𝐺𝐻 be tangential and 𝐼𝐸𝐹 , 𝐼𝐹𝐺 , 𝐼𝐺𝐻 , 𝐼𝐻𝐸 be the incircle’s touching points.  Then,  

𝐸𝐹 + 𝐺𝐻 = 𝐸𝐼𝐸𝐹 + 𝐼𝐸𝐹𝐹 + 𝐺𝐼𝐺𝐻 + 𝐼𝐺𝐻𝐻.  By the two tangents theorem, 𝐸𝐼𝐸𝐹 = 𝐸𝐼𝐻𝐸  

and 𝐹𝐼𝐸𝐹 = 𝐹𝐼𝐹𝐺  and 𝐺𝐼𝐺𝐻 = 𝐺𝐼𝐹𝐺  and 𝐻𝐼𝐺𝐻 = 𝐻𝐼𝐻𝐸 .  Thus, 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸.    ∎  
 

Lemma 2.3 

A rhombus is tangential. 

 

Pitot Theorem Converse 

If the sums of each pair of opposite sides of a quadrilateral are equal, it is tangential. 
 

 Euclidean Proof (included for history-of-math students – only orange belts can do this) 

Given 𝐸𝐹𝐺𝐻  with  𝐸𝐹 + 𝐺𝐻 = 𝐸𝐻 + 𝐺𝐹, if all the sides are equal, the result by lemma 

2.3.  If not, then 𝐸𝐻 < 𝐸𝐹, or re-label so this is true.  For the equality to hold, 𝐺𝐻 < 𝐺𝐹.  

Lay off 𝐸𝐻 on 𝐸𝐹⃗⃗⃗⃗  ⃗ to 𝐽 so 𝐸𝐻 = 𝐸𝐽.  Lay off 𝐺𝐻 on 𝐺𝐹⃗⃗⃗⃗  ⃗ to 𝐾 so 𝐺𝐻 = 𝐺𝐾.  These sides are 

the bases of isosceles triangles 𝐻𝐽𝐸, 𝐽𝐾𝐹, 𝐾𝐻𝐺.  By the center line theorem, the 

mediators of the sides of 𝐻𝐽𝐾 bisect ∠𝐸, ∠𝐹, ∠𝐺; by the circumcenter theorem43, they 

are concurrent.  By tangential quadrilateral theorem I, 𝐸𝐹𝐺𝐻 is tangential.          ∎  
 

Glagolev (1954) ended neutral geometry with the following proof, but was rebuked by Fetisov44 

(1954, pp. 26-27) for omitting L. 2.5.  Pogorelov (1982) ended neutral geometry with L. 2.3, then 

began Euclidean geometry with the circumcenter theorem and then the above proof, which is 

standard in textbooks that do not start with neutral geometry as Euclid did in The Elements. 

 
43 This is on page one of the orange-belt chapter; it is why this is a Euclidean proof.  Look it up or come back later. 
44 At 15, in the small Russian town of Odojev, Fetisov taught himself French.  He studied agriculture but pursued 

math as a hobby.  At 37, in one sitting, he took the final exams of all 35 math classes taught by Moscow State 

University and became a Specialist of Abstract Math: like a B.S.  For WWII, he taught geometry to artillery officers. 
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Lemma 2.4 

Given 𝐹𝐺 with 𝐸 and 𝐻 on the same side of 𝐹𝐺⃡⃗⃗⃗  ⃗, there exists a circle with center 𝑃 that touches 

𝐹𝐸⃗⃗⃗⃗  ⃗, 𝐹𝐺, 𝐺𝐻⃗⃗⃗⃗⃗⃗  at 𝑃𝐸𝐹 , 𝑃𝐹𝐺 , 𝑃𝐺𝐻, respectively. 
 

 Proof 

Since 
1

2
∠𝐹 +

1

2
∠𝐺 < 𝜎, the bisectors of ∠𝐹 and ∠𝐺 intersect at 𝑃.  By the angle bisector 

theorem, 𝑃 is equidistant from 𝐹𝐸⃗⃗⃗⃗  ⃗, 𝐹𝐺 and 𝐺𝐻⃗⃗⃗⃗⃗⃗ .              ∎ 
 

Lemma 2.5 

Given a quadrilateral with the sums of each pair of opposite sides equal, by L. 2.4, the vertices can 

be sequentially labeled 𝐸, 𝐹, 𝐺, 𝐻 so a circle exists that touches at 𝑃𝐸𝐹 , 𝑃𝐹𝐺 , 𝑃𝐺𝐻.  𝐸 inside 𝐹𝑃𝐸𝐹 

and 𝐻 inside 𝐺𝑃𝐺𝐻 are not both true. 
 

 Proof 

 Assume that 𝐸 is inside 𝐹𝑃𝐸𝐹 and that 𝐻 is inside 𝐺𝑃𝐺𝐻. 

𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸     Given 

 𝐹𝑃𝐸𝐹 − 𝐸𝑃𝐸𝐹 + 𝐺𝑃𝐺𝐻 − 𝐻𝑃𝐺𝐻 = 𝐻𝐸 + 𝐹𝑃𝐹𝐺 + 𝐺𝑃𝐹𝐺  Expand 

 −𝐸𝑃𝐸𝐹 − 𝐻𝑃𝐺𝐻 = 𝐻𝐸     Two tangents theorem 

𝐻𝐸 + 𝐸𝑃𝐸𝐹 + 𝐻𝑃𝐺𝐻 = 0 is impossible, so 𝐸 is outside 𝐹𝑃𝐸𝐹 or 𝐻 is outside 𝐺𝑃𝐺𝐻.         ∎ 
 

Pitot Theorem Converse 

If the sums of each pair of opposite sides of a quadrilateral are equal, it is tangential. 
 

 Neutral Geometry Proof 

Given 𝐸𝐹𝐺𝐻  with  𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸, by lemma 2.4, it is possible to construct a circle 

tangent to 𝐹𝐺 and 𝐹𝐸⃗⃗⃗⃗  ⃗ and 𝐺𝐻⃗⃗⃗⃗⃗⃗ .  Suppose that it is not tangent to 𝐻𝐸.  By lemma 2.5, it is 

possible to draw a tangent to this circle from 𝐸 to a point 𝐾 on 𝐺𝐻⃗⃗⃗⃗⃗⃗ .  𝐸𝐹𝐺𝐾 is tangential.  

The trichotomy is 𝐾 ≡ 𝐻, 𝐾 is inside 𝐺𝐻, or 𝐾 is on 𝐺𝐻⃗⃗⃗⃗⃗⃗  past 𝐻.  Assume 𝐾 is inside 𝐺𝐻. 
 

𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸   Given 

   𝐸𝐹 + 𝐺𝐾 = 𝐹𝐺 + 𝐾𝐸   Pitot theorem using 𝐸𝐹𝐺𝐾 

 𝐺𝐻 − 𝐺𝐾 = 𝐻𝐸 − 𝐾𝐸  Subtract one equation from the other 

            𝐾𝐻 = 𝐻𝐸 − 𝐾𝐸  Subtract 𝐺𝐾 from 𝐺𝐻 

𝐾𝐻 + 𝐾𝐸 = 𝐻𝐸   Add 𝐾𝐸 to both sides 
 

This contradicts the triangle inequality theorem in 𝐾𝐻𝐸, so 𝐾 is not inside 𝐺𝐻.  

Analogously, 𝐾 is not on 𝐺𝐻⃗⃗⃗⃗⃗⃗  past 𝐻.  Thus, 𝐾 ≡ 𝐻 and the circle is tangent to 𝐻𝐸.         ∎ 
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Pedal triangle vertices are the feet of perpendiculars dropped on triangle sides or their extension 

from an arbitrary point called the pedal point.  Orange belts will prove the orthocenter theorem, 

that the altitudes are concurrent at a point called the orthocenter, which makes the orthic 

triangle a pedal triangle.  If the pedal point is the circumcenter, then the pedal triangle is the 

medial triangle, its sides are mid-segments, and its vertices are the midpoints of its parent 

triangle.  Without the parallel postulate, the circumcircle may not exist, but it does for equilateral 

triangles, so it is a yellow-belt term; medial triangles exist now, but only become important later. 

 

If the pedal point is the incenter, then the incircle touches the triangle at the vertices of the 

contact triangle, which is pedal.  The incircle exists and is unique for every triangle, in contrast 

to tangential quadrilaterals, which are not fully defined by their sides.  We have existence when 

𝑎 + 𝑐 = 𝑏 + 𝑑, but we never have uniqueness because the length of the diagonal can be any 𝑥 

such that 0 < 𝑥 < 𝑎 + 𝑏.  Choose one and then, by SSS, draw in 𝑐 and 𝑑. 

 

Before proving the following theorem, let us state what a quadrilateral is because our definition 

differs from the rather vacuous definition (four-sided figure) that is given in other textbooks.  A 

quadrilateral is the union of two triangles adjacent on a side.  In Geometry–Do, all quadrilaterals 

are convex; we ignore four-sided concave figures.  The definitional diagonal is the adjacent side. 

 

Next, let 𝐸𝐹𝐺𝐻 be the union of 𝐸𝐹𝐻 and 𝐹𝐺𝐻.  Let 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐻 be the pedal triangle vertices of 

the incenter of 𝐸𝐹𝐻.  Let 𝑄𝐹, 𝑄𝐺 , 𝑄𝐻 be the pedal triangle vertices of the incenter of 𝐹𝐺𝐻.  The 

subscript refers to the opposite vertex; e.g., 𝑃𝐸 is on side 𝐹𝐻 of triangle 𝐸𝐹𝐻.  Calling “Two 

tangents!” every time we substitute equal segments is tedious, so this will be left tacit.   
 

 
 

A pedal point is denoted 𝑃 and, if there is a second one, it is 𝑄; with subscripts, these letters 

denote the pedal triangle vertices.  The incenter, 𝐼, is a pedal point; the notation is compatible. 
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Tangential Quadrilateral Theorem II 

The incircles of a quadrilateral’s two triangles are tangent if and only if it is tangential. 

 

 Part One 

 If a quadrilateral is tangential, then the incircles of its two triangles are tangent. 

 

We hope to prove that 𝑃𝐸 and 𝑄𝐺 are the same point; that is, the length of 𝑃𝐸𝑄𝐺 is zero.  This is 

a trichotomy with the other two alternatives being 𝐹𝑄𝐺 < 𝐹𝑃𝐸 or 𝐹𝑃𝐸 < 𝐹𝑄𝐺. 

 

 Proof 

  𝐹𝑃𝐸 = 𝐸𝐹 − 𝐸𝑃𝐻   and  𝐹𝑄𝐺 = 𝐹𝐺 − 𝐺𝑄𝐻;  thus,  

𝑃𝐸𝑄𝐺 = 𝐹𝑃𝐸 − 𝐹𝑄𝐺 = 𝐸𝐹 − 𝐸𝑃𝐻 − 𝐹𝐺 + 𝐺𝑄𝐻.  Here we are assuming 𝐹𝑄𝐺 < 𝐹𝑃𝐸. 

 

𝐻𝑄𝐺 = 𝐻𝐺 − 𝐺𝑄𝐹  and  𝐻𝑃𝐸 = 𝐻𝐸 − 𝐸𝑃𝐹;  thus,  

𝑃𝐸𝑄𝐺 = 𝐻𝑄𝐺 − 𝐻𝑃𝐸 = 𝐺𝐻 − 𝐺𝑄𝐹 − 𝐻𝐸 + 𝐸𝑃𝐹. 

 

2𝑃𝐸𝑄𝐺 = 𝐸𝐹 + 𝐺𝐻 − (𝐹𝐺 + 𝐻𝐸) by adding the two equations above. 

But 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸 by the Pitot theorem, so 𝐹𝑄𝐺 < 𝐹𝑃𝐸  cannot be true. 

Analogously, 𝐹𝑃𝐸 < 𝐹𝑄𝐺 cannot be true, so 𝑃𝐸𝑄𝐺 = 0.    • 

 

 Part Two 

 If the incircles of a quadrilateral’s two triangles are tangent, then it is tangential. 

 

Here we assume that 𝑃𝐸  and 𝑄𝐺 are the same point, so we will give it one name, 𝑇.  We hope to 

prove that 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸 so that we can then invoke the Pitot theorem converse. 

 

 Proof 

 𝐸𝐹 + 𝐺𝐻   =   𝐸𝑃𝐻 + 𝑃𝐻𝐹 + 𝐺𝑄𝐹 + 𝑄𝐹𝐻 

         =   𝐸𝑃𝐹 + 𝐹𝑇 + 𝐺𝑄𝐻 + 𝐻𝑇 

         =  𝐸𝑃𝐹 + 𝐹𝑄𝐻 + 𝐺𝑄𝐻 + 𝐻𝑃𝐹   =   𝐻𝐸 + 𝐹𝐺  

 

 Thus, by the Pitot theorem converse, 𝐸𝐹𝐺𝐻 is tangential.    •          ∎ 

 

Tangential Quadrilateral Theorem III 

Let 𝑃𝐹 and 𝑃𝐻 be pedal triangle vertices of 𝐸𝐹𝐻, 𝑄𝐺 and 𝑄𝐸 be pedal triangle vertices of 𝐸𝐹𝐺, 𝑅𝐻 

and 𝑅𝐹 be pedal triangle vertices of 𝐺𝐻𝐹 and 𝑆𝐸 and 𝑆𝐺 be pedal triangle vertices of 𝐺𝐻𝐸.  Then 

𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸  if and only if  𝑃𝐻𝑄𝐺 + 𝑅𝐹𝑆𝐸 = 𝑄𝐸𝑅𝐻 + 𝑆𝐺𝑃𝐹. 
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Expand each addend of 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸 into the sum of three segments and then 

reassemble into 𝑃𝐻𝑄𝐺 + 𝑅𝐹𝑆𝐸 = 𝑄𝐸𝑅𝐻 + 𝑆𝐺𝑃𝐹; or vice versa.  This is left as an exercise. 

 

Шарнирная теорема means “hinge theorem” in Russian, but this is not a name that Russian 

geometers would recognize.  It was proven by Euclid (The Elements, Book I, Prop. 24, 25), but he 

never cited it in a subsequent proof, which probably explains why the Russians mostly ignore this 

result.  It is a staple of Western high-school geometry, but it is just added to that vast pile of stuff 

that high-school students must memorize, though they know that they will never use any of it. 

 

But all that is about to change.  The hinge theorem can be cited in trichotomy proofs!  

 

The bi-medial – the intersection of quadrilateral diagonals – is usually denoted 𝑇.  A kite is the 

union of congruent triangles such that uncommon sides that are equal are also adjacent. 

 

Tangential Quadrilateral Theorem IV 

If a quadrilateral is tangential and the midpoint of one diagonal is its bi-medial, then it is a kite. 

 

Let 𝐸𝐹𝐺𝐻 be tangential and 𝑀𝐹𝐻 ≡ 𝑇.  Label 𝑤 = 𝐸𝐼𝐻𝐸 = 𝐸𝐼𝐸𝐹  and 𝑥 = 𝐹𝐼𝐸𝐹 = 𝐹𝐼𝐹𝐺  and         

𝑦 = 𝐺𝐼𝐹𝐺 = 𝐺𝐼𝐺𝐻 and 𝑧 = 𝐻𝐼𝐺𝐻 = 𝐻𝐼𝐻𝐸; these equalities are true by the two tangents theorem. 

 

The proof would be easy if we knew 𝐸𝐹𝐺𝐻 to be orthodiagonal, so ∠𝑇 = 𝜌.  Then, 𝐸𝑇𝐹 ≅ 𝐸𝑇𝐻 

and 𝐺𝑇𝐹 ≅ 𝐺𝑇𝐻 by SAS, which hold the equalities 𝐸𝐹 = 𝐸𝐻 and 𝐺𝐹 = 𝐺𝐻, respectively.  A 

direct proof that ∠𝑇 = 𝜌 eludes me, but there are only two other alternatives: ∠𝐸𝑇𝐹 < ∠𝐸𝑇𝐻 

or ∠𝐸𝑇𝐻 < ∠𝐸𝑇𝐹.  If these alternatives are contradictory, then ∠𝑇 = 𝜌 by trichotomy. 

 

 Proof 

Assume that ∠𝐸𝑇𝐹 < ∠𝐸𝑇𝐻.  𝐸𝑇𝐹 and 𝐸𝑇𝐻 hold the inequality 𝐸𝐹 < 𝐸𝐻 by the hinge 

theorem.  Subtract 𝑤 from both sides to get 𝑥 < 𝑧.  By the vertical angles theorem, 

∠𝐺𝑇𝐻 = ∠𝐸𝑇𝐹 and ∠𝐺𝑇𝐹 = ∠𝐸𝑇𝐻; thus, ∠𝐺𝑇𝐻 < ∠𝐺𝑇𝐹.  𝐺𝑇𝐻 and 𝐺𝑇𝐹 hold the 

inequality 𝐺𝐻 < 𝐺𝐹 by the hinge theorem.  Subtract 𝑦 from both sides to get 𝑧 < 𝑥.  This 

is a contradiction, so ∠𝐸𝑇𝐹 ≮ ∠𝐸𝑇𝐻.  Analogously, ∠𝐸𝑇𝐻 ≮ ∠𝐸𝑇𝐹.           ∎ 

 

We will conclude yellow belt with a discussion of isosceles triangles, which are a principal topic 

of neutral geometry.  But first we will prove an important theorem that serves as a bridge 

between yellow belt for the Average Joe and advanced yellow belt for aspiring mathematicians. 

 

Did everybody get the white-belt exit exam question about Saccheri quadrilaterals? 
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Mid–Segment and Mediator Theorem 

The mid-segment of a triangle’s sides is perpendicular to the mediator of its base. 

 

 Proof 

Given 𝐸𝐹𝐺, let 𝐸′′, 𝐹′′, 𝐺′′ be the feet of perpendiculars dropped on 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   from 

𝐸, 𝐹, 𝐺, respectively.  By AAS, 𝐸′′𝑀𝐺𝐸𝐸 ≅ 𝐺′′𝑀𝐺𝐸𝐺 and 𝐹′′𝑀𝐹𝐺𝐹 ≅ 𝐺′′𝑀𝐹𝐺𝐺; thus, 

𝐸′′𝐸 = 𝐺′′𝐺 and 𝐹′′𝐹 = 𝐺′′𝐺.  By transitivity, 𝐸′′𝐸 = 𝐹′′𝐹, so 𝐸′′𝐹′′𝐹𝐸 is a Saccheri 

quadrilateral.  By Saccheri theorem I, 𝑀𝐸′′𝐹′′𝑀𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐸′′𝐹′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ; but, 𝐸′′𝐹′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ≡ 𝑀𝐺𝐸𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .         ∎ 

 

It is an easy corollary of ASA that isosceles triangles have two angle bisectors equal; while not 

among Euclid’s propositions, it must surely have been known to him.  Is the converse also this 

easy?  No.  Geometers waited over 2000 years for the converse, which is known as the Steiner-

Lehmus theorem.  Here is not the classic proof of Jakob Steiner, but a better one because it does 

not invoke the parallel postulate.  It is made possible by Pasch’s axiom, which was introduced by 

Moritz Pasch in 1882, about forty years after Lehmus proposed and Steiner solved the problem. 

 

Steiner–Lehmus Theorem 

If a triangle has two angle bisectors equal, then it is isosceles. 

 

 Modern Proof 

Given 𝐸𝐹𝐺 with the angle bisectors 𝐹𝐹∗ = 𝐸𝐸∗, assume that 𝐺𝐸 < 𝐺𝐹.  By the greater 

angle theorem, ∠𝐹 < ∠𝐸, and their halves, ∠𝐹∗𝐹𝐺 < ∠𝐸∗𝐸𝐺.  By C. 1.5, replicate ∠𝐹∗𝐹𝐺 

with one ray 𝐸𝐸∗⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the other inside ∠𝐸∗𝐸𝐺; let 𝐽 be its intersection with 𝐺𝐹.  From 

∠𝐹∗𝐹𝐺 < ∠𝐸∗𝐸𝐺 and insideness, ∠𝐸𝐹𝐽 < ∠𝐹𝐸𝐽.  By the greater side theorem, 𝐸𝐽 < 𝐹𝐽, 

so one can lay off 𝐹𝑀 = 𝐸𝐽 with 𝑀 inside 𝐹𝐽.  By SAS, 𝐽𝐸𝐸∗ ≅ 𝑀𝐹𝐹∗, which holds the 

equality ∠𝐸𝐽𝐸∗ = ∠𝐹𝑀𝐹∗.  Applying Pasch’s axiom to the line 𝐸𝐽⃡⃗  ⃗ and the triangle 𝑀𝐺𝐹∗, 

there exists a point 𝑁 that is on 𝐸𝐽⃡⃗  ⃗ and between 𝐹∗ and 𝑀.  In the triangle 𝑁𝐽𝑀, the 

interior angle ∠𝑁𝐽𝑀 equals the exterior angle ∠𝑁𝑀𝐹 because ∠𝐸𝐽𝐸∗ = ∠𝐹𝑀𝐹∗.  This 

contradicts the exterior angle inequality theorem and so 𝐺𝐸 = 𝐺𝐹.            ∎ 

 

For pedagogic purposes and because of its importance to the history of geometry, the classic 

proof of the Swiss mathematician Jakob Steiner is given at the end of the book in an appendix.   

 

We can now state this important theorem as a bi-conditional.  And we do so here, in yellow belt! 

 

Isosceles Angle Bisectors Theorem 

Two angle bisectors are equal if and only if the triangle is isosceles. 
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The name and wording of this theorem may remind you of one we proved immediately after AAS. 

 

Isosceles Altitudes Theorem 

Two altitudes are equal if and only if the triangle is isosceles. 

 

There seems to be a pattern developing.  What about the medians?  Problem 1.4.1 asked for 

proof that, if a triangle is isosceles, then two medians are equal.  How many of you were left with 

a hole in your heart when we concluded white belt without proving the converse? 

 

Isosceles Medians Theorem 

Two medians are equal if and only if the triangle is isosceles. 

 

 Proof 

 If 𝐸𝐹𝐺 is isosceles so 𝐸𝐺 = 𝐹𝐺, then, by SAS, 𝐸𝐺𝑀𝐹𝐺 ≅ 𝐹𝐺𝑀𝐺𝐸.  Thus, 𝐸𝑀𝐹𝐺 = 𝐹𝑀𝐺𝐸 . 

 

Proof of the converse would be easy if we knew ∠𝐸𝐹𝑀𝐺𝐸 = ∠𝐹𝐸𝑀𝐹𝐺 .  Then, 𝐸𝐹𝑀𝐺𝐸 ≅ 𝐹𝐸𝑀𝐹𝐺  

by SAS, which holds the equality 𝐸𝑀𝐺𝐸 = 𝐹𝑀𝐹𝐺 ; by doubling, 𝐸𝐺 = 𝐹𝐺.  A direct proof that 

∠𝐸𝐹𝑀𝐺𝐸 = ∠𝐹𝐸𝑀𝐹𝐺  eludes me, but there are only two other alternatives: ∠𝐸𝐹𝑀𝐺𝐸 < ∠𝐹𝐸𝑀𝐹𝐺  

or ∠𝐹𝐸𝑀𝐹𝐺 < ∠𝐸𝐹𝑀𝐺𝐸 .  If these alternatives are contradictory, then ∠𝐸𝐹𝑀𝐺𝐸 = ∠𝐹𝐸𝑀𝐹𝐺  by 

trichotomy.  This is the same strategy that we used to prove tangential quadrilateral theorem IV. 

 

Given 𝐸𝐹𝐺 such that 𝐸𝑀𝐹𝐺 = 𝐹𝑀𝐺𝐸 , extend 𝐸𝑀𝐹𝐺
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to 𝑃 so 𝐸𝑀𝐹𝐺 = 𝑃𝑀𝐹𝐺 and extend 

𝐹𝑀𝐺𝐸
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to 𝑄 so 𝐹𝑀𝐺𝐸 = 𝑄𝑀𝐺𝐸 .  By SAS, 𝐸𝑀𝐹𝐺𝐺 ≅ 𝑃𝑀𝐹𝐺𝐹 and 𝐹𝑀𝐺𝐸𝐺 ≅ 𝑄𝑀𝐺𝐸𝐸, which 

holds the equalities 𝐸𝐺 = 𝑃𝐹 and 𝐹𝐺 = 𝑄𝐸, respectively. 

 

Assume that ∠𝐸𝐹𝑀𝐺𝐸 < ∠𝐹𝐸𝑀𝐹𝐺 .  𝐸𝐹𝑄 and 𝐹𝐸𝑃 hold the inequality 𝐸𝑄 < 𝐹𝑃 by the 

hinge theorem.  𝐸𝐹𝑀𝐺𝐸  and 𝐹𝐸𝑀𝐹𝐺  hold the inequality 𝐸𝑀𝐺𝐸 < 𝐹𝑀𝐹𝐺  by the hinge 

theorem.  By doubling, 𝐸𝐺 < 𝐹𝐺; by substitution, 𝑃𝐹 < 𝑄𝐸.  This is a contradiction, so 

∠𝐸𝐹𝑀𝐺𝐸 ≮ ∠𝐹𝐸𝑀𝐹𝐺 .  Analogously, ∠𝐹𝐸𝑀𝐹𝐺 ≮ ∠𝐸𝐹𝑀𝐺𝐸 .             ∎ 

 

For the experts45 who know of the two-to-one medial point theorem, a Euclidean result that 

assumes the parallel postulate, this theorem may seem trivial.46  But proving this here in yellow 

belt makes for a much more powerful result because it makes it true in hyperbolic geometry as 

well as in Euclidean geometry.  Isosceles triangles are very important in hyperbolic geometry!  

The Lobachevskians would be lost without knowing the conditions equivalent to being isosceles. 

 
45 What are you doing spying on the beginner chapter? 
46 𝐸𝐶𝑀𝐺𝐸 ≅ 𝐹𝐶𝑀𝐹𝐺  by SAS, which holds the equality 𝐸𝑀𝐺𝐸 = 𝐹𝑀𝐹𝐺 .  By doubling, 𝐸𝐺 = 𝐹𝐺. 
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Let us summarize the conditions known to be equivalent to a triangle being isosceles: 

 

 Two interior angles are equal   Two altitudes are equal 

 Two angle bisectors are equal  Two medians are equal 

 

Problem 2.19 

Given an isosceles right triangle, can you prove that the base angles are each half of a right angle? 

 

No, you cannot prove this!  Yellow belts do not have the angle sum theorem (the interior angles 

of a triangle sum to one straight angle) because its proof cites the parallel postulate.  In hyperbolic 

geometry, the interior angles of a triangle sum to less than a straight angle; 𝛼 + 𝛽 + 𝛾 < 𝜎.   

 

A rectangle is a quadrilateral with equal angles and a square is a rectangle with equal sides. 

 

Construction 2.4         (Euclid, Book IV, Prop. 15) 

Inscribe a regular (equilateral and equiangular) hexagon in a given circle. 

 

Euclidean Solution 

Draw circles equal to the given circle with centers diametrically opposed in it.  The new 

circles’ centers and their intersections with the given circle are the hexagon vertices.    ∎ 

 

Common Core sometimes tacks this construction onto their annoying fill-in-the-bubble exams.  

 

 Neutral Geometry Solution 

Draw an equilateral triangle and find its incenter, 𝐼.  By the incenter and circumcenter 

theorem, the angle bisectors extended mediate the opposite sides.  Thus, there are six 

triangles congruent by AAS, so the six angles around 𝐼 are equal.  Draw a circle around 𝐼 

of the given radius.  By SAS, the six rays cut it at the vertices of a regular hexagon.        ∎ 

 

Sometimes Common Core asks for a square in a circle, which is easy – a diameter and its mediator 

cut the circle at its vertices.  By SAS, it has equal sides and equal angles.  But they may be acute! 

 

Right Rectangle  A rectangle with right angles 

Right Square   A right rectangle with equal sides 

 

Yellow belts are responsible for knowing these definitions only so they can contrast what they 

are doing with what orange belts will be doing after the parallel postulate is introduced.  Yellow 

belts cannot construct either of these figures.  When René Descartes invented Cartesian 

coordinates, he did not just construct a grid of squares, he constructed a grid of right squares.   
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Cartesian coordinates are only useful if the scale is stated so the problem can be applied to some 

object in the real world.  But scaling a geometric figure up or down to represent a real-world 

object can only be done with the triangle similarity theorem, which states that, if the angles of 

two triangles are pairwise equal, then then their sides are proportional.  But this theorem cannot 

be proven without the parallel postulate.   

 

Suppose I say, “Given a triangle with base 40.2 cm and base angles 45° and 51°, what is the 

length of the median to the base?”  This is an easy application of the ASA theorem.  You draw the 

base to the given length, use a protractor to construct the angles and extend their rays to 

intersect at the apex.  You use C. 1.2 to bisect the base and then you use your centimeter ruler 

to measure from the base midpoint to the apex.  It is 22.3 cm! 

 

Now suppose that I try to make this problem realistic by saying, “I have a mortar and wish to shell 

an enemy anti-aircraft gun.  But I cannot measure the distance directly because it is on the other 

side of an office building and, even if I could get out there with a measuring tape, they would 

shoot me.  So, I send two soldiers 201 m in each direction on my street and have them measure 

the angle to the enemy gun.  They report angles of 45° and 51°.  What is the range for my shot?” 

 

Without the parallel postulate, we cannot answer.  Just because the base of the triangle on the 

paper and the triangle in real life have a ratio of one to a thousand is no assurance that the legs 

or the median to the base are in this ratio.  Ballistics is not just different in a hyperbolic world, it 

does not exist, at least on a large scale.  It might be approximately Euclidean on the scale of small 

arms, but artillery would be pointless because there would be no means of locating the enemy. 

 

Descartes is known as the father of modern philosophy; he is a staple of college philosophy 

courses.  Even in high school, most students are familiar with his dictum, Cogito, ergo sum; or,     

I think, therefore I am.  Descartes wanted to clear away all tacit assumptions – A noble endeavor, 

which I share! – and he concluded that “I exist” is the only thing that any of us can really be sure 

of.  From this one axiom, he then set out to prove all knowledge.  With all due respect, Descartes 

failed.  His invention of Cartesian coordinates tacitly assumes the parallel postulate.  His Fifth 

Meditation “proves” the existence of God by stating that existence is in the definition of a perfect 

being in the same way that the angle sum theorem is in the definition of a triangle.  It is not. 

 

Common Core tacitly assumes the parallel postulate.  We will play a trick on American teachers 

who skip ahead to the yellow belt exit exam to check that they know this material without reading 

the chapter.  In problems #4 and #5, I define geometric figures by their Cartesian coordinates, so 

we are assuming that the world is approximately Euclidean for triangles a few hundred meters 

across.  The American teachers’ insistence on turning easy geometry problems into difficult 

algebra problems will be hilarious as they futilely throw square roots in every direction. 
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Yellow Belt Exit Exam 

 

1. Conway Problem  At each vertex, extend the sides of a triangle out by a distance equal to 

the opposite side.  Prove that the six endpoints are concyclic and find the circle center. 

 

2. A triangle has sides of 13 cm, 14 cm and 15 cm.  Where does the incircle touch the sides? 

 

3. Prove that, if the apex angle bisector and the base mediator do not coincide, then they 

intersect outside the triangle. 

 

4. Find the circumcenter of a triangle with vertices at (−3.8,−0.6), (12.7, 0.4) and (1, −27). 

 

5. You bought a quadrilateral farm with vertices at (0, 0), (408, 0), (288, 315) and 

(68, 285) meters.  You wish to install center pivot irrigation.  Where is the center?   

 

6. Given 𝑃 interior to 𝐸𝐹𝐺, let 𝐸′′: = 𝐸𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐹𝐺 and 𝐹′′: = 𝐹𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐸𝐺 and 𝐺′′: = 𝐺𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐸𝐹.  

Prove that, if any two of 𝐸𝐺′′𝑃𝐹′′ or 𝐹𝐸′′𝑃𝐺′′ or 𝐺𝐹′′𝑃𝐸′′ are tangential quadrilaterals, 

then the third quadrilateral is also tangential. 

 

7. Let 𝐸𝐹𝐺𝐻 be tangential with ∠𝐺𝐻𝐸 + ∠𝐻𝐸𝐹 < 𝜎  and 𝐼 the incenter.  𝐽 is on 𝐼𝐸𝐹𝐼𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   such 

that 𝐻𝐽 = 𝐻𝐼𝐺𝐻.  Prove that 𝐸𝐼⃗⃗⃗⃗  bisects 𝐼𝐸𝐹𝐽. 

 

8. Look up external tangents and then prove this:  If two circles touch, then the quadrilateral 

whose vertices are the touching points of their external tangents is tangential.   

 

9. Given two sides, an angle opposite one of them and the fact that the angle opposite the 

other side is acute or that it is obtuse, prove that the triangle is fully defined. 

 

10. Given lines 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ with 𝐹 and 𝐻 on opposite sides of 𝐸𝐺⃡⃗⃗⃗  ⃗, if ∠𝐹𝐸𝐺 = ∠𝐻𝐺𝐸, prove 

that 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ do not intersect. 

 

11. Given 𝐸𝐹𝐺, let 𝐸′′, 𝐹′′, 𝐺′′ be the feet of perpendiculars dropped on 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   from 𝐸, 𝐹, 𝐺, 

respectively.  Prove that ∠𝐸′′𝐸𝐹 + ∠𝐹′′𝐹𝐸 is the angle sum of 𝐸𝐹𝐺. 

 

12. Construct an angle that is one third of a straight angle.  Can we call this angle 𝜑? 

 

13. A soldier must sweep an equilaterally triangular field using a landmine detector that has 

a radius of half the triangle’s altitude.  If he starts at one vertex, what is the shortest path?  
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Practice Problems   

 

2.20 Construct a right triangle given 

1.  a leg and the hypotenuse. 

2. the hypotenuse and one acute angle. 

3. the sum and the difference of the legs. 

 

2.21  Construct a triangle given  

 1. the base, the apex altitude and one leg. 

2. the base and the two base angles. 

3. the base, a base angle and the median to the leg that defines this angle. 

4. the base, the median to the base and one leg. 

5. the apex angle, its angle bisector (the length to its infoot) and a leg. 

 

2.22 Construct two equal circles whose common chord equals their given radius. 

 

2.23 Construct two equal circles given their common chord and the distance between centers. 

 

2.24  Given that 𝑀:= 𝐸𝐹 ∩ 𝐺𝐻 and 𝑀𝐽⃗⃗⃗⃗  ⃗ bisects ∠𝐹𝑀𝐺, 

 1. Prove that 𝐽𝑀⃗⃗⃗⃗  ⃗ bisects ∠𝐸𝑀𝐻. 

2. If 𝑀𝐾⃗⃗⃗⃗⃗⃗  ⃗ bisects ∠𝐸𝑀𝐻, prove that 𝐽, 𝐾 and 𝑀 are collinear. 

 

2.25 Given 𝐸𝐹𝐺𝐻 tangential, 𝐺𝐻 = 2𝐹𝐺 = 4𝐸𝐹, how many times can 𝐸𝐹 be laid off in 𝐻𝐸? 

 

2.26 Solve problem 2.11 if the angle goes between the centers; that is, its rays cut 𝑂1𝑂2. 
 

2.27 Let 𝜔1 and 𝜔2 be concentric circles with 𝜔1 inside 𝜔2 and center 𝑂.  If 𝐸, 𝐹 are on 𝜔1 and 

𝐺, 𝐻 are on 𝜔2 and ∠𝑂𝐸𝐺 = ∠𝑂𝐹𝐻, prove that 𝑂𝐸𝐺 ≅ 𝑂𝐹𝐻. 

 

2.28 Let 𝐸𝐹𝐺 be isosceles with 𝐸𝐺 = 𝐹𝐺 and 𝐸′ and 𝐹′ be the feet of altitudes to 𝐹𝐺⃗⃗⃗⃗  ⃗ and  

𝐸𝐺⃗⃗⃗⃗  ⃗, respectively.  Prove that the line from 𝐺 through their intersection bisects ∠𝐺. 

 

2.29 Let 𝐸𝐹𝐺 be isosceles with 𝐸𝐺 = 𝐹𝐺 and let 𝑃 be a point in the interior of 𝐸𝐹𝐺 such that 

  ∠𝐸𝑃𝐺 = ∠𝐹𝑃𝐺.  Prove that 𝑃 is on the median to 𝐸𝐹. 

 

2.30 Let 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 be distinct points on a circle such that 𝑃1𝑃2 = 𝑃2𝑃3 = 𝑃3𝑃4 = 𝑃4𝑃5.  

Prove that 𝑃1𝑃4 = 𝑃2𝑃5. 
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2.31 You own a farm on one side of a straight paved highway and with your barn some distance 

from the highway.  Build a curved driveway of a constant turning radius that meets the 

highway at the edge of your property line and is tangent to it.  Describe how.  This 

construction may not be possible in hyperbolic geometry.  Why not? 
 

2.32 Given 𝐸𝐹𝐺 with 𝐸𝐺 = 𝐹𝐺, extend 𝐺𝐸⃗⃗⃗⃗  ⃗ to 𝐽 and 𝐺𝐹⃗⃗⃗⃗  ⃗ to 𝐾 such that ∠𝐺𝐽𝐹 = ∠𝐺𝐾𝐸.  Prove 

that 𝐽𝐺𝐹 ≅ 𝐾𝐺𝐸. 
 

2.33 Given 𝐸𝐹 with 𝐽 and 𝐾 on the mediator such that 𝐸𝐽 = 𝐹𝐾.  Prove that 𝐸𝑀𝐸𝐹𝐽 ≅ 𝐹𝑀𝐸𝐹𝐾. 
 

2.34 Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 = ∠𝐹𝐸𝐺, prove that 𝐸𝑀𝐸𝐹𝐺 ≅ 𝐹𝑀𝐸𝐹𝐺. 
 

2.35 Given 𝐸𝐹 with ∠𝐸𝐽𝑀𝐸𝐹 = ∠𝐹𝐾𝑀𝐸𝐹 and with 𝐽,𝑀𝐸𝐹 , 𝐾 collinear and in that order, prove 

that 𝐸𝐽𝑀𝐸𝐹 ≅ 𝐹𝐾𝑀𝐸𝐹. 
 

2.36 Given 𝐸𝐹 and a line that cuts it at 𝑀𝐸𝐹 but is not perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗, raise perpendiculars 

from 𝐸 and 𝐹 to intersect the line at 𝐽 and 𝐾, respectively.  Prove that 𝐸𝐽𝑀𝐸𝐹 ≅ 𝐹𝐾𝑀𝐸𝐹. 
 

2.37 Given 𝐸𝐹𝐺𝐻 with ∠𝐸 = ∠𝐹 = 𝜌 and 𝐸𝐺 = 𝐹𝐻, prove that 𝐸𝐹𝐺𝐻 is a Saccheri 

quadrilateral. 
 

2.38 Kite is an orange-belt term; look it up.  (1) Construct a kite; (2) Without the Pitot theorem 

converse, prove that kites are tangential; (3) Prove that one diagonal mediates the other.  
 

2.39 Some books include among the perpendicular length theorem corollaries that, if a line is 

perpendicular to one of two parallels, it is perpendicular to the other too.  Why don’t we?  

Is it also a corollary that tangents to a circle at the endpoints of a diameter never meet? 
 

2.40 Let 𝐸𝐹 be a diameter and 𝑂 the circle center.  If 𝑃 is on 𝑂𝐸, prove that 𝑃𝐸 ≤ 𝑃𝐺 ≤ 𝑃𝐹 

for any 𝐺 on the circle.  If 𝑃 is on 𝑂𝐸⃗⃗⃗⃗  ⃗ past 𝐸, does this inequality still hold? 
 

2.41 Given 𝐸𝐹𝐺 isosceles and ∠𝐺 obtuse, let 𝐸′ and 𝐹′ be the feet of perpendiculars dropped 

on 𝐹𝐺⃗⃗⃗⃗  ⃗ and 𝐸𝐺⃗⃗⃗⃗  ⃗, respectively.  Let 𝐺′′: = 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝐹𝐹′⃗⃗ ⃗⃗ ⃗⃗  .  Prove that 𝐸𝐹𝐺′′ is isosceles. 
 

2.42 Let 𝐸, 𝐹, 𝐺 be on an 𝑂-circle such that 𝐸𝐹 < 𝐹𝐺, but 𝑂 is not on 𝐹𝐺.  Prove that 

∠𝑂𝑀𝐸𝐹𝑀𝐹𝐺 < ∠𝑂𝑀𝐹𝐺𝑀𝐸𝐹. 
 

2.43 Given two intersecting lines and a point, 𝐺, that is not on either of them, find 𝐸 on one 

line and 𝐹 on the other line so the lines are angle bisectors of 𝐸𝐹𝐺. 
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Introductory Geometry the Year Before Geometry–Do Is Taught47 
 

Prerequisites.  Introductory geometry does not require quadratic equations.  Neither the 

quadratic formula, the distance formula, the midpoint formula, nor square roots are needed.  But 

geometers are expected to have a working knowledge of solving linear equations by isolating the 

variable and, while they do not need a general knowledge of linear systems, they should be able 

to solve triangular systems by substitution.  This is an example of introductory algebra: 
 

3𝑥 − 4 = 5  
Solution:  𝑥 = 3 

2𝑥 − 𝑦 = 5        Solution:   
        2𝑦 = 6        𝑥 = 4  and  𝑦 = 3 

𝑦 = −2𝑥 + 4        𝑥 and 𝑦 intercepts:   
                                𝑥 = 2  and  𝑦 = 4 

 

Geometers do not initially have multiplication, but they can bisect and trisect segments.  

Problems with halves or thirds that have solutions with denominators of 2, 3, 4, 6 are useful.  This 

should be taught in Level VII, but the introductory geometry textbook that I am recommending 

for Level VIII is quite basic and it is possible to teach it concurrently with introductory algebra.  

Introductory algebra is needed for Level IX geometry, and mastery is needed in Level X.   
 

Textbook.  For 2000 years, The Elements was the standard and only geometry textbook.  It was 

what Newton relied on to prove all the theorems in his Principia.48  However, The Elements is 

difficult for modern math students to read for the same reason that Beowulf is difficult for 

literature students to read – they are just so old!  Thomas Heath did a good job translating The 

Elements into English, but it is still difficult reading for teachers and wholly unsuited for students.   
 

In the early 20th century, the Englishmen Hall and Stevens wrote A School Geometry, which proves 

the most important propositions while relegating many to homework problems.  In 1918, this 

was the middle- and high-school textbook in Western Canada.  In 2017, it was reprinted in Delhi 

and is now sold as a college textbook for aspiring teachers with no mention of its origins, probably 

because Western Canada was mostly wilderness and vast cattle ranches in 1918 – much as it still 

is – and “progressives,” as they like to call themselves, do not want to admit that teenage 

cowboys from a hundred years ago knew far more geometry than most American and Canadian 

high-school teachers do today.  Being progressive only makes sense if we are actually advancing! 

 

I recommend A School Geometry for Level VIII Indians who will study Geometry–Do in Levels IX 

and X.49  To help geometry teachers coordinate their curriculums, I will describe using A School 

 
47 A more detailed discussion is here:  www.axiomaticeconomics.com/Teachers_Manual_School_Geometry.pdf  
48 A somber man, the only time he is known to have laughed was when he loaned a copy of The Elements to a friend, 

who asked if it was really necessary that he read it.  Newton laughed in his face.  It was the stupidest question, ever!   
49 Despite the bold title, Elementary Geometry for College Students by Alexander and Koeberlein is suitable for Level 

VIII Indians or 10th grade Americans.  It is three times the price, but it is modern; Hall and Stevens are old fashioned.  

Introduction to Geometry by Rusczyk is not suitable because he is just teaching remedial algebra with illustrations. 

http://www.axiomaticeconomics.com/Teachers_Manual_School_Geometry.pdf
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Geometry to prepare for Geometry–Do.  Also, home-school Americans who go on to a Catholic 

high school that uses Geometry–Do may be asked to teach their younger siblings; they too need 

this.  Common Core students can read it on their own to prepare for attending a private school 

that uses Geometry–Do, or to at least learn the bare minimum that college professors expect. 

   

Old-time geometers use the term “produce,” while modern geometers say “extend.”  A “straight 

line” is a line; all lines are straight.  Sometimes they say line but mean a line segment.  Euclid used 

the term “proposition;” modern geometers say “theorem.”  Theorem 3. [Euclid I. 15] means that 

what follows is the third theorem in A School Geometry and the 15th proposition in Book I of The 

Elements.  Otherwise, the English is easily understood by modern Level VIII Indians and by 

American home schoolers without any explanation beyond what the authors provide on p. 6.   

 

I recommend that the teacher write in the margins the modern names of theorems to help 

students transition to Geometry–Do.50  Because the difficulty level is uneven, it should be taught 

in this order to bring the easy circle theorems forward and leave the difficult ones for later. 
 

1, 2 Supplementarity  31 Diameter and Chord Theorem 

  3 Vertical Angles Theorem  32 Circumcenter Theorem Corollary 

  4 SAS (Side–Angle–Side) 33 Diameter and Chord Theorem Corollary #2 

  5 Isosceles Triangle Theorem 34 Equal Chords Theorem 

  6 Isosceles Triangle Theorem Converse 46 Tangent Theorem 

  7 SSS (Side–Side–Side) 47 Two Tangents Theorem 

  8 Exterior Angle Inequality Theorem 48 Common Point Theorem 

  9 Greater Angle Theorem  Optional 

10 Greater Side Theorem 19 Hinge Theorem 

11 Triangle Inequality Theorem 20 Equal Segments on Parallels Theorem 

12 Perpendicular Length Theorem 21 Misc. Parallelogram Theorems 

13 Transversal Lemma 22 Two Transversals Theorem 

14 Transversal Theorem 24 Parallelogram Area Theorem 

15 Transitivity of Parallels 25 Triangle Area Theorem Corollary #3 

16 Angle Sum Theorem 26 Triangle Area Theorem 

17 ASA and AAS (Two Angles and a Side) 29 Pythagorean Theorem 

18 HL (Hypotenuse–Leg) 30 Pythagorean Theorem Converse 
 

Teachers should work through chapters 1, 2, 3 and 4.51  Bring the easy circle theorems ahead of 

parallelograms by doing theorems 31, 32, 33, 34, 46, 47 and 48.  Get compasses and straightedges 

and do the constructions (called problems) 1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 20, 21, 22, 25, 26 and 

27 using the first methods given.  26 and 27 are needed for Geometry–Do; do not omit them! 

 
50 Go through the table of contents and write the chapter numbers in to reflect the modern division into chapters. 
51 Theorem 18; 19 is optional.  Beware!  The PDF files and the Delhi edition differ in their circle theorem numbers! 
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Off–the–Grid Cabins as an Application of Geometry  

 

Suppose you are building an 8′ × 12′ cabin that will rely entirely on solar power.  The roof should 

be asymmetric, with the southern face of a mild pitch to support the solar panels while the 

northern face is more steeply pitched.  Also, for a short 8′ span, asymmetric trusses are stronger. 

 

The strong roof truss.  For an asymmetrical roof, we will modify the Fink truss so the attic is a 

half equilateral triangle.  Bisect the ceiling joist and construct an equilateral triangle on the 

northern side.  The rafters rest on the southern wall and on the triangle apex.  A beam from the 

foot of the triangle meets the rafter at a right angle.   

 

The hollow roof truss.  The ceiling joist and the rafters are the same, but the support beams are 

removed to house a round water tank.  Water tanks can be quite heavy so, even if there were 

not a need for a large southern roof face, it is a good idea to build an asymmetric roof so the 

water tank is near a wall to help support it.  Have a hot- and a cold-water tank on either end of 

the cabin and put strong roof trusses between them so the roof does not sag in the middle. 

 

By the incenter theorem, the angle bisectors intersect at the center of the incircle.  Drop a 

perpendicular to the ceiling joist and extend it to the other side of the circle so it is a diameter.  

Measure it with a ruler to determine how large of a tank you can have.  Orange belts will learn of 

the right triangle incircle theorem, that the indiameter is the sum of the legs minus the 

hypotenuse.  Because our roof’s apex angle is right, this equation would give the same answer.   

 

If you are off the grid because of a war, dig into the reverse slope (away from the enemy) and 

build your cabin with the steeply pitched roof facing uphill with gun ports so you can fire on the 

enemy should they crest the hill.  Use the strong roof truss every 16′′ throughout and with 

double-thick plywood.  Pile dirt and rocks onto the roof to protect it from mortar shells.  If a tank 

crests the hill, run.  They cannot depress their gun to shoot downhill, but they can drive over you. 

 

Orange Belt Geometry for Construction Workers, next, originally came at the end of the orange-

belt chapter, which is logical, because the approximations to the Tudor arch do not exist in non-

Euclidean geometry.  However, few construction workers survive orange belt, so I moved this 

section forward.  Purists can restrict themselves to the classic arches and bridges, while those 

who must approximate can pretend that they are orange belts and have the parallel postulate.  

The Tudor builders were working from scratch, but arches today are almost always a façade on 

an existing structure, so approximations are essential to the modern construction company.  

Right rectangles do not exist in hyperbolic geometry, so only orange belts can give width to 

boards.  This section will draw plans for Fink and asymmetrical trusses using 2′′ × 6′′ boards. 
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Orange Belt Geometry for Construction Workers 

 

The single best piece of advice that I can offer construction workers is to use the metric system.52  

(I have seen plumbers almost come to blows because they messed up the laying of sewer pipe at 

1′′ drop every 8′.  A drop of one centimeter every meter – a 1% downgrade – is the same thing, 

but it is a lot easier.)  I would have scaled these roof truss figures at 1 cm = 1 foot, but they would 

not fit in the book.  Construction 3.3 draws a line parallel to a given line through a point not on 

the line, but you can do this now with a rolling ruler or by sliding a plastic triangle along a straight-

edge.  I encourage you to draw these roof trusses at 1 cm = 1 foot now, before next semester. 

 

Fink Roof Truss 

 
 

Asymmetrical Roof Truss, Strong 

 
 

Asymmetrical Roof Truss, Hollow 

 

 

52 Use 𝑢, 𝑣, 𝑤 for the legs and hypotenuse of a right triangle; 𝑎, 𝑏, 𝑐 are for 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. 
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Suppose that, while a house is being built, the workers must cross a ditch that is bridged with a 

2” X 12” X 12’ board.  It is bouncy underfoot and dangerously close to breaking when a fat man 

with a wheelbarrow full of sand is at its center.  Inscribe an arc in the board from one corner to 

the center point of the other side and across to the other corner.  Cut along the arc, steam bend 

another board over it and attach the two boards with corner braces.  The radius of an arc 

inscribed in a 2” X 12” X 12’ board is 19’ 3”53 because, after being planed, it is 1.5” X 11.5” X 12’. 

 

To inscribe an arc in a rectangle, find the center using the circumcenter theorem with your three 

points being two corners on the same side and the midpoint of the opposite side.  For aesthetic 

reasons, it is important that the several arcs in your design all have the same radius.  So, if one 

arc is given, choose any three widely spaced points on it and apply the circumcenter theorem.  

This is Euclidean, but only because we are fitting it to an existing rectangle. 

 

Arches with one center like above are called Roman and their chord is called the spring line.54  A 

Gothic arch has two centers; if they are at the endpoints of the spring line, it is called equilateral.  

If the centers are on the extensions of the spring line, it is called lancet; if inside, it is called deep. 

 

If you know the height and width, then draw mediators of the legs of the triangle defined by the 

end points of the spring line and the height of the arc above its midpoint.  Where the mediators 

intersect the spring line or its extension are the two arc centers.  If they intersect the spring line 

before they intersect each other, the centers must be below the spring line equally distant past 

where the mediators intersect each other.  How far past is indeterminate.  This is called a pointed 

Roman arch because it does not look very Gothic.  The Goths were a long time ago and use of 

their arches gives a building a medieval look.  The ogee arch is Gothic.  It is very pointed, which 

symbolizes prayers going up to the Lord in the sky.55  The onion dome is like a bulging ogee arch. 

 

Ogee Arch.  Circumscribe a rectangle around an equilateral triangle.  Draw arcs centered at the 

midpoint of the base and the endpoints of the side opposite the base with a radius of half the 

base.  The arch is the former arc from the base endpoints to the leg midpoints, and the latter arc 

from the leg midpoints to the triangle apex.  These arcs and the base enclose a window.          ∎ 

 

A Roman arch is often seen above a window, door, or gate.  It is squat, which is fine if it is on top 

of a rectangle; but, if it is the entire opening, its corners are too sharp.  A Tudor arch is also squat, 

but it has upright corners and works well for wide entrances to big buildings.  The classic Tudor 

arch is neutral geometry, but the approximations, C. 2.5, and the generic arch, are Euclidean. 

 

53 An arc inscribed in a 𝑤 × ℎ rectangle has radius 𝑟 =
4ℎ2+𝑤2

8ℎ
 because, by Pythagoras, (𝑟 − ℎ)2 + (

𝑤

2
)
2

= 𝑟2.     

54 I do not know the origin of this term and, yes, it should be spring segment, but we will stick with tradition. 
55 Can a geometer construct an ogee arch using only neutral geometry?  Under what conditions is this possible? 
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Tudor Arch.  Quadrisect the spring line, 𝐸𝐹.  Construct an equilateral triangle 𝑀𝐸𝑀𝐸𝐹
𝐽𝑀𝑀𝐸𝐹𝐹 with 

𝐽 below the spring line.  Extend 𝑀𝐸𝑀𝐸𝐹
𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to 𝐾  so 𝐽𝐾 = 𝑀𝐸𝑀𝐸𝐹

𝐽 and 𝑀𝑀𝐸𝐹𝐹𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to 𝐿 so 𝐽𝐿 = 𝑀𝑀𝐸𝐹𝐹𝐽.  

Draw arcs (called haunch arcs) centered at 𝑀𝐸𝑀𝐸𝐹
 and 𝑀𝑀𝐸𝐹𝐹 with radii 𝑀𝐸𝑀𝐸𝐹

𝐸 and 𝑀𝑀𝐸𝐹𝐹𝐹 to 

intersect 𝐽𝑀𝐸𝑀𝐸𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 𝑀 and 𝐽𝑀𝑀𝐸𝐹𝐹

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 𝑁, respectively.  Draw arcs (called crown arcs) centered at 

𝐾 and 𝐿 with radii 𝐾𝑀 and 𝐿𝑁 to intersect at the apex.                ∎ 

 

Suppose that a beam bridge made of reinforced concrete spans a canal four meters wide and it 

is ℎ meters above the concrete sides of the canal.  This is ugly, so the city has hired you, a mason, 

to construct a façade to make it appear that the bridge is a Tudor arch made entirely of brick. 

 

Like the expedient bridge over a ditch (above), we are fitting to an existing rectangle, so this is 

Euclidean.  There are many arches with four centers but, if we are going to call ours Tudor, then 

it must coincide with the classic one when given a height 
√6−√3

2
 of the width.  Also, we must 

quadrisect the spring line regardless of the height.  If the centers of the haunch arcs are near the 

edges of the spring line, the arch would look Gothic but with rounded corners.   If the centers of 

the haunch arcs are near the midpoint of the spring line, the arch would look like a pointed 

Roman.  But putting the centers of the haunch arcs on the quartile points makes it look Tudor. 

 

Construction 2.5  Construct a Tudor arch given a height and width approximately that of the 

classic Tudor arch. 

 

 Solution 

Quadrisect the spring line, 𝐸𝐹.  Raise a perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝑀𝐸𝐹  and lay off 𝑀𝐸𝐹𝐾 

to be the given height.  From 𝐹, raise a perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗ on the same side as 𝐾 and 

lay off 𝐹𝐽 = 𝐹𝑀𝑀𝐸𝐹𝐹.  Connect 𝐾𝐽.  From 𝐾, raise a perpendicular to 𝐾𝐽⃡⃗⃗⃗  on the same side 

as 𝑀𝐸𝐹 and lay off  𝐾𝐿 = 𝐹𝑀𝑀𝐸𝐹𝐹.  Connect 𝑀𝑀𝐸𝐹𝐹𝐿.  Where its mediator intersects 𝐾𝐿⃗⃗⃗⃗  ⃗ 

is the center of the crown arc, 𝑂, and its radius is 𝑂𝐾.  The haunch arc center is 𝑀𝑀𝐸𝐹𝐹 

and has radius 𝐹𝑀𝑀𝐸𝐹𝐹; the arcs meet on 𝑂𝑀𝑀𝐸𝐹𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Analogously on the other side.      ∎ 

 

Proof that this coincides with the Tudor arch when given a height 
√6−√3

2
 of the width comes later. 

 
Suppose that the Tudor arch we just designed was not a façade but was meant to support the 

roadbed.  Would it work?  No.  Brick is not as strong as stone and – far more fatal to the design – 

the mortar between them is much weaker than the bricks.  Since all the bricks are rectangular, 

they can only describe an arc if there is mortar between them and it is in a wedge shape.  Brick 

arches look elegant and are recommended for aesthetic reasons, but they are not weight bearing. 
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The Romans cut stones into isosceles triangle frustums (isosceles triangles cut by lines parallel to 

their bases) for bridge construction.  This works in areas free of earthquakes, but, because gravity 

presses them together, if the bridge is jolted, it all comes crashing down.  In modern times, 

bolting the stones together would make it earthquake resistant, but a more fundamental flaw is 

that it is only strong if it is most of a semicircle, which is too steep for vehicles.  Flatter Roman 

arches are weak in the center, and they push outwards as well as down, so they must have sturdy 

foundations.  Also, if the river rises, flood water pushes on the sides of the bridge near the banks 

and, if the river is flowing fast, it can push the stones out of place and cause a collapse.  

 

Engineers wish for an arch flat enough for vehicles to climb over but with upright corners, so the 

weight presses straight down, and the roadbed is above high waters.  An ellipse would work, but 

this is not feasible because every stone would be unique, and it is not practical to readjust the 

saw for each cut.  However, if you have two saws, they can be calibrated to cut the triangle 

frustums needed for arcs of two different radii.  Thus, the Tudors approximated an ellipse with 

haunch arcs of one radius and a single crown arc that goes all the way across rather than meeting 

in a pointed apex.  With modern construction, Tudor bridges are strong enough for truck traffic. 

 

Tudor Bridge.  Quadrisect the spring line, 𝐸𝐹.  Construct an equilateral triangle 𝑀𝐸𝑀𝐸𝐹
𝐽𝑀𝑀𝐸𝐹𝐹 

with 𝐽 below the spring line.  Draw arcs (called haunch arcs) centered at 𝑀𝐸𝑀𝐸𝐹
 and 𝑀𝑀𝐸𝐹𝐹 with 

radii 𝑀𝐸𝑀𝐸𝐹
𝐸 and 𝑀𝑀𝐸𝐹𝐹𝐹 to intersect 𝐽𝑀𝐸𝑀𝐸𝐹

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 𝑀 and 𝐽𝑀𝑀𝐸𝐹𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 𝑁, respectively.  Draw an arc 

(called the crown arc) centered at 𝐽 with radius 𝐽𝑀 = 𝐽𝑁.              ∎ 

 

The Tudor bridge is just like the Tudor arch except, instead of extending the legs of the equilateral 

triangle an equal distance to find the two centers of the crown arcs, we take the apex of the 

equilateral triangle to be the center of the single crown arc.  This is neutral geometry.  An 

isosceles triangle would make the bridge flatter or steeper, but this is not recommended.   

 

Is this design useful to carpenters?  No.  Archimedes, a Syracuse mathematician who studied in 

Alexandria shortly after the time of Euclid, invented what is now called the Archimedes’ trammel.  

It draws ellipses or, if a router is attached to the arm, cuts them.  Proof that this works is beyond 

the scope of this book, but it does, so carpenters have no need for approximating an ellipse with 

arcs.  Note that the word trammel, without the adjective, refers to a board with two awls clamped 

to it.  Pushing one into wood and rotating the board allows the other to scratch an arc, so the 

device functions just like a geometer’s compass, but it can reach across a sheet of plywood.   

 

Geometers drawing poster-size figures can buy a pencil trammel at a shop for wood workers.  It 

is time consuming to adjust, but it draws circles larger than the 54 cm of the Alvin 702V. 
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Construction 2.5 requires that the height and width be approximately that of the classic Tudor 

arch; that is, in the range 
1

4
𝑤 < ℎ <

√2

2
𝑤.  To draw an arch to an arbitrary height requires that 

the radius of the haunch arc be a function of height; specifically, 
2

3
ℎ.  This is called generic because 

squat/tall generic arches look like Roman/Gothic arches with rounded corners and, for the same 

height as the classic Tudor arch, the generic arch looks Tudorish, but it is not exactly the same.   

 

Two thirds of  
√6−√3

2
  is  

√6−√3

3
≈ 23.91% ≠ 25%  of the width, so it is not mathematically Tudor. 

 

We will cite C. 3.11; construction workers must skip ahead, or just take it as a cook-book recipe. 

 

Generic Arch.  Bisect the spring line, 𝐸𝐹, and raise a perpendicular from 𝑀𝐸𝐹 to 𝐾 so that 𝑀𝐸𝐹𝐾 

is the given height.  By C. 3.11, trisect 𝑀𝐸𝐹𝐾 and call two-thirds the height 𝑥.  Locate 𝑀𝐸𝑀𝐸𝐹
 and 

𝑀𝑀𝐸𝐹𝐹 on the spring line so 𝐸𝑀𝐸𝑀𝐸𝐹
 and 𝑀𝑀𝐸𝐹𝐹𝐹 are 𝑥 long.  From 𝐹, raise a perpendicular to 

𝐸𝐹⃡⃗⃗⃗  ⃗ on the same side as 𝐾 and lay off 𝐹𝐽 = 𝐹𝑀𝑀𝐸𝐹𝐹.  Connect 𝐾𝐽.  From 𝐾, raise a perpendicular 

to 𝐾𝐽⃡⃗⃗⃗  on the same side as 𝑀𝐸𝐹 and lay off  𝐾𝐿 = 𝐹𝑀𝑀𝐸𝐹𝐹.  Connect 𝑀𝑀𝐸𝐹𝐹𝐿.  Where its mediator 

intersects 𝐾𝐿⃗⃗⃗⃗  ⃗ is the center of the crown arc, 𝑂, and its radius is 𝑂𝐾.  The haunch arc is centered 

at 𝑀𝑀𝐸𝐹𝐹 and has radius 𝐹𝑀𝑀𝐸𝐹𝐹; the arcs meet on 𝑂𝑀𝑀𝐸𝐹𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Analogously on the other side.  ∎ 

 

 
Tudor Arch 

 
Generic Arch 

 

Problem 2.44  Prove that, for any 𝑥 < ℎ, the generic arch’s haunch and crown arcs are tangent. 

 

Problem 2.45  A sewer pipe at a 1% downgrade is 1 m above the city line, which is 5 m away.  

You will use two 22.5° elbows and then enter the city line at a 1% downgrade.  If pipe is cut 3 cm 

from the bend in the elbow, how long is the hypotenuse pipe?  Then, how far to the city line? 
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On the Importance of Not Neglecting the Third Dimension 

 

When I was in high school (1984) I entered the Balsa Bridge Building Contest56 with a truss design.  

The roadbed twisted and the trusses turned into an S-shape when viewed from the top; it did not 

break, but it very quickly deformed enough to fail.  The side view showed triangles galore, but 

the downward view showed no triangles, just some cross braces between the trusses.  My sad 

balsa wood bridge should serve as a cautionary tale about seeing things in only two dimensions. 

 

How many students were rolling their eyes when they got to problem 2.14 about Poe’s 

pendulum?  You should have been.  Generations of students have read The Pit and the Pendulum 

in their American Literature class with nary a dissenting voice.  When restricted to the plane, our 

solution to problem 2.14 is sound; but is that big blade really restricted to the plane?  Monkish 

ingenuity notwithstanding, when the blade is going fast near the nadir of its swing, if it is out of 

line with its motion, the air will push the leading edge even more out of line.  The trailing edge 

does not act as a fin because air that hits the leading edge slides down the length of the blade 

and prevents still air from pushing the trailing edge back into line.  That big blade will start 

spinning on its cable and will eventually be doing a languid circle around the man strapped to the 

floor, who is probably by then loudly mocking his executioners for their weak engineering skills. 

 

Another unquestioningly accepted theory is IS-LM Analysis.  This is two equations, the income 

identity, and the demand for real money holdings, in two variables, national income and the 

interest rate.  When students point out that the obvious policy prescription is to print money to 

hold the interest rate at zero, economists talk about how these curves “shift” in response to 

inflation.  Bad move!  Curves do not shift.  What is actually happening is that there are three 

equations in three unknowns and economists initially tried to assume away the third dimension 

by declaring the price level to be constant.  When that did not work, they turned their problem 

into a sequence of problems, each with a constant price level but, in some hazily defined way, 

shifted from the previous problem.  Their near-religious devotion to “data” blinds them to the 

fact that IS-LM Analysis is based on deductive logic, not statistics, and that it is missing an axiom. 

 

My Axiomatic Theory of Economics57 has its own axiom set, distinct from the two-going-on-three 

axioms of John Hicks’ IS-LM Analysis.  But the point is, if your problem is three dimensional, then 

model it with three equations and then simultaneously solve them for all three variables.  If this 

seems daunting, then learn the needed math.  Looking at a two-dimensional slice of a three-

dimensional problem because the graphs are easy to draw and/or because you only know how 

to solve two equations in two unknowns does not result in a simplification; it results in nonsense. 

 
56 In my day, we could use sheets of balsa wood; now they disallow this: www.balsabridge.com  
57 www.researchgate.net/profile/Victor_Aguilar4/publication/270687116_AXIOMATIC_THEORY_of_ECONOMICS  

http://www.balsabridge.com/
https://www.researchgate.net/profile/Victor_Aguilar4/publication/270687116_AXIOMATIC_THEORY_of_ECONOMICS
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Advanced Yellow Belt Geometry:  Quadrilaterals 

 

In my opinion, students take too many vacations.  There are 52 weeks in the year no matter how 

you slice it, so every week off in the middle of the school year is a week less of summer vacation.  

This is the principal reason why schools struggle to retain farm boys; school starts in the middle 

of the fall harvest, so the children cannot be there on day one and, already a week behind when 

they do show up, they flunk out.  For city kids, it just exchanges a summer week at the skate park 

for a winter week at the rec center basketball court.  It does not help them learn.  In a week’s 

time, they have forgotten everything they learned before vacation, so their teachers waste yet 

another week reviewing material that the students once had thoroughly in mind. 

 

Thus, I refer to fall break as “yellow belt preparation week,” assign homework and keep office 

hours to help the students with it.  It is also why I refer to early release days as “double homework 

days;” just because the teachers will spend the afternoon eating doughnuts and listening to 

sanctimonious speeches is no reason for the students not to have their noses to the grindstone! 

 

Over Christmas break, you might consider reading the beginning of the orange-belt chapter; you 

will learn a lot more about your friend, the incircle, and you will get to meet his out-of-town 

cousins, the excircles.  The parallel postulate will be introduced to prove the transversal and angle 

sum theorems, and students will prove that a Lambert quadrilateral, which has three right 

angles, is a right rectangle.  But here in the yellow-belt chapter, before the parallel postulate has 

been introduced, this is not necessarily true; in hyperbolic geometry, the fourth angle is acute. 

 

A Saccheri quadrilateral has two opposite sides equal and perpendicular to the base.  By part 

three of Saccheri theorem I (below, from the white-belt exit exam), a Saccheri quadrilateral’s 

base mediator cuts it into two Lambert quadrilaterals, which we will soon prove to be congruent.  

Knowing this is not needed to understand orange-belt Geometry–Do, but it helps tie yellow- and 

orange-belt study together, and it will be needed when you become a green belt. 

 

Saccheri Theorem I 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral, so ∠𝐸 = ∠𝐹 = 𝜌 and 𝐸𝐻 = 𝐹𝐺, (1) 𝐸𝐺 = 𝐹𝐻; (2) ∠𝐺 = ∠𝐻; 

(3) 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑀𝐸𝐹𝑀𝐺𝐻

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐺𝐻⃡⃗⃗⃗  ⃗; (4) The mediators of the base and the summit coincide. 
 

Saccheri was a Jesuit priest whose book, Euclides ab omne naevo vindi, was meant to “vindicate 

Euclid of every blemish,” by which he meant that he would prove Euclid’s fifth postulate 

redundant.  Success would have actually been a black eye for Euclid – redundant postulates are 

no virtue – but Saccheri failed.  But while he was failing he proved theorems that, over a century 

later, would serve as the foundation for what Bolyai would call absolute (neutral) geometry. 
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Suppose that 𝐸𝐹𝐺𝐻 is such that ∠𝐸 = ∠𝐹 = 𝜌, but this is all that is known about it, so it is only 

part ways towards being a Saccheri quadrilateral.  What can we say about 𝐸𝐹𝐺𝐻? 

 

Two Right Angles Quadrilateral Theorem 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = 𝜌, if 𝐻𝐸 < 𝐹𝐺, then ∠𝐺 < ∠𝐻. 

 

 Proof 

𝐻𝐸 < 𝐹𝐺 implies that there is a point 𝑀 between 𝐹 and 𝐺 such that 𝐻𝐸 = 𝐹𝑀.  𝐸𝐹𝑀𝐻 

is Saccheri with base 𝐸𝐹; by part two of Saccheri theorem I, ∠𝐹𝑀𝐻 = ∠𝐸𝐻𝑀.  By the 

exterior angle inequality theorem, ∠𝐺 < ∠𝐹𝑀𝐻.  ∠𝐸𝐻𝑀 < ∠𝐻 by the interior angle 

axiom.  Thus, ∠𝐺 < ∠𝐻, by transitivity.               ∎ 

 

Two Right Angles Quadrilateral Theorem Converse 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = 𝜌, if ∠𝐺 < ∠𝐻, then 𝐻𝐸 < 𝐹𝐺. 

 

 Proof 

If 𝐻𝐸 = 𝐹𝐺, then 𝐸𝐹𝐺𝐻 is Saccheri with base 𝐸𝐹 and ∠𝐺 = ∠𝐻 by part two of Saccheri 

theorem I, which contradicts ∠𝐺 < ∠𝐻.  If 𝐹𝐺 < 𝐻𝐸, then ∠𝐻 < ∠𝐺 by the two right 

angles quadrilateral theorem, which contradicts ∠𝐺 < ∠𝐻.  Thus, 𝐻𝐸 < 𝐹𝐺, by 

trichotomy.                   ∎ 

 

A Lambert quadrilateral has three right angles.  From part three of Saccheri theorem I, if 𝐸𝐹𝐺𝐻 

is a Saccheri quadrilateral, then 𝐸𝑀𝐸𝐹𝑀𝐺𝐻𝐻 and 𝐹𝑀𝐸𝐹𝑀𝐺𝐻𝐺 are Lambert quadrilaterals.  But 

are they congruent?  Recall that a quadrilateral is a union of two adjacent triangles such that it is 

convex; congruence holds if and only if both pairs of definitional triangles are congruent.  Since 

we have proven SASAS, we will cite it, though there are many ways to prove this theorem. 

 

Saccheri and Lambert Theorem 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, then 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ cuts it into two congruent 

Lambert quadrilaterals, 𝐸𝑀𝐸𝐹𝑀𝐺𝐻𝐻 ≅ 𝐹𝑀𝐸𝐹𝑀𝐺𝐻𝐺. 

 

 Proof 

𝐸𝑀𝐸𝐹𝑀𝐺𝐻𝐻 and 𝐹𝑀𝐸𝐹𝑀𝐺𝐻𝐺 are Lambert quadrilaterals by part three of Saccheri 

theorem I.  By SASAS, 𝐸𝑀𝐸𝐹𝑀𝐺𝐻𝐻 ≅ 𝐹𝑀𝐸𝐹𝑀𝐺𝐻𝐺.               ∎ 

 

In the orange-belt chapter, the Lambert theorem will state that Lambert quadrilaterals are right 

rectangles.  But, without the parallel postulate, this is not necessarily true.  So, what is true? 
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Three Right Angles Quadrilateral Theorem 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = ∠𝐺 = 𝜌, then 

1. If ∠𝐻 is right, then the opposite sides of 𝐸𝐹𝐺𝐻 are equal; 

2. If ∠𝐻 is acute, then each side of ∠𝐻 is greater than its opposite side. 

 

Proof 

1. Suppose 𝐻𝐸 < 𝐹𝐺.  By the two right angles quadrilateral theorem, ∠𝐺 < ∠𝐻, which 

contradicts ∠𝐺 = ∠𝐻.  Analogously, 𝐹𝐺 < 𝐻𝐸 contradicts ∠𝐺 = ∠𝐻.  Thus,          

𝐻𝐸 = 𝐹𝐺 by trichotomy.  Analogously, 𝐸𝐹 = 𝐺𝐻. 

 

2. ∠𝐸 = ∠𝐹 = 𝜌 and ∠𝐻 < ∠𝐺.  By the two right angles quadrilateral theorem 

converse, 𝐹𝐺 < 𝐻𝐸.  Analogously, 𝐸𝐹 < 𝐺𝐻.              ∎ 

 

We do not consider what happens if ∠𝐻 is obtuse because this never happens; it is right in 

Euclidean geometry and acute in hyperbolic geometry.  It is obtuse in elliptic geometry, but this 

is studied independently of the others because Euclidean and hyperbolic geometry differ only in 

their parallel postulate; the former assumes that there is exactly one line through a point parallel 

to another line, and the latter assumes that there are always more than one.  All the other 

postulates are shared; so, here in neutral geometry, we are assuming all the other postulates, 

and that there is at least one line through a point parallel to another line, but possibly more.   

 

In elliptic geometry, there are no parallel lines.  But this assumption also takes out some of the 

other postulates, besides just the parallel postulate.  In this book, lines are defined to be infinite. 

The line postulate allows us to extend a segment as far as necessary to locate any point needed 

in a construction.  In elliptic geometry, if you extend a segment far enough, it wraps around the 

globe and your construction overlaps itself.  In practical navigation problems, like plotting an 

airplane’s course from Tokyo to Los Angeles, this is not an issue, but it must be considered to give 

a solid theoretical foundation to the endeavor.  But we will not be doing any elliptic geometry. 

 

The Saccheri-Legendre theorem will prove that the angle sum of a triangle is less than or equal 

to a straight angle; thus, a quadrilateral’s angle sum is less than or equal to two straight angles. 

 

Adrien-Marie Legendre was a French mathematician who is best known today for Legendre 

polynomials.  Geometry Informs the Numerical Analysis of Error in Computations discusses 

Chebyshev polynomials, which are orthogonal in the interval −1 ≤ 𝑥 ≤ 1, as are Legendre 

polynomials.  Unlike Chebyshev’s polynomials, which are used to approximate a variety of 

unrelated functions, Legendre’s polynomials are used to solve problems that arise in electrical 

engineering.  This is beyond high school, but students should at least know the men’s names. 



Victor Aguilar  Geometry without Multiplication 

81 
 

Lemma 2.6 

Given 𝐸𝐹𝐺, if ∠𝑀𝐹𝐺𝐸𝐹 ≤ ∠𝑀𝐹𝐺𝐸𝐺, then ∠𝑀𝐹𝐺𝐸𝐹 ≤
1

2
∠𝐸. 

 

Recall the notation that 𝛼, 𝛽, 𝛾, 𝛿 are usually ∠𝐸, ∠𝐹, ∠𝐺, ∠𝐻, which will be the case here. 

 

Saccheri–Legendre Theorem 

Interior angles of a triangle sum to one straight angle or less; that is, 𝛼 + 𝛽 + 𝛾 ≤ 𝜎. 

 

 Proof 

Given 𝐸𝐹𝐺, label the vertices so ∠𝑀𝐹𝐺𝐸𝐹 ≤ ∠𝑀𝐹𝐺𝐸𝐺.  Assume 𝛼 + 𝛽 + 𝛾 = 𝜎 + 휀; that 

is, the angle sum is more than straight.  Extend 𝐸𝑀𝐹𝐺
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ that much again to 𝐻, so 𝑀𝐹𝐺  is the 

midpoint of 𝐸𝐻.  By SAS, 𝐸𝑀𝐹𝐺𝐺 ≅ 𝐻𝑀𝐹𝐺𝐹, so ∠𝐻𝐹𝐺 = 𝛾 and ∠𝐹𝐻𝐸 = ∠𝐺𝐸𝐻, which 

we will call 𝛿.  Let  𝛿′ = 𝛼 − 𝛿.  𝐸𝐹𝐻 has angle sum 𝛿 + 𝛿′ + 𝛽 + 𝛾 = 𝛼 + 𝛽 + 𝛾, which 

is the same angle sum that 𝐸𝐹𝐺 has. 

 

Re-label 𝐸𝐹𝐻 as 𝐸1𝐹1𝐺1 so 𝐸1 is the vertex with angle 𝛿′ and ∠𝑀𝐹1𝐺1
𝐸1𝐹1 ≤ ∠𝑀𝐹1𝐺1

𝐸1𝐺1.  

𝐸1𝐹1𝐺1 has the same angle sum as 𝐸𝐹𝐺 and, by lemma 2.6, ∠𝐸1 ≤
1

2
∠𝐸.  Repeat to 

construct 𝐸2𝐹2𝐺2 that has the same angle sum as 𝐸𝐹𝐺 and ∠𝐸2 ≤
1

4
∠𝐸.  After 𝑛 

repetitions, 𝐸𝑛𝐹𝑛𝐺𝑛 is constructed to have the same angle sum as 𝐸𝐹𝐺 and ∠𝐸𝑛 ≤
1

2𝑛 ∠𝐸. 

 

By Archimedes’ Axiom, there exists a natural number 𝑛 such that ∠𝐸𝑛 ≤ 휀; that is, the 

repetitive process described above terminates after a finite number of iterations.  We will 

not get stuck in an endless loop.  The angle sum of 𝐸𝑛𝐹𝑛𝐺𝑛 is 𝜎 + 휀 and, since ∠𝐸𝑛 ≤ 휀, 

𝜎 ≤ ∠𝐹𝑛 + ∠𝐺𝑛, which contradicts lemma 2.1.  Thus, the assumption that the angle sum 

is more than straight is not true; it is one straight angle or less.            ∎ 

 

In this proof, 
1

2𝑛 does not require students to know what exponents are or to have the ability to 

calculate them.  It is just a shorthand notation to refer to bisecting an angle 𝑛 times.  Indeed, 

throughout Volume One, 
1

2
 just means bisection.  It does not mean that we have slyly introduced 

division and are expecting students to calculate 
𝑝

𝑞
 for arbitrary integers 𝑝 and 𝑞. 

 

By the Saccheri-Legendre theorem, a triangle’s angle sum is 𝜎 − 휀, where 휀 is called the defect.   

 

Defect Addition Theorem 

The defect of a quadrilateral is the sum of the defects of its definitional triangles. 
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This is also true for adjacent triangles that are assembled so their union is a big triangle.  Like all 

angles, 0 ≤ 휀, so their defects cannot cancel each other out; that is, for the big triangle to have 

a defect of zero, all the smaller triangles must have defects of zero. 

 

The implication of this is that Euclidean and hyperbolic geometry are mutually exclusive.  In the 

former, all triangles have defects of zero; and, in the latter, all triangles have positive defects.  

Their exclusivity makes sense because the two sciences are based on different parallel postulates.   

 

Another implication is that Euclidean and hyperbolic geometry are mutually exclusive with 

regards to the existence of right rectangles.  If one right rectangle exists, then all rectangles are 

right, and we are doing Euclidean geometry.  If one rectangle is not right, then none of them are. 

 

If we have declared that there is more than one parallel to a line through a point, then right 

rectangles do not exist, and we are primarily concerned with Saccheri quadrilaterals and the two 

congruent Lambert quadrilaterals that they are unions of.   

 

Saccheri Theorem II 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, then  

1.  ∠𝐺 = ∠𝐻 ≤ 𝜌 

2. 𝐸𝐹 ≤ 𝐺𝐻 

3.  𝑀𝐸𝐹𝑀𝐺𝐻 ≤ 𝐻𝐸  and  𝑀𝐸𝐹𝑀𝐺𝐻 ≤ 𝐹𝐺 

 

Yet another implication is that a big triangle is more defective than any small triangle that can fit 

inside it.  The defect of a triangle is proportional to its area, but proof of this is beyond us because, 

while Euclidean geometry defines area as the number of right squares that fit in a closed figure, 

right squares do not exist in hyperbolic geometry.  But the implication is that, while Euclidean 

and hyperbolic geometry are mutually exclusive, if poor visibility limits us to only measuring small 

triangles and/or our measuring instruments are imprecise, we may not know if geometry is 

Euclidean or hyperbolic.  When excircles are introduced, orange belts will consider a scenario 

where civil engineers are using them, but they are unsure if geometry is hyperbolic on their scale. 

 

Carl Friedrich Gauss famously measured the angle sum of a triangle with vertices on three 

mountain peaks.  Because the defect of a triangle is proportional to its area, he chose a triangle 

with as much area as possible so its defect – if it had one – would be measurable with his rather 

crude 19th century instruments.  Because Euclidean and hyperbolic geometry are mutually 

exclusive, if he had found a defect large enough that it could not be written off as instrument 

error, then he would have proven conclusively that the world has a hyperbolic geometry.  But 

the constant of proportionality between triangle area and defect, in standard units like hectares 
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and radians, would not be conclusive; it could always be further refined with more accurate 

instruments.  What happened is that he did not find a measurable defect in this big triangle.  But 

this does not prove conclusively that the world has a Euclidean geometry.  It is still possible that 

more accurate instruments and a bigger triangle – perhaps one with vertices on Earth, Jupiter, 

and Saturn – might conclusively prove that the world has a hyperbolic geometry. 
 

The fact that it has not been and never will be proven conclusively that the world has a Euclidean 

geometry is why it is important that Geometry–Do begins with neutral geometry.  The principal 

reason that we study geometry at all is not just for practical applications like laying ambushes 

with heavy machine guns – though in certain situations that can be very useful – but to free our 

minds of the tacit assumptions that run rampant in soft sciences like economics.  Geometers are 

better than that!  We take nothing for granted – not even the Euclidean nature of our world. 
 

Now let us consider what is certainly the most common geometric figure used by practical men. 
 

Rectangle Theorem 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, let 𝐺𝐸𝐹 and 𝐻𝐸𝐹 be reflections of 𝐺 and 𝐻 

around 𝐸𝐹⃡⃗⃗⃗  ⃗ so 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺𝐸𝐹𝐻𝐸𝐹.  Then the following holds true: 

1. 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹  is a rectangle. 

2. Both bimedians of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 cut it into two congruent Saccheri quadrilaterals.   

3. Opposite sides of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are equal.   

4. Bimedians of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are mediators of each other.   

5. Diagonals of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are equal and bisect each other.   

6. Perpendiculars dropped on diagonals from the vertices of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are equal. 

7. Bimedians of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are less than or equal to the sides they do not cut. 
 

Proof 

1. By part two of Saccheri theorem I, ∠𝐺 = ∠𝐻, and, by congruence, ∠𝐺𝐸𝐹 = ∠𝐻𝐸𝐹 are 

the same, so all four angles are equal. 
 

2. By part three of Saccheri theorem I, both bimedians are perpendicular to their sides, 

so they both cut the rectangle into two congruent Saccheri quadrilaterals.   
 

3. Opposite sides are equal by construction and congruency. 
 

4. Bimedians are mediators of each other by the Saccheri and Lambert theorem. 
 

5. Diagonals are equal by SAS.  By SAS, 𝑇𝐸𝐻𝐸𝐹 ≅ 𝑇𝐸𝐻 ≅ 𝑇𝐹𝐺 ≅ 𝑇𝐹𝐺𝐸𝐹 with 𝑇 the        

bi-medial point.  Thus, 𝑇𝐻𝐸𝐹 = 𝑇𝐻 = 𝑇𝐺 = 𝑇𝐺𝐸𝐹; the diagonals bisect each other. 
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6. If 𝐺𝐻 = 𝐺𝐺𝐸𝐹, then, by part five.  If 𝐺𝐻 < 𝐺𝐺𝐸𝐹, then, by the above congruencies, 

∠𝐸𝐻𝐸𝐹𝑇 = ∠𝐸𝐻𝑇 = ∠𝐹𝐺𝑇 = ∠𝐹𝐺𝐸𝐹𝑇.  Let 𝐻′, 𝐺′, 𝐺′𝐸𝐹 , 𝐻′𝐸𝐹  be the feet of 

perpendiculars dropped on the diagonals from the vertices of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹.  By AAS, 

𝐺′𝐺𝐸𝐹𝐺 ≅ 𝐻′𝐻𝐸𝐹𝐻 ≅ 𝐺′𝐸𝐹𝐺𝐺𝐸𝐹 ≅ 𝐻′𝐸𝐹𝐻𝐻𝐸𝐹.  𝐺′𝐺 = 𝐻′𝐻 = 𝐺′𝐸𝐹𝐺𝐸𝐹 = 𝐻′𝐸𝐹𝐻𝐸𝐹.  

If 𝐺𝐺𝐸𝐹 < 𝐺𝐻, then analogously with the other four right triangles being congruent. 
 

7. This is implied by the three right angles quadrilateral theorem applied to each of the 

four Lambert quadrilaterals, and then the lengths doubled.            ∎ 

 

In Euclidean geometry, part seven would say “equal,” but otherwise rectangles in hyperbolic 

geometry differ from right rectangles only in their vertex angles being acute.  The big difference, 

of course, is that Lobachevskians cannot fit a bunch of them together in a grid as Descartes did.   

 

The astute student will have noticed that part one has a converse that a conscientious textbook 

author – Ahem! – would have proven.  The converse is indeed provably true, but only for 

rectangles that exist.  In Euclidean geometry, all rectangles exist; you can set the height and the 

width to be anything you want.  A kilometer wide and a centimeter high if it pleases you!  But, in 

hyperbolic geometry, once you have chosen an angle, you are restricted to choosing only those 

heights and widths such that the sum of the areas of the definitional triangles is in the correct 

proportion to the sum of their defects.  By “correct proportion,” I mean the one determined by 

an experiment conducted with the best instruments on mountain peaks hundreds of klicks apart.  

Calculating areas in a hyperbolic world and carrying out such an experiment is beyond us. 
 

Rectangles are important, but the most often cited orange-belt theorem is the mid-segment 

theorem.  There is an analogous yellow-belt theorem, which uses ≤ instead of =. 

 

Mid–Segment Theorem (Neutral Geometry) 

1. The mid-segment connecting the legs of a triangle is less than or equal to half the base.  

2. The extension of the mid-segment does not intersect the extension of the base. 
 

 Proof 

1. Construct the same figure as in the mid-segment and mediator theorem; 𝐸′′𝐹′′𝐹𝐸 is 

Saccheri with base 𝐸′′𝐹′′.  By AAS, 𝐸′′𝑀𝐺𝐸𝐸 ≅ 𝐺′′𝑀𝐺𝐸𝐺 and 𝐹′′𝑀𝐹𝐺𝐹 ≅ 𝐺′′𝑀𝐹𝐺𝐺; 

thus, 𝐸′′𝑀𝐺𝐸 = 𝐺′′𝑀𝐺𝐸  and 𝐹′′𝑀𝐹𝐺 = 𝐺′′𝑀𝐹𝐺 .  The result by Saccheri theorem II #2. 
 

2. Suppose 𝑃:= 𝐸𝐹⃡⃗⃗⃗  ⃗ ∩ 𝐸′′𝐹′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   exists with 𝐸 between 𝑃 and 𝐹.  By Saccheri theorem II #1, 

∠𝐸 ≤ 𝜌, so its supplement is right or obtuse.  But ∠𝐸′′ = 𝜌, so the angle sum of 𝐸′′𝐸𝑃 

is greater than a straight angle, which contradicts the Saccheri-Legendre theorem. ∎ 
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The mid-segment theorem is proven just a few pages into orange belt, so proving the neutral 

geometry version now helps tie yellow- and orange-belt together.  There are also analogous 

neutral geometry versions of the best-known green-belt theorems.  They are not hard to prove, 

but they will be left as exercises for green belts to return to when their context becomes clearer. 

 

Thales’ Diameter Theorem (Neutral Geometry) 

A diameter subtends an angle less than or equal to a right angle. 

 

Inscribed Angle Theorem (Neutral Geometry) 

Two chords that share an endpoint make an angle less than or equal to half the central angle of 

their arc. 

 

Cyclic Quadrilateral Theorem (Neutral Geometry) 

If a quadrilateral is cyclic, then the sums of its opposite angles are equal. 

 

Proving the following conditions for Lambert quadrilaterals, ∠𝐸 = ∠𝐹 = ∠𝐺 = 𝜌, or Saccheri 

quadrilaterals, ∠𝐸 = ∠𝐹 = 𝜌 and 𝐻𝐸 = 𝐹𝐺, to be congruent makes good homework problems.   

 

Lambert quadrilaterals 𝐸𝐹𝐺𝐻 ≅ 𝐸′′𝐹′′𝐺′′𝐻′′ 
 

Saccheri quadrilaterals 𝐸𝐹𝐺𝐻 ≅ 𝐸′′𝐹′′𝐺′′𝐻′′ 
 

𝐸𝐹 = 𝐸′′𝐹′′ and 𝐹𝐺 = 𝐹′′𝐺′′ 𝐸𝐻 = 𝐸′′𝐻′′ and 𝐹𝐺 = 𝐹′′𝐺′′ 

𝐸𝐹 = 𝐸′′𝐹′′ and 𝐸𝐻 = 𝐸′′𝐻′′ 𝐸𝐻 = 𝐸′′𝐻′′ and 𝐺𝐻 = 𝐺′′𝐻′′ 

𝐸𝐹 = 𝐸′′𝐹′′ and ∠𝐻 = ∠𝐻′′ 𝐸𝐻 = 𝐸′′𝐻′′ and ∠𝐻 = ∠𝐻′′ 
 

𝐸𝐹 = 𝐸′′𝐹′′ and 𝐹𝐺 = 𝐹′′𝐺′′ 𝐸𝐹 = 𝐸′′𝐹′′ and ∠𝐺 = ∠𝐺′′ 

𝐸𝐹 = 𝐸′′𝐹′′ and 𝐺𝐻 = 𝐺′′𝐻′′ 𝐹𝐺 = 𝐹′′𝐺′′ and ∠𝐺 = ∠𝐺′′ 

𝐹𝐺 = 𝐹′′𝐺′′ and 𝐺𝐻 = 𝐺′′𝐻′′ 𝐺𝐻 = 𝐺′′𝐻′′ and ∠𝐺 = ∠𝐺′′ 
 

   

Green belts will be tasked with helping teach the white- and yellow-belt students; they can assign 

these congruence proofs.  The following two problems are for advanced yellow-belt students. 

 

Problem 2.46 

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 = 𝜌, let 𝑀′𝐸𝐺  be the foot of a perpendicular dropped on 𝐹𝐺 from 𝑀𝐸𝐺 .  

Prove that 𝑀′𝐸𝐺𝐹 ≤ 𝑀′𝐸𝐺𝐺 and 𝑀𝐸𝐺𝐹 ≤
1

2
𝐸𝐺. 

 

Problem 2.47 

Given ∠𝐸𝑃𝐸1 ≠ 𝜎 and 𝑃, 𝐸, 𝐹, 𝐺 in that order on one ray and 𝑃, 𝐸1, 𝐹1, 𝐺1 in that order on the 

other ray and 𝐸𝐹 = 𝐸1𝐹1 and 𝐹𝐺 = 𝐹1𝐺1, prove that 𝑀𝐸𝐸1
, 𝑀𝐹𝐹1

, 𝑀𝐺𝐺1
 are collinear. 

 

And that is all the advanced yellow-belt geometry that I can think of!  

 

I hope everybody has a merry Christmas and I will see you next year.  Maybe Santa Claus will 

bring you a nice compass to replace the cheap one that you bought at the grocery store.          
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Geometry Don’t  (Satire) 

 

Dismayed that his friends are now orange belts and he is still a yellow belt, Johnny Geometer has 

decided that he will write his own textbook!  And he already has a publisher!  Based only on the 

following theorems, McGoober-Hill Education – famous for teaching us how to add lengths and 

angles together – has agreed to give Johnny a $100,000 cash advance.  They are planning to print 

a million copies of Geometry Don’t, which will be distributed to every Common Core compliant 

high school in America.  Let’s have a look at the theorems that so impressed McGoober-Hill! 

 

Parallel Theorem 

There is a unique line parallel to a given line through a given point. 

 

 Proof 

Given 𝐸𝐹⃡⃗⃗⃗  ⃗ and a point 𝐺 not on it, by C. 1.4, drop a perpendicular from 𝐺 onto 𝐸𝐹⃡⃗⃗⃗  ⃗ with 

foot 𝐺′.  By C. 1.3, raise a perpendicular to 𝐺𝐺′⃡⃗ ⃗⃗⃗⃗  from 𝐺.  By the perpendicular length 

theorem, both constructions of perpendicular lines are unique.  Thus, the latter 

perpendicular is the unique parallel to the given line that goes through the given point.       

 

Transversal Theorem 

If a line transverses two parallel lines, the interior angles on one side of the transversal sum to 𝜎. 

 

 Proof 

It is a trichotomy:  They either sum to more than 𝜎, less than 𝜎, or exactly 𝜎.  If it is more, 

then the two pairs of supplementary angles sum to more than 2𝜎, which is impossible.  If 

it is less, then they sum to less than 2𝜎, which is also impossible.  Thus, the result.             

 

Angle Sum Theorem 

Interior angles of a triangle sum to one straight angle. 

 

 Proof 

Given 𝐸𝐹𝐺, let 𝑃 be any point inside 𝐸𝐹 and let 𝑥 be the angle sum of triangles, which we 

intend to prove is 𝜎.  ∠𝐸 + ∠𝐸𝐺𝑃 + ∠𝐺𝑃𝐸 = 𝑥 and ∠𝐹 + ∠𝐹𝐺𝑃 + ∠𝐺𝑃𝐹 = 𝑥 for the 

two interior triangles.  Adding, (∠𝐸 + ∠𝐸𝐺𝑃 + ∠𝐹𝐺𝑃 + ∠𝐹) + (∠𝐺𝑃𝐸 + ∠𝐺𝑃𝐹) = 2𝑥.  

In the first parenthesis is 𝑥 because it is a triangle, and in the second parenthesis is 𝜎 

because the angles are supplementary.  Thus, 𝑥 + 𝜎 = 2𝑥; simplifying, 𝑥 = 𝜎.              

 

But, while Bill Gates has the big money, there are people pushing back.  You, young geometer, 

have been hired to review Geometry Don’t.  Do you see any flaws in Johnny’s reasoning? 
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Orange Belt Instruction:  Parallelograms 

 

Most geometry problems, both in real life and on exams, are constructions.  You are told what 

characteristics a figure must have to qualify as a correct answer and then you construct that 

figure, citing theorems along the way to justify each step.  For instance, to replicate an angle you 

construct congruent triangles with the given angle equal in both.  This is easy because there is 

only one characteristic required of the figure.  But when there are two, the general technique is 

to disregard one of them and construct a figure that satisfies just the other; that is, the complete 

solution is under defined.  For instance, if one condition is that a segment must have a given 

endpoint and a given length, then any of the radii of a circle centered at the given point and with 

the given radius satisfy the condition.  This circle is the locus of possible locations for the other 

endpoint.  If this procedure is carried out for each of the two conditions, then the intersection(s) 

of the loci is/are the solution(s) to the problem; that is, the intersection fully defines the solution. 

 

Parallels and Circle Theorem 

Parallel lines that intersect a circle cut off equal chords between the two lines. 

 

This is diameter and chord theorem corollary #1 extended with transitivity, which the parallel 

postulate now allows us to cite.  Also, the parallel postulate allows us to now speak of “the 

intersection” of two non-parallel lines; 𝑃:= 𝐸𝐺⃡⃗⃗⃗  ⃗ ∩ 𝐹𝐻⃡⃗⃗⃗  ⃗, given 𝐸𝐺⃡⃗⃗⃗  ⃗ ∦ 𝐹𝐻⃡⃗⃗⃗  ⃗.  It assures existence of 𝑃. 

 

Circumcenter Theorem 

The mediators of a triangle’s sides are concurrent at a point equidistant from the vertices. 

 

 Proof 

By the mediator theorem, any point on the mediator of a side is equidistant from the 

vertices, including the point where it intersects with the mediator of another side.  This 

point, being on the mediator of the other side, is equidistant from the vertices on either 

end of it.  By transitivity, the other mediator is concurrent.  This is the circumcenter.     ∎ 

 

For reasons explained more fully in Orange Belt Geometry for Construction Workers, Revisited, 

the mediators of triangle sides are only guaranteed to be concurrent in Euclidean geometry.   

 

Circumcenter Theorem Corollary 

Any three noncollinear points fully define a circle.  

 

Suppose that some points are proven to be concyclic, and that some other points are also proven 

to be concyclic; if the two lists of points share three points, then they are all on the same circle. 
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Construction 3.1  Locate the center of a circle.   (Euclid, Book IV, Prop. 5) 

 

Solution 

Choose any three points on the circle and find the mediator of the segments between any 

two pairs.  Their intersection is the center of the circle.             ∎ 

 

The error in locating the intersection of two lines is least if they are perpendicular.  The more 

widely spaced the three points that define a circle, the less error there is in locating its center.  If 

they make a little triangle – sailors call this a cocked hat – the best guess is the triangle’s incenter.  

 

Excenter Theorem 

The bisectors of a triangle’s interior angle and the angles exterior to the other two angles are 

concurrent at a point we will call the excenter. 

 

 Proof 

By the angle bisector theorem, any point on the angle bisector of a vertex is equidistant 

from the sides, including the point where it intersects the angle bisector of the exterior 

angle of another vertex.  By transitivity, all three angle bisectors are concurrent.           ∎ 

 

Given 𝐸𝐹𝐺, the incircle is 𝜔𝐼 and the incenter is 𝐼.  The excircle on the bisector of ∠𝐺 is 𝜔𝑋 and 

its excenter is 𝑋; analogously, 𝜔𝑌 and 𝜔𝑍 have excenters 𝑌 and 𝑍, respectively.  The feet of the 

perpendiculars dropped on the triangle sides from the incenter are the incircle’s touching points 

𝐼𝐸 , 𝐼𝐹 , 𝐼𝐺.  The excircles also touch the triangle at touching points; we will call these 𝑍𝐸 , 𝑌𝐹 , 𝑋𝐺.  𝜔𝑋 

touches 𝐺𝐸⃗⃗⃗⃗  ⃗ at 𝑋𝐸, and analogously for the others.  Most problems involve only one excircle, so 

they are drawn with the apex as 𝐺 and the excenter as 𝑋.  𝑅 is the circumradius; 𝑟 is the inradius; 

𝑟𝑋 , 𝑟𝑌, 𝑟𝑍 are the exradii of 𝜔𝑋 , 𝜔𝑌, 𝜔𝑍; 𝑠 is the semiperimeter.  𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺  are where the bisector 

of an interior angle intersects the other side of the circumcircle (centered at 𝑂); these points are 

called long centers, though they will not be formally defined until the red-belt chapter. 

 

Excircle Theorem 

Given 𝐸𝐹𝐺, the semiperimeter is the distance from 𝐺 to either 𝑋𝐸 or 𝑋𝐹. 
 

 Proof 

 𝐸𝐹 + 𝐹𝐺 + 𝐺𝐸 = 𝐸𝑋𝐺 + 𝐹𝑋𝐺 + 𝐹𝐺 + 𝐺𝐸   Addition 

     = 𝐸𝑋𝐸 + 𝐹𝑋𝐹 + 𝐹𝐺 + 𝐺𝐸   Two tangents theorem 

     = 𝐺𝑋𝐸 + 𝐺𝑋𝐹    Addition and commutativity 

 

 𝐺𝑋𝐸 = 𝐺𝑋𝐹 by the two tangents theorem; thus, the semiperimeter equals either.         ∎ 
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Incircle and Excircle Theorem 

The incircle and excircle touch a triangle side equidistant from its opposite endpoints. 

 

 Proof 

Given 𝐸𝐹𝐺, construct 𝜔𝐼 and 𝜔𝑋. 

2𝐸𝐼𝐺   =  𝐸𝐼𝐺 + 𝐸𝐼𝐹       Two tangents theorem 

 = (𝐸𝐹 − 𝐹𝐼𝐺) + (𝐸𝐺 − 𝐺𝐼𝐹)  Subtraction 

 = 𝐸𝐹 + 𝐸𝐺 − 𝐹𝐼𝐸 − 𝐺𝐼𝐸    Two tangents theorem 

  = 𝐸𝐹 + 𝐸𝐺 − 𝐹𝐺    Addition 

  = 2(𝑠 − 𝐹𝐺)     Addition 

  = 2(𝑋𝐹𝐺 − 𝐹𝐺)    Excircle theorem 

  = 2𝐹𝑋𝐺     Subtraction and two tangents th. 

 Thus, 𝐸𝐼𝐺  = 𝐹𝑋𝐺, and, analogously, 𝐹𝐼𝐺  = 𝐸𝑋𝐺.              ∎ 

 

Incircle and Excircle Theorem Corollary 

𝑀𝐸𝐹 is the midpoint of 𝐼𝐺𝑋𝐺. 
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An external tangent is a line tangent to two circles that does not go between their centers.  There 

are two external tangents, and these intersect at the apex of the triangle that the two circles are 

incircle and excircle to.  The term external tangent may also refer, not to the whole line, but just 

to the segment of it between the points where it touches the two circles.  The context will make 

this clear; if we refer to length, we mean the segment.  An internal tangent is a line tangent to 

two disjoint circles that goes between their centers, or the segment between its two touching 

points.  There are two external tangents and one or two internal tangents; one if the circles touch.  

A cut tangent is the segment of an internal tangent that is cut out by the two external tangents. 

 

Constructing external and internal tangents to two disjoint circles of different radii is easy, but it 

waits for more orange-belt theorems.  Here, the circles and their tangents are just given to us. 

 

External Tangents Theorem 

The two external tangents to two circles are equal in length. 

 

 Proof 

Given 𝐸𝐹𝐺 and external tangents of 𝜔𝐼 and 𝜔𝑋, by the two tangents theorem, 𝐺𝐼𝐹 = 𝐺𝐼𝐸 

and 𝐺𝑋𝐸 = 𝐺𝑋𝐹.  Thus, 𝐼𝐹𝑋𝐸 = 𝐼𝐸𝑋𝐹, by subtraction.             ∎ 

 

Cut Tangents Theorem 

Cut tangents equal external tangents. 

 

 Proof 

 Given 𝐸𝐹𝐺, then 𝐸𝐹 is the internal tangent of 𝜔𝐼 and 𝜔𝑋.  𝐼𝐺  and 𝑋𝐺 are on it. 

𝐸𝐹  =  𝐸𝐼𝐺 + 𝐹𝐼𝐺     Addition 

        =  𝐸𝐼𝐺 + 𝐸𝑋𝐺    Incircle and excircle theorem 

        =  𝐸𝐼𝐹 + 𝐸𝑋𝐸    Two tangents theorem 

        =  𝐼𝐹𝑋𝐸     Addition 

This works for 𝐸, 𝐼𝐺 , 𝑋𝐺 , 𝐹 in this order, this order, 𝐸, 𝑋𝐺 , 𝐼𝐺 , 𝐹, or if 𝐼𝐺 ≡ 𝑋𝐺.          ∎ 

 

Excircle Theorem Corollaries 

1. 𝑟𝑋 + 𝑟𝑌 + 𝑟𝑍 = 𝑟 + 4𝑅  The three exradii are the inradius and four circumradii. 

2. 𝐺𝐼𝐸 = 𝐺𝐼𝐹 = 𝑠 − 𝐸𝐹   The distance from 𝐺 to the touching points of 𝜔𝐼. 

3. 𝐼𝐺𝑋𝐺 = |𝐹𝐺 − 𝐸𝐺|  The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐹. 

4. 𝐼𝐹𝑋𝐸 = 𝐼𝐸𝑋𝐹 = 𝐸𝐹   The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 

5. 𝑌𝐸𝑍𝐹 = 𝐸𝐺 + 𝐹𝐺   The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐹⃡⃗⃗⃗  ⃗. 

6. 𝑌𝐹𝑍𝐺 = 𝑍𝐸𝑌𝐺 = 𝐸𝐹   The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 
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Proofs are left as exercises.  All of them are straightforward applications of the four preceding 

theorems.  None of these six statements are intuitive.  This is why Geometry–Do students 

appreciate that their exams are open book and wish to God that the IMO was also open book! 

 

The first corollary includes every radius in the figure; so, if you are given four of them and asked 

for the fifth, just plug the lengths into the formula.  The second, third and fourth corollaries can 

find all the touching points without having to find any of the centers.  To find the centers, it is 

more accurate to raise perpendiculars from the touching points than to intersect angle bisectors.  

 

It is possible that physical space is Euclidean on a small scale but becomes hyperbolic as distances 

become greater.  In hyperbolic geometry, the sum of the angles in a triangle decrease as size 

increases – which is why there are no similar triangles except those that are also congruent – but 

for very small triangles the angle sum is so close to straight that we may not be able to measure 

its defect with our instruments.  But what does “small” mean in the real world?  The width of my 

desk?  The width of Germany?  The width of the solar system?  Thanks to Carl Friedrich Gauss, 

we know that the triangle with vertices on the peaks of the mountains Hohenhagen, Inselberg 

and Brocken is small in this sense.  We do not know if the world is Euclidean for bigger triangles. 

 

Even if the world is Euclidean all the way out, so excircles always exist, the error in locating an 

excenter long of a large angle is large and approaches infinity as the angle approaches straight.  

For an engineer, inaccurate tools and the possibility that space is hyperbolic over long distances 

are indistinguishable; he needs a better method than the excenter theorem to locate excenters. 

 

Let us consider this scenario:  The planet Zabol is shrouded 

in a brown cloud, so civil engineering projects, like a 

highway interchange, are too big to view from one end to 

the other.  The Zabolians do not know if geometry is 

hyperbolic on the scale that civil engineers must consider.    
 

They can stretch out a string, pinch it off and walk it somewhere else to replicate a length, and 

they can rotate it like a compass.  But the Zabolian at the other end of the string is invisible in the 

brown cloud, so optical instruments are useless; and, because of the high winds, there is a limit 

to how long of strings they can use without the wind causing inaccuracy.  Lines are drawn by 

pounding one stake into the ground at a time.  One cannot see more than one stake back, so it is 

unclear how much inaccuracy each new stake has.  For the finding of an excircle to not work 

means that the Zabolian engineers bisected two exterior angles of a triangle, extended them, and 

they did not intersect.  But they are unsure whether this failure is due to inaccuracy in their stake-

by-stake construction of a line, or to their smoggy world having a hyperbolic geometry. 



Geometry without Multiplication  Victor Aguilar 

92 
 

Construction 3.2  Three highways intersect to make a triangle with sides of given lengths.  The 

highways are connected by arcs of their excircles.  Locate the exit ramps to these arcs. 

 

 Solution 

By SSS, construct the triangle.  By excircle theorem corollary #2, locate the incircle 

touching points, 𝐼𝐸 , 𝐼𝐹 , 𝐼𝐺 .  By excircle theorem corollary #3, locate the excircle touching 

points on the triangle sides, 𝑋𝐺 , 𝑌𝐹 , 𝑍𝐸.  By excircle theorem corollary #4, locate the 

excircle touching points on the extensions of the sides, 𝑋𝐸 , 𝑋𝐹, 𝑌𝐸 , 𝑌𝐺 , 𝑍𝐹 , 𝑍𝐺 .            ∎ 

 

Perpendiculars raised from the touching points are as widely spaced on the excircles as possible.   
 

Problem 3.1  Two country roads intersect at an arbitrary angle.  We wish to pave an arc 

connecting them and going around the corner of a farmer’s field, which is on the angle bisector 

of the two roads. 
 

In this problem, and later ones about shortcuts, we want the large arc for drivers approaching 

the intersection and are turning onto the other road, not for those who have driven past the 

intersection and are making a U-turn to go three quarters around a circle onto the other road. 
 

 Solution 

Construct a line perpendicular to the angle bisector through the corner of the field.  By 

the center line theorem, this forms an isosceles triangle.  Construct the excircle.  Find the 

touching points by dropping perpendiculars from the excenter to the roads.           ∎ 

 

Incredibly, Common Core does not consider excircles.  How they can ignore the important work 

of paving companies is beyond me!  But now, having helped these brave souls out there laboring 

over hot asphalt, we are where second semester usually begins, with the first citation of the 

dreaded parallel postulate.  The lemma (Euclid, Book I, Prop. 27) is neutral geometry – It was one 

of the yellow-belt exit exam questions; did you get it? – but the transversal theorem (Euclid, Book 

I, Prop. 29) officially introduces Euclidean geometry.58  The adventure begins! 
 

Transversal Lemma       (Euclid, Book I, Prop. 27) 

 If alternate interior angles are equal, the two lines crossed by the transversal are parallel. 

 

 Proof 

Suppose that the two lines are not parallel.  Their intersection with each other and with 

the transversal form a triangle.  The two given angles are exterior to and interior to this 

triangle.  Their equality contradicts the exterior angle inequality theorem.           ∎ 

 
58 Book I, Prop. 28 is what we will call T & V to avoid making the students memorize the names of angle pairs. 
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Transversal Theorem59       (Euclid, Book I, Prop. 29) 

If the two lines crossed by a transversal are parallel, then alternate interior angles are equal. 

 

 Proof 

Suppose ∠𝐸𝐹𝐺 ≠ ∠𝐹𝐺𝐻 are alternate interior angles.  Replicate ∠𝐸𝐹𝐺 as ∠𝐹𝐺𝐽 with 𝐽 

and 𝐻 on the same side of 𝐹𝐺⃡⃗⃗⃗  ⃗.  By the transversal lemma, 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐽⃡⃗  ⃗ are parallel.  But, by 

the parallel postulate, there is only one parallel to a line through a point, so 𝐻 is on 𝐺𝐽⃡⃗  ⃗. ∎ 

 

Transversal Theorem Corollary 

Two lines are parallel if and only if a perpendicular to one is perpendicular to the other. 

 

Now that we have the parallel postulate, Saccheri quadrilaterals are right rectangles and, indeed, 

all rectangles are right rectangles, so the adjective “right” is no longer needed.  T & V means 

citing the transversal and vertical angles theorems.  We do not name angle pairs.  This is in 

keeping with my policy of not turning geometry into an annoying vocabulary test. 

 

Rectangle Bimedian Theorem 

A rectangle’s bimedians are equal to the sides they do not cut, and their extensions are parallel. 

 

Pairwise Parallels/Perpendiculars Theorem 

If the rays of two angles are pairwise parallel or pairwise perpendicular, then the angles are equal; 

the only exception is for pairwise perpendicular angles with their vertices inside the other angle, 

so the angles are supplementary.  (This is called quadrilateral angle sum theorem corollary #1.) 

 

Equal Perpendiculars Theorem 

Perpendiculars through a point inside a square are equally cut by opposite sides of the square. 

 

Construction 3.3         (Euclid, Book I, Prop. 31) 

Construct a line parallel to a given line through a point not on the line. 

 

 Solution 

Draw an arc around the given point, 𝐸, of radius greater than the distance from the line 

to intersect it at 𝐺.  Draw an arc of the same radius around 𝐺 to intersect the given line 

at 𝐹 on the 𝐸 side of the perpendicular at 𝐺.  Draw an arc of radius 𝐸𝐹 around 𝐺 and let 

𝐻 be its intersection with the 𝐸-arc on the same side of 𝐹𝐺⃡⃗⃗⃗  ⃗ as 𝐸.  By SSS, 𝐸𝐺𝐹 ≅ 𝐺𝐸𝐻, 

which holds the equality ∠𝐸𝐺𝐹 = ∠𝐺𝐸𝐻.  By the transversal lemma, 𝐸𝐻⃡⃗⃗⃗  ⃗ ∥ 𝐹𝐺⃡⃗⃗⃗  ⃗.          ∎ 

 
59 Richard Rusczyk writes, “Like the parallel postulate, [the transversal theorem] turns out to be one of those 

‘obvious’ facts that cannot be proved.  It must be assumed (2006, p. 26).”  Should we tell him? 
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Construction 3.4  Construct a line through a point that meets a given line at a given angle. 

 

This is easy, but it needs to be stated here to make it clear that this construction is Euclidean. 

 

Problem 3.2  Prove that, if two lines are parallel and a line cuts one of them, it also cuts the other. 

 

Problem 3.3  Given 𝐸𝐹𝐺, draw a line through the incenter parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ that intersects 𝐸𝐺 and 

𝐹𝐺 at 𝐽 and 𝐾, respectively.  Prove that 𝐽𝐾 = 𝐸𝐽 + 𝐹𝐾. 

 

Problem 3.4  Given two parallel lines, draw a transversal that cuts one line at an angle such that 

it is twice (or three times or five times) one of the angles that the other line is cut at. 

 

For this problem, I hope everybody got the two constructions in the white belt exit exam!  Can 

white belts do this with a given side length?  No.  But with AA similarity, orange belts can. 

 

Problem 3.5  You are given two points, a circle, and a line.  Draw a circle that passes through 

the two points and whose common chord with the given circle is parallel to the given line. 

 

 Solution 

Drop a perpendicular from the center of the circle to the line.  By the common chord 

theorem, the desired circle’s center is on this line.  By the diameter and chord theorem, 

the center is on the mediator of the segment connecting the two points.  Where these 

loci intersect is the center.  By the transversal theorem corollary, the common chord is 

parallel to the given line because the line of centers is perpendicular to both.          ∎ 

 

Existence is not assured if the segment joining the two given points is parallel to the given line.  

Also, the points must be such that the circle cuts the given circle, so there is a common chord. 

 

Angle Sum Theorem       (Euclid, Book I, Prop. 32) 

Interior angles of a triangle sum to one straight angle; that is, 𝛼 + 𝛽 + 𝛾 = 𝜎. 

 

 Proof 

Given 𝐸𝐹𝐺, by C. 3.3, construct a parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ through 𝐺.  Let 𝐽 be a point on this line 

on the same side of 𝐹𝐺⃡⃗⃗⃗  ⃗ as 𝐸.  Let 𝐾 be a point on this line on the same side of 𝐸𝐺⃡⃗⃗⃗  ⃗ as 𝐹. 

𝐸𝐺⃡⃗⃗⃗  ⃗ transverses 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐽𝐾⃡⃗⃗⃗ .  By the transversal theorem, ∠𝐽𝐺𝐸 = ∠𝐺𝐸𝐹. 

  𝐹𝐺⃡⃗⃗⃗  ⃗ transverses 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐽𝐾⃡⃗⃗⃗ .  By the transversal theorem, ∠𝐹𝐺𝐾 = ∠𝐸𝐹𝐺. 

 By supplementarity, ∠𝐽𝐺𝐸 + ∠𝐸𝐺𝐹 + ∠𝐹𝐺𝐾 is straight. 

By substitution, ∠𝐺𝐸𝐹 + ∠𝐸𝐺𝐹 + ∠𝐸𝐹𝐺 is straight.             ∎ 
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Exterior Angle Theorem      (Euclid, Book I, Prop. 32) 

An exterior angle equals the sum of the remote interior angles. 

 

Isosceles Angle Theorem 

If 𝛼 is the apex angle of an isosceles triangle, a base angle is 𝜌 −
1

2
𝛼, which is also 

1

2
(𝜎 − 𝛼).   

The supplement of the base angle is 𝜌 +
1

2
𝛼, and double the base angle is 𝜎 − 𝛼. 

 

𝜌 is right, and 𝜎 is straight; that is, 𝜌 =
1

2
𝜎.  We do not have division; 

1

2
 is the symbol for bisection.  

It is just a symbol for C. 1.1; analogy does not give us 
1

3
 or any other symbols that look like this. 

 

Quadrilateral Angle Sum Theorem 

Interior angles of a quadrilateral sum to two straight angles. 

 

Quadrilateral Angle Sum Theorem Corollaries 

1. If opposite quadrilateral angles are right, then the other two angles are supplementary. 

2. Let 𝐸𝐹𝐺𝐻 be tangential with incenter 𝐼.  Then, ∠𝐸𝐼𝐹 + ∠𝐺𝐼𝐻 = 𝜎 = ∠𝐹𝐼𝐺 + ∠𝐻𝐼𝐸. 

3. Let 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ be tangent to an 𝐼-circle and 𝐹𝐺⃡⃗⃗⃗  ⃗ also tangent.  Then, ∠𝐹𝐼𝐺 = 𝜌. 

 

Triangle Centers’ Angles Theorem 

Let 𝐸𝐹𝐺 have orthocenter 𝐻, incenter 𝐼 and circumcenter 𝑂.   

1. If ∠𝐸 < 𝜌 and ∠𝐹 < 𝜌, then ∠𝐸𝐻𝐹 is supplementary to ∠𝐺. ∠𝐸𝐻𝐹 + ∠𝐺 = 𝜎 

2. ∠𝐸𝐼𝐹 is a right angle plus half of ∠𝐺.    ∠𝐸𝐼𝐹 = 𝜌 +
∠𝐺

2
 

3. If ∠𝐺 ≤ 𝜌, then ∠𝐸𝑂𝐹 is double it.     ∠𝐸𝑂𝐹 = 2∠𝐺 
 

The orthocenter will be defined soon; I mention it here to get these angle theorems in one place.  

Parts (1) and (2) are easy corollaries of the angle sum theorem, but they are worth naming.  If 

this is not your first geometry book, you may recognize part (3) as a direct result of the inscribed 

angle theorem, which green belts will prove.  See if you can prove (3) now without looking ahead!   

 

Polygon Angle Sum Theorem 

1. Interior angles of 𝑛 adjacent triangles sum to 𝑛 straight angles. 

2. Exterior angles of 𝑛 adjacent triangles with a convex union sum to two straight angles. 
 

Proportions will not be defined until blue belt, but we can define similar triangles now as two 

triangles with all corresponding angles equal.  Of course, proportions are a mainstay of standard 

geometry exams, but you can pass such exams if you know how to cross multiply.  Blue belt is 

not needed, though it helps to look up the intersecting chords and intersecting secants theorems 

for those annoying exams that cherry-pick some unproven theorems for students to memorize. 
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Angle–Angle (AA) Similarity Theorem 

Two corresponding angles equal is sufficient to prove the similarity of two triangles. 

 

Problem 3.6  From a house in the country, construct a dirt road to a straight paved road, the latter 

twice as fast as the former, to minimize travel time to a nearby town on the paved road. 

 

 Solution 

Guess at where the intersection should be.  On the other side of the paved road, construct 

a half equilateral triangle with the hypotenuse on the paved road to town and the short 

leg extending into the dirt.  From the intersection, you could get to the right vertex or to 

town in the same time.  By definition of segment, if the intersection is not collinear with 

the house and the right vertex, it is badly guessed.  By AA similarity, the driveway must 

be 
φ

2
 off the perpendicular from the house to the paved road to make this path straight.∎ 

 

Pairwise Parallel/Perpendicular Similarity Theorem 

If the side extensions of triangles are pairwise parallel or pairwise perpendicular, they are similar. 

 

Problem 3.7  Given 𝐸𝐹𝐺 with incenter 𝐼 and excenter 𝑋, prove that 𝐼𝐺𝐸~𝐹𝐺𝑋. 

 

Problem 3.8  Prove that, if the bisector of an exterior angle is parallel to the opposite side, then 

the triangle is isosceles.  Is the given angle the base or the apex angle of the isosceles triangle? 

 

When I was in middle school, I studied art.  One day, I drew a horse; I did an exceptional job on 

the legs – all the joints were hinged in the right direction – but then I ran off the top of the paper, 

so the horse’s head was cut off.  Undeterred, I just stapled another sheet of paper to my picture 

and kept drawing.  But graphic artists are not allowed to staple; hence, the following problem: 

 

Problem 3.9  Two lines meet several centimeters off the paper.  Perform these constructions: 

1. Replicate the angle that they make; and 2.  Bisect the angle that they make. 

 

This is as far as graphic artists usually get, but I recommend the following theorems and P. 3.10.   

 

1. Equal Segments on Parallels Theorem; 

2. Parallelogram Theorem; 

3. Parallelogram Diagonals Theorem; and 

4. Mid–Segment Theorem. 

 

Problem 3.10  Design a trucker’s triangular hazard reflector.  Draw an equilateral triangle and 

then another one with the same center and orientation, but with sides half of the outer lengths. 
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Problem 3.11  Through a point on a circle, draw a chord twice as long as it is from the center. 

 

 Solution 

 Draw a radius to the point and another perpendicular to it.  Connect their endpoints.   ∎ 

 

 Proof 

Drop a perpendicular from the center to the chord.  By HL, the two right triangles it makes 

are congruent, and, by the angle sum theorem, they are isosceles.            ∎ 

 

If a problem appears in the orange-belt chapter, this means it could not have been solved in the 

yellow-belt chapter before the parallel postulate was introduced; that is, the solution fails in non-

Euclidean geometry.  We are not here to teach non-Euclidean geometry, but the textbook was 

arranged so those who are preparing for a course in non-Euclidean geometry can read to the end 

of the yellow-belt chapter to learn what is common to our sciences.  If they are still with us, it is 

instructive for them to consider how the solution to a problem fails in non-Euclidean geometry.   

 

If Tokyo (35° 41’ N, 139° 41’ E) is on a circle centered at the north pole, then our “solution” is a 

point off the coast of California (35° 41’ N, 130° 19’ W).  The chord – the great circle that airplanes 

travel – is 7796 km long.  Its midpoint (45° 26.5’ N, 175° 19’ W) is 4955 km from the north pole. 

 

Lambert Theorem 

Lambert quadrilaterals (three right angles) are right rectangles. 

 

 Proof 

Let 𝐸𝐹𝐺𝐻 be a quadrilateral with ∠𝐸 = ∠𝐹 = ∠𝐺, all right.  𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ and 𝐺𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐸𝐻⃡⃗⃗⃗  ⃗ by 

the transversal theorem corollary.  By the transversal theorem corollary, ∠𝐻 is right.         ∎ 

 

The transversal theorem corollary may have seemed too obvious to bother stating; but, without 

it, this proof would have required repeatedly stating that right angles equal their supplement. 

 

Lambert Theorem Corollary 

A parallelogram with at least one right angle is a right rectangle. 

 

Kite: The union of two congruent triangles whose uncommon sides that are 

equal are also consecutive 

 

Parallelogram: The union of two congruent triangles whose uncommon sides that are 

equal are also opposite 
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Kite Theorem  

The diagonals of a kite are perpendicular, and the non-definitional diagonal is bisected. 

 

 Proof 

By SAS, there are two congruent triangles on one side of the non-definitional diagonal, so 

it is bisected.  By supplementarity, they are right triangles.             ∎ 

 

Kite Altitudes Theorem 

Let 𝐸𝐹𝐻 ≅ 𝐺𝐹𝐻, so 𝐸𝐹𝐺𝐻 is a kite.  If 𝐻𝐺 , 𝐻𝐸 are pedal triangle vertices in 𝐸𝐹𝐺, then 𝐻𝐺𝐹𝐻𝐸𝐻 

is also a kite. 

 

Except for one kite theorem, orange belts will focus mostly on parallelograms.  In parallelogram 

𝐸𝐹𝐺𝐻, both 𝐸𝐹𝐻 ≅ 𝐺𝐻𝐹 and 𝐻𝐸𝐺 ≅ 𝐹𝐺𝐸, so either 𝐹𝐻 or 𝐸𝐺 can be definitional diagonals, 

unlike kites, which have only one definitional diagonal.  For parallelograms, we can choose either. 

 

Viviani60 Sum Theorem 

The altitude to a leg of an isosceles triangle is equal to the sum of the distances to the legs from 

any point on the base. 

 

 Proof 

Given 𝐸𝐹𝐺 isosceles with 𝑃 an arbitrary point inside the base, 𝐸𝐹, and 𝑃𝐹 , 𝑃𝐸  the feet of 

perpendiculars dropped from 𝑃 onto 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗, respectively.  ∠𝑃𝐹𝐸𝑃 = ∠𝑃𝐸𝐹𝑃 by the 

isosceles triangle theorem.  Extend 𝑃𝐸𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ and lay off 𝑃𝐽 = 𝑃𝑃𝐹.  By the angle sum and 

vertical angles theorems, ∠𝐸𝑃𝑃𝐹 = ∠𝐹𝑃𝑃𝐸 = ∠𝐸𝑃𝐽.  By SAS, 𝐸𝑃𝑃𝐹 ≅ 𝐸𝑃𝐽, so ∠𝐸𝐽𝑃 is 

right.  Let 𝐸′ be the foot of the altitude to 𝐹𝐺⃗⃗⃗⃗  ⃗.  By the Lambert theorem, 𝐸𝐽𝑃𝐸𝐸′ is a right 

rectangle so 𝐸𝐸′ = 𝑃𝐸𝐽 = 𝑃𝑃𝐸 + 𝑃𝐽 = 𝑃𝑃𝐸 + 𝑃𝑃𝐹.  By the isosceles altitudes theorem, 

the other altitude is equal, so 𝐸𝐸′ = 𝐹𝐹′ = 𝑃𝑃𝐸 + 𝑃𝑃𝐹.               ∎ 

 

Viviani Similarity Theorem 

Viviani triangles are similar. 

 

Viviani Difference Theorem 

The altitude to a leg of an isosceles triangle is equal to the difference of the distances to the legs 

from any point on the extension of the base. 

 
60 Vincenzo Viviani was a 17th century geometer in Florence, Italy who, with Evangelista Torricelli, were students of 

Galileo Galilei.  With Giovanni Saccheri and Giovanni Ceva, who came fifty years later, this sequence of Jesuits laid 

the foundation for the 18th century revolution in mathematics ushered in by Euler and other Swiss mathematicians. 
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 Proof 

Given 𝐸𝐹𝐺 isosceles with 𝑃 an arbitrary point on the extension of the base, 𝐹𝐸⃗⃗⃗⃗  ⃗.  Let 𝑃𝐹 , 𝑃𝐸 

be the feet of perpendiculars dropped from 𝑃 onto 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗, respectively.  By the 

isosceles triangle and vertical angles theorems, ∠𝑃𝐹𝐸𝑃 = ∠𝑃𝐸𝐹𝑃.  Lay off 𝑃𝐽 = 𝑃𝑃𝐹 on 

𝑃𝑃𝐸
⃗⃗ ⃗⃗ ⃗⃗  ⃗.  ∠𝐸𝑃𝑃𝐹 = ∠𝐸𝑃𝐽 by the angle sum theorem.  𝐸𝑃𝑃𝐹 ≅ 𝐸𝑃𝐽 by SAS, so ∠𝐸𝐽𝑃 is right.  

Let 𝐸′ be the foot of the altitude to 𝐹𝐺⃗⃗⃗⃗  ⃗.  By the Lambert theorem, 𝐸𝐽𝑃𝐸𝐸′ is a right 

rectangle, so 𝐸𝐸′ = 𝑃𝐸𝐽 = 𝑃𝑃𝐸 − 𝑃𝐽 = 𝑃𝑃𝐸 − 𝑃𝑃𝐹.  Analogously, 𝐹𝐹′ = 𝑃𝑃𝐹 − 𝑃𝑃𝐸.  In 

general, 𝐸𝐸′ = 𝐹𝐹′ = |𝑃𝑃𝐸 − 𝑃𝑃𝐹|.                ∎ 

 

Viviani Equilateral Theorem 

The altitude of an equilateral triangle is equal to the sum of the distances to the sides from any 

point on or inside the triangle. 

 

 Proof 

Given 𝐸𝐹𝐺 equilateral, let 𝐺𝐺′ be the altitude to 𝐸𝐹 and 𝐺′′ its intersection to a parallel 

to 𝐸𝐹⃡⃗⃗⃗  ⃗ through interior point 𝑃.  Let 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  be its pedal triangle vertices.  By equilateral 

triangle theorem and the Viviani sum theorem, 𝑃𝑃𝐸 + 𝑃𝑃𝐹 = 𝐺𝐺′′.  By the Lambert 

theorem, 𝑃𝑃𝐺𝐺′𝐺′′ is a right rectangle; thus, 𝑃𝑃𝐺 = 𝐺′𝐺′′.  𝐺𝐺′ = 𝐺𝐺′′ + 𝐺′𝐺′′.  Thus, the 

conclusion, 𝑃𝑃𝐸 + 𝑃𝑃𝐹 + 𝑃𝑃𝐺 = 𝐺𝐺′.               ∎ 
 

All the Viviani theorems have converses that are true; proofs are left as exercises.  The big/small 

vertex of a triangle is the point that minimizes/maximizes the sum of the distances to the sides.  

If there are two equally big/small vertices, then the minimum/maximum is anywhere between 

them, by the Viviani sum theorem.  There is no minimum or maximum for an equilateral triangle. 
 

Problem 3.12 

Find the locus of points such that the sum of distances to two non-parallel lines is a given length. 

 

 Solution 

Given lines 𝑙1 and 𝑙2 with intersection 𝑂, draw parallels on both sides of 𝑙1 at the given 

width, intersecting 𝑙2 at 𝐸 and 𝐺.  If 𝑙1 ⊥ 𝑙2, then 𝑂𝐸 = 𝑂𝐺; else, the perpendicular 

through 𝑂 makes two right triangles congruent by AAS, so 𝑂𝐸 = 𝑂𝐺.  Lay off 𝑂𝐸 on 𝑙1 to 

either side of 𝑂 to 𝐹 and 𝐻; thus, 𝐸𝑂𝐹, 𝐹𝑂𝐺, 𝐺𝑂𝐻, 𝐻𝑂𝐸 are all isosceles triangles 

whose altitude to a leg is the given length.  By the Viviani sum theorem, parallelogram 

𝐸𝐹𝐺𝐻 is the desired locus.                 ∎ 

 

The locus of differences of distances to two lines that equal a given length is left as an exercise. 
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Construction 3.5  Given two circles with 
centers 𝑂1 and 𝑂2 that intersect at 𝐽, 
draw a line through 𝐽 so the distance 
between its other intersections with the 

two circles, 𝐽1𝐽2, is of a given length, 𝑥. 
 
Note that there are two solutions.  If the 

𝑂1 and 𝑂2 labels are switched, then 𝐽1𝐽2 
is tilted downwards on the left. 

 
 

Guess at 𝐽1𝐽2.  By C. 1.2, bisect the 

chords 𝐽1𝐽 and 𝐽𝐽2 to get 𝑀1 and 𝑀2.  By 
the diameter and chord theorem, the 
diameters through 𝑀1 and 𝑀2 are 

perpendicular to 𝑀1𝑀2.  Drop a 

perpendicular from 𝑂1 onto 𝑂2𝑀2
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   at 𝐾 

and, by the Lambert theorem, 

𝑂1𝐾𝑀2𝑀1 is a right rectangle.  Because 

𝑀1 and 𝑀2 are midpoints, 𝑀1𝑀2 = 𝑂1𝐾 
should be half of the given length, 𝑥.   

 

 
 

It is important to understand that nudging a scratched straightedge around until it fits is only the 

first step towards the solution.  If we stop there, even if the error is too small to see, we are guilty 

of the trial and error that was denounced in construction 2.1, to trisect an angle.  We engage in 

guesswork only because we can learn from our mistakes when we see how the result fails, not 

because we hope to succeed.  All guesswork leads to failure, but some failures are instructive.   

C. 2.1 is not; trisecting an angle geometrically is still impossible.  But the figure above is helpful!  

We can bring knowledge (but not measurements) to a clean sheet of paper and do it right. 

 

𝑂1𝐾𝑂2 is right and we have the 

hypotenuse, 𝑂1𝑂2, and a leg, 𝑂1𝐾 =
1

2
𝑥, 

so, by HL, it is fully defined.  Start over 
with another photocopy of the original 
problem and find 𝐾 by C. 2.2; that is, 

draw a circle around 𝑂1 of radius 
1

2
𝑥, 

then draw a tangent line through 𝑂2 and 
call the touching point 𝐾.  Drop a 

perpendicular from 𝐽 onto 𝐾𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 

extend it to where it cuts the circles.  
These points are labeled 𝐽1 and 𝐽2.           ∎ 
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Problem 3.13  Draw a line parallel to a given line that cuts off equal chords in two given circles. 

 

 Solution 

Given circles 𝜔1, 𝜔2, from the center of 𝜔1, drop a perpendicular on the line.  From the 

center of circle 𝜔2 drop a perpendicular onto this perpendicular.  At its foot, draw 𝜔3 

congruent to 𝜔2.  By the common chord theorem, the line of centers of 𝜔1 and 𝜔3 is 

perpendicular to their common chord.  Extend the common chord through 𝜔2 and drop 

a perpendicular onto it from the center of 𝜔2.  Three right angles!  Lambert steps forward 

with his theorem and, along with the equal chords theorem, we have our result.          ∎ 

 

Problem 3.14  Draw a line parallel to a given line that cuts off chords in two given circles such 

that they have a given sum. 

 

 Solution 

Given circles 𝜔1, 𝜔2, by C. 3.3 and the Lambert theorem, construct a right rectangle with 

one pair of sides parallel to the line and vertices at the circle centers.  From the center of 

𝜔1, lay off half the given length on the side of the rectangle parallel to the line and raise 

a perpendicular to the other side of the rectangle.  Around this intersection, draw a circle 

𝜔3 congruent to 𝜔2.  Circles intersect circles in none, one or two points and, through any 

of the intersections of 𝜔1 and 𝜔3, draw a line parallel to the given line.            ∎ 

 

Problem 3.15  Draw a line parallel to a given line that cuts off chords in two circles with a given 

difference. 

 

The Lamberts were Calvinists who fled religious persecution and lived in poverty, having left 

much of their property behind.  At twelve, Heinrich Lambert dropped out of school to work full 

time in his father’s tailor shop.  At fifteen he took a fulltime job at an ironworks and sent money 

home to support his younger siblings.  But he was never going to be okay with being a semiliterate 

laborer, and so he studied on his own in the evenings by candlelight.  At seventeen he became 

secretary to a newspaper editor.  At twenty he became a tutor to the children of a nobleman, 

where he made his own astronomical instruments and published in scientific journals.  He is 

known today for Lambert’s Law of Absorption and Lambert’s Cosine Law, which are about optics, 

and for theorizing that the stars are not uniformly distributed but clumped in galaxies that rotate 

around invisible objects of immense mass.  We know today that he was the first to make an 

indirect observation of black holes, which, being black, are known of only by observing their 

effects on visible matter.  Also, he proved 𝜋 to be irrational and he gave us the Lambert theorem. 

 

Educators assume kids cannot learn if poverty distracts them, but I think wealth is the distraction. 
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Equal Segments on Parallels Theorem    (Euclid, Book 1, Prop. 33) 

Connecting the ends of equal segments on two parallel lines forms a parallelogram. 

 

 Proof 

Let 𝐸𝐹 = 𝐻𝐺 and 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐺⃡⃗ ⃗⃗  ⃗.  𝐹𝐻⃡⃗⃗⃗  ⃗ is a transversal so ∠𝐸𝐹𝐻 = ∠𝐺𝐻𝐹 and so 𝐸𝐹𝐻 ≅ 𝐺𝐻𝐹 

by SAS.                    ∎ 

 

Problem 3.16  A river with parallel banks passes between two towns.  Connect the towns with a 

minimal length road; the bridge must be perpendicular to the river. 

 

 Solution 

Let 𝐻 be your hometown and 𝑁 be your neighbors.  From 𝐻 drop a perpendicular to the 

river and lay off 𝐻𝐸 equal to the width of the river.  By definition of segment, 𝐸𝑁 is the 

shortest path from 𝐸 to 𝑁.  Let 𝐹 be the intersection of 𝐸𝑁 with the far side of the river 

and 𝐺 be the foot of the perpendicular dropped from 𝐹 to the near side of the river.  By 

the equal segments on parallels theorem, 𝐸𝐹𝐺𝐻 is a parallelogram, so 𝐸𝐹 = 𝐺𝐻.         ∎  

 

We know the length of the bridge (it is the width of the river), but we do not know where to 

position it on the river.  So, we construct a line parallel to it that we know how to construct, lay 

off the known length and then invoke the equal segments on parallels theorem. 

 

Parallelogram Theorem 

A quadrilateral is a parallelogram if and only if both pairs of opposite side extensions are parallel. 

 

 Part One 

 If a quadrilateral is a parallelogram, both pairs of opposite side extensions are parallel. 

 

Proof 

𝐸𝐹𝐻 ≅ 𝐺𝐻𝐹 holds the equalities ∠𝐸𝐹𝐻 = ∠𝐺𝐻𝐹 and ∠𝐸𝐻𝐹 = ∠𝐺𝐹𝐻, which implies 

that 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐺⃡⃗ ⃗⃗  ⃗ and 𝐸𝐻⃡⃗⃗⃗  ⃗ ∥ 𝐹𝐺⃡⃗⃗⃗  ⃗, respectively, by the transversal lemma.  • 

 

 Part Two 

 If both pairs of opposite side extensions are parallel, a quadrilateral is a parallelogram. 

 

 Proof 

Call the intersections 𝐸, 𝐹, 𝐺, 𝐻, in this order.  𝐹𝐻⃡⃗⃗⃗  ⃗ is a transversal to both pairs of parallels, 

so, by the transversal theorem, ∠𝐸𝐹𝐻 = ∠𝐺𝐻𝐹 and ∠𝐸𝐻𝐹 = ∠𝐺𝐹𝐻.  𝐸𝐹𝐻 ≅ 𝐺𝐻𝐹 by 

ASA; so 𝐸𝐹 = 𝐺𝐻 and 𝐹𝐺 = 𝐻𝐸.  Thus, by equal segments on parallels.    •          ∎ 
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Subtend–at–Center Theorem      (Euclid, Book III, Prop. 29) 

Circles are the same or equal if and only if equal chords subtend at the center equal angles. 

 

 Proof 

If the circles are equal then, by SSS, the triangles formed by radii to the endpoints of equal 

chords are congruent and so their apex angles are equal.  Suppose equal chords 𝐸𝐹 and 

𝐺𝐻 subtend at the center equal angles in circles of different radii, 𝑟 and 𝑅, respectively, 

with 𝑟 < 𝑅.  Construct them concentrically.  𝐹𝐺 = 𝑅 − 𝑟 = 𝐻𝐸 and so, by definition, 

𝐸𝐹𝐺𝐻 is a parallelogram because opposite sides are equal.  By the parallelogram 

theorem, 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐸⃡⃗⃗⃗  ⃗, a contradiction because radii meet at the center; thus 𝑟 = 𝑅.           ∎ 

 

“Equal” is all that we can say about arcs.  Length is a magnitude that only applies to line segments.  

Geometry textbooks that casually refer to the length of arcs are engaged in the unsound practice 

of inserting calculus results into geometry books and pretending to have proven them.  We have 

no way to measure the length of an arc, but only to know if two arcs are equal.  Area is analogous, 

but we will be able to measure it once we have multiplication; we will never measure arc length. 

 

By the parallels and circle theorem, parallel lines that intersect a circle cut off equal chords 

between the two lines.  By the subtend-at-center theorem, they also cut off equal arcs, which is 

how this theorem is sometimes written in other textbooks.  When those textbooks go beyond 

discussing equality to assign real numbers to the lengths of arcs, they are not doing geometry 

anymore, they are doing trigonometry, a subject whose theorems can only be proven with 

calculus because sine and cosine are defined as infinite series, the work of Calculus II students. 

 

But American students should know that Common Core geometry is mostly a review of Algebra I 

and, when they tire of reviewing the algebraic formula for the length of a segment defined by 

the Cartesian coordinates of its endpoints, they turn to cross multiplication.  This is mostly 

illustrated with unit conversion (e.g., inches to centimeters) but, to give this algebra exercise the 

appearance of geometry by drawing a circle, they just love the formula 
𝜃

360°
=

𝑠

2𝜋𝑟
=

𝐴

𝜋𝑟2 where  

𝜃 is angle, 𝑠 is arc length and 𝐴 is the area of a sector (like a slice of pie) in a circle of radius 𝑟. 

 

Parallelogram Angles Theorem     (Euclid, Book 1, Prop. 34) 

1. A quadrilateral is a parallelogram iff both pairs of opposite interior angles are equal. 

2. A quadrilateral is a parallelogram iff both pairs of opposite exterior angles are equal. 

3. A quadrilateral is a parallelogram iff any two consecutive angles are supplementary. 

 

This is easy; modern textbooks spend entirely too much time on these easy theorems. 
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Parallelogram Diagonals Theorem 

A quadrilateral is a parallelogram if and only if the diagonals bisect each other. 

 

 Proof 

Assume that 𝐸𝐹𝐺𝐻 is a parallelogram.  If 𝐹𝐻 is the definitional diagonal, 𝐸𝐹𝐻 ≅ 𝐺𝐻𝐹, 

which holds the equality ∠𝐸𝐹𝐻 = ∠𝐺𝐻𝐹.  If 𝐸𝐺 is the definitional diagonal, 𝐺𝐸𝐹 ≅ 𝐸𝐺𝐻, 

which holds the equality ∠𝐺𝐸𝐹 = ∠𝐸𝐺𝐻.  Let 𝑇 be the bi-medial.  By ASA, 𝐸𝐹𝑇 ≅ 𝐺𝐻𝑇, 

which holds the equalities 𝐹𝑇 = 𝐻𝑇 and 𝐸𝑇 = 𝐺𝑇. 

    

Let 𝑇 be the bi-medial of 𝐸𝐹𝐺𝐻 and assume that 𝐹𝑇 = 𝐻𝑇 and 𝐸𝑇 = 𝐺𝑇.  With the 

vertical angles theorem and SAS, 𝐸𝐹𝑇 ≅ 𝐺𝐻𝑇 and 𝐹𝐺𝑇 ≅ 𝐻𝐸𝑇.  Thus, 𝐸𝐹 = 𝐺𝐻 and 

𝐹𝐺 = 𝐻𝐸.  𝐸𝐹𝐺𝐻 is a parallelogram by the equal segments on parallels theorem.         ∎ 

 

Right Triangle Median Theorem 

The median to the hypotenuse of a right triangle is half of the hypotenuse. 

 

This is an easy corollary of the parallelogram diagonals theorem, and it is often labeled as such. 

 

Mid–Segment Theorem 

1. A mid-segment of a triangle is half the other side, and their extensions are parallel. 

2. A line parallel to the base of a triangle that bisects one side also bisects the other side. 

3. Given 𝐸𝐹𝐺, 𝐽 on the same side of 𝐺𝐸⃡⃗⃗⃗  ⃗ as 𝐹, 𝑀𝐺𝐸𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑀𝐺𝐸𝐽 =
1

2
𝐸𝐹, then 𝐽 ≡ 𝑀𝐹𝐺 . 

 

 Proof 

1. Given 𝐸𝐹𝐺, construct a line parallel to 𝐸𝐺⃡⃗⃗⃗  ⃗ through 𝐹 and let 𝐾 be the intersection of 

it with 𝑀𝐺𝐸𝑀𝐹𝐺
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  By the transversal theorem, ∠𝐺𝑀𝐺𝐸𝑀𝐹𝐺 = ∠𝐹𝐾𝑀𝐹𝐺 .  With the 

vertical angles theorem and 𝑀𝐹𝐺  being a midpoint, 𝐺𝑀𝐺𝐸𝑀𝐹𝐺 ≅ 𝐹𝐾𝑀𝐹𝐺  by AAS.  By 

congruence, 𝐺𝑀𝐺𝐸 = 𝐹𝐾.  𝑀𝐺𝐸  is a midpoint, so 𝐺𝑀𝐺𝐸 = 𝑀𝐺𝐸𝐸.  By transitivity, 

𝑀𝐺𝐸𝐸 = 𝐹𝐾.  By the equal segments on parallels theorem, 𝐸𝐹𝐾𝑀𝐺𝐸  is a 

parallelogram and 𝑀𝐺𝐸𝐾 = 𝐸𝐹.  By the parallelogram theorem, 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗.  

𝐺𝑀𝐺𝐸𝑀𝐹𝐺 ≅ 𝐹𝐾𝑀𝐹𝐺 , so 𝑀𝐺𝐸𝑀𝐹𝐺 =
1

2
𝑀𝐺𝐸𝐾.  Thus, 𝑀𝐺𝐸𝑀𝐹𝐺 =

1

2
𝐸𝐹.  • 

 

2. Given 𝐸𝐹𝐺, find 𝐽 on 𝐹𝐺 such that 𝑀𝐺𝐸𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗.  Draw a line through 𝐹 parallel to 𝐸𝐺⃡⃗⃗⃗  ⃗ 

to intersect 𝑀𝐺𝐸𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 𝐾.  By the parallelogram theorem, 𝐸𝐹𝐾𝑀𝐺𝐸  is a parallelogram.  

Thus, 𝐹𝐾 = 𝐸𝑀𝐺𝐸 = 𝑀𝐺𝐸𝐺.  By the equal segments on parallels theorem, 𝐹𝐾𝐺𝑀𝐺𝐸  

is a parallelogram.  By the parallelogram diagonals theorem, 𝐹𝐽 = 𝐽𝐺.  • 
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3. Extend 𝑀𝐺𝐸𝐽⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  that much again to 𝐾 so 𝑀𝐺𝐸𝐾 = 𝐸𝐹.  By the equal segments on parallels 

theorem, 𝐸𝐹𝐾𝑀𝐺𝐸  is a parallelogram, so 𝐹𝐾 = 𝐸𝑀𝐺𝐸  and ∠𝑀𝐺𝐸𝐸𝐹 = ∠𝐹𝐾𝑀𝐺𝐸 . 

∠𝑀𝐺𝐸𝐸𝐹 = ∠𝐺𝑀𝐺𝐸𝐽 by T&V and 𝐸𝑀𝐺𝐸 = 𝑀𝐺𝐸𝐺; thus, ∠𝐺𝑀𝐺𝐸𝐽 = ∠𝐹𝐾𝐽 and 

𝐺𝑀𝐺𝐸 = 𝐹𝐾 by transitivity.  By SAS, 𝐺𝑀𝐺𝐸𝐽 ≅ 𝐹𝐾𝐽, so ∠𝑀𝐺𝐸𝐽𝐺 = ∠𝐾𝐽𝐹 and 𝐺𝐽 = 𝐹𝐽.  

By the vertical angles theorem, 𝐹, 𝐽, 𝐺 are collinear, so 𝐽 ≡ 𝑀𝐹𝐺 .  •          ∎ 
 

Medial Triangle Theorem I 

The medial triangle is congruent to the three triangles around it and all five triangles are similar. 
 

Medial Triangle Theorem II 

The feet of perpendiculars dropped from a triangle’s apex onto its base angle bisectors define a 

line that is parallel to the base. 

 

Medial Triangle Theorem III 

Perpendiculars dropped on interior and exterior angle bisectors from the other vertices of a 

triangle have their feet on the extensions of the sides of its medial triangle. 

 

 Proof 

Given 𝐸𝐹𝐺, lay off 𝐹𝐺 on 𝐺𝐸⃗⃗⃗⃗  ⃗ to 𝐽 so 𝐽𝐹𝐺 is isosceles.  If 𝐽 ≡ 𝐸, then skip to “𝐾 is the 

foot…;” else, by the center line theorem, 𝐺𝑀𝐽𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   bisects ∠𝐺.  By mid-segment theorem #1 

applied to 𝐸𝐽𝐹, 𝑀𝐸𝐹𝑀𝐽𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∥ 𝐸𝐽⃡⃗  ⃗; thus, 𝑀𝐽𝐹 is on 𝑀𝐸𝐹𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , the extension of a side of the 

medial triangle.  𝐾 is the foot of the perpendicular dropped on the exterior bisector of 

∠𝐺 from 𝐹.  By the interior and exterior angles and the Lambert theorem, 𝑀𝐽𝐹𝐹𝐾𝐺 is a 

rectangle.  By the parallelogram diagonals theorem, 𝑀𝐹𝐺  is also the midpoint of 𝑀𝐽𝐹𝐾; 

thus 𝐾 is on 𝑀𝐸𝐹𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Analogously for feet of perpendiculars dropped from every vertex 

on the bisectors of the other vertices.               ∎  
 

Problem 3.17  Prove that the incenter of a triangle lies inside its medial triangle.   

 

Construction 3.6  Construct a triangle given the legs and the median to the base. 

 

Construction 3.7   

Construct a triangle given the base, a base angle, and the median to the opposite leg. 

 

 Solution 

Given ∠𝐸𝐹𝐺′′ and 𝐸𝐹, the locus of midpoints of 𝐸𝐺 where 𝐺 is on 𝐹𝐺′′⃗⃗⃗⃗⃗⃗⃗⃗   is the parallel to 

𝐹𝐺′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ through 𝑀𝐸𝐹, by mid-segment theorem #1.   Where this locus intersects the locus of 

points median distant, 𝑚𝐹, from 𝐹 is 𝑀𝐺𝐸 .  𝐺:= 𝐸𝑀𝐺𝐸
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝐺′′⃗⃗⃗⃗⃗⃗⃗⃗ .  Thus, 𝐸𝐹𝐺.          ∎ 
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Construction 3.8  Given 𝐺1𝐺2 = 𝐺2𝐺3 on line 𝑙1 and an arbitrary point 𝐸1 on line 𝑙2, find 𝐸2 and 

𝐸3 so 𝐸1𝐸2 = 𝐸2𝐸3. 
 

This construction works for an arbitrary number of segments, but it is described here for two. 

 

 Solution 

Given 𝐺1𝐺2 = 𝐺2𝐺3 on line 𝑙1 and an arbitrary point 𝐸1 on line 𝑙2, Connect 𝐸1𝐺1 and draw 

parallels to it through 𝐺2 and 𝐺3 that intersect 𝑙2 at 𝐸2 and 𝐸3, respectively.  If 𝑙1 ∥ 𝑙2, 

then skip to “By the parallelogram theorem;” else, from 𝐺1 draw a parallel to 𝑙2 that 

intersects 𝐸2𝐺2 at 𝐹2.  From 𝐺2 draw a parallel to 𝑙2 that intersects 𝐸3𝐺3 at 𝐹3.  by T & V 

and ASA, 𝐺1𝐺2𝐹2 ≅ 𝐺2𝐺3𝐹3; thus, 𝐺1𝐹2 = 𝐺2𝐹3.  By the parallelogram theorem, 

𝐺1𝐹2𝐸2𝐸1 and 𝐺2𝐹3𝐸3𝐸2 are parallelograms, so 𝐸1𝐸2 = 𝐸2𝐸3.            ∎ 
 

Construction 3.9  Trisect a segment.     (Euclid, Book VI, Prop. 10) 

 

 Euclid’s Solution 

Given 𝑂𝐸3, draw a ray 𝑂𝐺1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and then lay off 𝑂𝐺1 = 𝐺1𝐺2 = 𝐺2𝐺3 on it.  By C. 3.8, find 𝐸1 

and 𝐸2 so 𝐸1𝐸2 = 𝐸2𝐸3.  From 𝐺1 draw a parallel to 𝑂𝐸3
⃡⃗ ⃗⃗ ⃗⃗  ⃗ that intersects 𝐸2𝐺2 at 𝐹2.  

𝑂𝐺1𝐸1 ≅ 𝐺1𝐺2𝐹2 by T & V and ASA; thus, 𝑂𝐸1 = 𝐺1𝐹2.  By the parallelogram theorem, 

𝐺1𝐹2 = 𝐸1𝐸2.  Thus, 𝑂𝐸1 = 𝐸1𝐸2 = 𝐸2𝐸3.               ∎ 

 

C. 3.8 is good for cutting a segment into many equal pieces; there are better trisection methods.  
 

Construction 3.10  Construct a quadrilateral given the four sides and one bimedian. 
 

 Solution 

We are given the lengths of the sides in 𝐸𝐹𝐺𝐻 and the bimedian between the midpoints 

of 𝐸𝐹 and 𝐺𝐻.  We guess – draw the figure with the lengths only approximate – and then 

see what is wrong and how to redraw the figure correctly.  Let 𝑀𝐸𝐹  and 𝑀𝐺𝐻 be the 

midpoints of 𝐸𝐹 and 𝐺𝐻.  Since we are assuming this figure is the solution, it is fully 

defined, and we can construct parallelograms 𝐸𝐽𝑀𝐺𝐻𝐻 and 𝐹𝐺𝑀𝐺𝐻𝐾.  Connect 𝑀𝐸𝐹 to 

the parallelogram vertices, 𝐽 and 𝐾.  𝐽𝐸𝑀𝐸𝐹 ≅ 𝐾𝐹𝑀𝐸𝐹 by SAS (𝐽𝐸 = 𝐾𝐹 and 𝐽𝐸⃡⃗  ⃗ ∥ 𝐾𝐹⃡⃗⃗⃗  ⃗, 

which implies ∠𝐽𝐸𝐹 = ∠𝐾𝐹𝐸 by the transversal theorem, and 𝐸𝑀𝐸𝐹 = 𝐹𝑀𝐸𝐹 because 

𝑀𝐸𝐹 is a midpoint) which holds the equality ∠𝐸𝑀𝐸𝐹𝐽 = ∠𝐹𝑀𝐸𝐹𝐾.  By the vertical angles 

theorem, 𝐽,𝑀𝐸𝐹 , 𝐾 are collinear.  But we guessed at 𝐸𝐹𝐺𝐻, so this is not the solution; the 

lengths are wrong.  So, what have we achieved with this guesswork?  𝐽𝐾𝑀𝐺𝐻 is a triangle!  

Construct it by C. 3.6, build parallelograms 𝐸𝐽𝑀𝐺𝐻𝐻 and 𝐹𝐺𝑀𝐺𝐻𝐾 and connect 𝐸𝐹.       ∎ 
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Triangle Frustum Mid–Segment Theorem 

A triangle frustum’s mid-segment is the semisum of the base and the top, and parallel to them. 

 

 Proof 

Given 𝐸𝐹𝐺𝐻 with 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐺⃡⃗ ⃗⃗  ⃗, then 𝑀𝐻𝐸𝑀𝐹𝐺  is the mid-segment.  Let 𝐽: = 𝐸𝐹⃗⃗⃗⃗  ⃗ ∩ 𝐻𝑀𝐹𝐺
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  By 

ASA, 𝑀𝐹𝐺𝐺𝐻 ≅ 𝑀𝐹𝐺𝐹𝐽, so 𝐻𝑀𝐹𝐺 = 𝐽𝑀𝐹𝐺  and 𝐻𝐺 = 𝐹𝐽.  By the former equality, 𝑀𝐻𝐸𝑀𝐹𝐺  

is the mid-segment of 𝐸𝐽𝐻 and thus 𝑀𝐻𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐺⃡⃗ ⃗⃗  ⃗ and 𝑀𝐻𝐸𝑀𝐹𝐺 =

1

2
𝐸𝐽.  But, by 

the latter equality, 𝐸𝐽 = 𝐸𝐹 + 𝐹𝐽 = 𝐸𝐹 + 𝐻𝐺, so 𝑀𝐻𝐸𝑀𝐹𝐺 =
1

2
(𝐸𝐹 + 𝐻𝐺).     ∎ 

 

Triangle Frustum Mid–Segment Theorem Corollary 

Triangle frustum diagonals cut the mid-segment to the semidifference of the top and bottom. 

 

Proof 

Let 𝑃:= 𝑀𝐻𝐸𝑀𝐹𝐺 ∩ 𝐸𝐺 and 𝑄:= 𝑀𝐻𝐸𝑀𝐹𝐺 ∩ 𝐹𝐻.  By the triangle frustum mid-segment 

theorem, 𝑀𝐻𝐸𝑄⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗.  By mid-segment theorems #1 and #2, 𝑀𝐻𝐸𝑄 =
1

2
𝐸𝐹.  Analogously, 

𝑀𝐻𝐸𝑃 =
1

2
𝐻𝐺.  Thus, 𝑃𝑄 = |𝑀𝐻𝐸𝑄 − 𝑀𝐻𝐸𝑃| =

1

2
|𝐸𝐹 − 𝐻𝐺|.            ∎ 

 

Two Transversals Theorem 

Parallel lines that equally cut one transversal equally cut any transversal. 

 

 Proof 

Let 𝐻′′𝐹⃡⃗⃗⃗⃗⃗⃗⃗ ∥ 𝐻𝐺⃡⃗ ⃗⃗  ⃗ ∥ 𝑀′′𝐾⃡⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ ∥ 𝑀𝐿⃡⃗ ⃗⃗  ⃗ with 𝐻′′, 𝐻,𝑀′′,𝑀 and 𝐹, 𝐺, 𝐾, 𝐿 collinear and 𝐹𝐺 = 𝐾𝐿.  

Find 𝐸 on 𝐻′′𝐹⃡⃗⃗⃗⃗⃗⃗⃗  and 𝐽 on 𝑀′′𝐾⃡⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ such that 𝐻𝐸⃡⃗⃗⃗  ⃗ ∥ 𝐿𝐹⃡⃗⃗⃗ ∥ 𝑀𝐽⃡⃗⃗⃗  ⃗.  By the parallelogram theorem, 

𝐸𝐹𝐺𝐻 and 𝐽𝐾𝐿𝑀 are parallelograms, so 𝐻𝐸 = 𝑀𝐽.  By T & V, ∠𝐸𝐻𝐻′′ = ∠𝐽𝑀𝑀′′ and 

∠𝐻𝐸𝐻′′ = ∠𝑀𝐽𝑀′′.  By ASA, 𝐻𝐸𝐻′′ ≅ 𝑀𝐽𝑀′′, so 𝐻𝐻′′ = 𝑀𝑀′′.            ∎ 

 

Triangle Frustum Mid–Segment Theorem Converse 

A line parallel to the base of a triangle frustum that bisects one leg also bisects the other leg. 

 

This is the two transversals theorem if 𝐻𝐺⃡⃗⃗⃗  ⃗ and 𝑀′′𝐾⃡⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ are not distinct.  We will use contradiction. 

 

 Proof 

Suppose there is a line parallel to the base through the midpoint of one leg that does not 

bisect the other leg.  But, by the triangle frustum mid-segment theorem, the mid-segment 

is parallel to the base; it does bisect the other leg.  Two distinct lines through a point not 

on the base that are parallel to the base contradicts the parallel postulate.          ∎   
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Can you prove this independently of the theorem that it is the converse to? 
 

Midpoints and One Altitude Foot Theorem 

Triangle side midpoints and the foot of one altitude form an isosceles triangle frustum. 
 

Side–Angle–Side (SAS) Half–Scale Triangle Theorem  

If a triangle has two sides that are half the corresponding sides in another triangle and the 

included angles are equal, then the other angles are equal and the other side also half. 
 

Angle–Side–Angle (ASA) Half–Scale Triangle Theorem  

If two pairs of angles are equal in two triangles and the included side of one triangle is half the 

included side in the other triangle, then the other sides are also half their corresponding sides. 
 

Angle–Angle–Side (AAS) Half–Scale Triangle Theorem  

If two pairs of angles are equal in two triangles and a side opposite one of them is half that side 

in the other triangle, then the other sides are also half their corresponding sides. 

 

Median and Mid–Segment Theorem 

The median bisects the mid-segment. 
 

Medial and Parent Triangle Theorem 

The medial triangle and its parent triangle have the same medial point. 
 

Two–to–One Medial Point Theorem 

The medial point is unique; it divides each median so the distance from the medial point to the 

midpoint is half then distance from the medial point to the vertex. 
 

 Proof 

Given 𝐸𝐹𝐺, by mid-segment theorem #1, 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑀𝐺𝐸𝑀𝐹𝐺  is half 

of 𝐸𝐹.  The median 𝐸𝑀𝐹𝐺  transverses 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝐸𝐹⃡⃗⃗⃗  ⃗; ∠𝐹𝐸𝑀𝐹𝐺 = ∠𝑀𝐺𝐸𝑀𝐹𝐺𝐸 by the 

transversal theorem.  The median 𝐹𝑀𝐺𝐸  transverses 𝑀𝐺𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝐸𝐹⃡⃗⃗⃗  ⃗; by the transversal 

theorem, ∠𝐸𝐹𝑀𝐺𝐸 = ∠𝑀𝐹𝐺𝑀𝐺𝐸𝐹.  Label the intersection of these two medians 𝐶.  By 

the ASA half-scale triangle theorem, 𝑀𝐺𝐸𝑀𝐹𝐺𝐶 is half the lengths of 𝐹𝐸𝐶; thus, 𝐶 trisects 

each median as described in the theorem statement.  Repeat with another pair of 

medians.  By the uniqueness of magnitudes, this intersection is also 𝐶.           ∎ 
 

Problem 3.18  Prove that the medians’ sum is greater than three quarters of the perimeter. 

 

Problem 3.19  Given 𝐸𝐹𝐺 and 𝑄 the quartile point of 𝐸𝐺 near 𝐺, 𝑄𝑀𝐹𝐺  cuts 𝐺𝑀𝐸𝐹  in what ratio? 
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Every Triangle a Medial Theorem 

Every triangle is medial to some other triangle. 

 

 Proof 

Given 𝐸𝐹𝐺, by C. 3.3, construct a line through 𝐺 parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗, and through 𝐹 parallel to 

𝐺𝐸⃡⃗⃗⃗  ⃗.  Let their intersection be 𝑃.  By the parallelogram theorem, 𝐸𝐹𝑃𝐺 is a parallelogram 

and, by the parallelogram diagonals theorem, 𝐸𝑃 and 𝐹𝐺 bisect each other.  By C. 3.3, 

construct a line through 𝐸 parallel to 𝐹𝐺⃡⃗⃗⃗  ⃗.  Extend 𝑃𝐺⃗⃗⃗⃗  ⃗ and 𝑃𝐹⃗⃗⃗⃗  ⃗ to intersect it at 𝐽 and 𝐾, 

respectively.  By the median and mid-segment theorem, 𝐸 ≡ 𝑀𝐽𝐾.  Analogously, 𝐹 ≡ 𝑀𝑃𝐾  

and 𝐺 ≡ 𝑀𝐽𝑃.  Thus, 𝐸𝐹𝐺 is medial to 𝑃𝐽𝐾.               ∎ 

 

Orthocenter Theorem 

The altitudes are concurrent at a point that we will call the orthocenter. 

 

 Proof 

By the every-triangle-a-medial theorem, there exists a parent to the given triangle.  The 

altitudes of the given triangle are the mediators of the parent triangle and, by the 

circumcenter theorem, they are concurrent.                ∎ 
 

Medial Triangle Orthocenter Theorem 

The circumcenter of a triangle is the orthocenter of its medial triangle. 
 

 Proof 

By mid-segment theorem #1, mid-segment extensions are parallel to their triangle’s other 

sides’ extensions.  By the transversal theorem corollary, mediators are altitudes of the 

medial triangle.                   ∎ 

 

Half–Scale Orthocenter to Vertex Theorem 

The distance from the orthocenter to a vertex of the medial triangle is half the corresponding 

length in its parent triangle. 

 

 Proof 

Let 𝐸𝐹𝐺 be a triangle and 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹  be its medial triangle.  Construct altitudes from 𝐸 

and 𝐺 that intersect at 𝐻, the orthocenter of 𝐸𝐹𝐺.  Construct altitudes from 𝑀𝐹𝐺  and 𝑀𝐸𝐹 

that intersect at 𝑂, the orthocenter of 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹.  ∠𝑂𝑀𝐸𝐹𝑀𝐹𝐺 = ∠𝐻𝐺𝐸 and 

∠𝑀𝐸𝐹𝑀𝐹𝐺𝑂 = ∠𝐺𝐸𝐻 by the pairwise parallels theorem.  By mid-segment theorem #1, 

𝑀𝐸𝐹𝑀𝐹𝐺  is half of 𝐺𝐸.  By the ASA half-scale triangle theorem, 𝑂𝑀𝐸𝐹𝑀𝐹𝐺  is half the 

lengths of 𝐻𝐺𝐸 and so 𝑂𝑀𝐸𝐹  is half of 𝐻𝐺.                ∎ 
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Problem 3.20  Given 𝐸𝐹𝐺 with ∠𝐸 = 𝜌, let 𝐸′ be the foot of the perpendicular dropped on 𝐹𝐺 

and 𝐹𝐸𝐺  be the reflection of 𝐹.  Prove that 𝐹𝐸𝐺𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐺𝑀𝐸𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

 

 Solution 

In 𝐸𝐹𝐸′, by mid-segment theorem #1, 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝑀𝐸𝐸′𝑀𝐹𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  By the transversal theorem 

corollary, 𝑀𝐸𝐸′𝑀𝐹𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐸𝐺⃡⃗⃗⃗  ⃗.  By the orthocenter theorem, 𝑀𝐸𝐸′  is the orthocenter of 

𝐸𝑀𝐹𝐸′𝐺 because it is the intersection of two altitudes; thus, 𝐺𝑀𝐸𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐸𝑀𝐹𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , because 

they are the third altitude and third side.  In 𝐹𝐸𝐺𝐸′𝐹, by mid-segment theorem #1,  

𝐹𝐸𝐺𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∥ 𝐸𝑀𝐹𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  By the transversal theorem corollary, 𝐹𝐸𝐺𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐺𝑀𝐸𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .           ∎ 

 

This is a technique worth remembering:  If you are asked to prove two lines perpendicular, then 

see if they – or another pair of lines that make an equal angle – are an altitude and a side of a 

triangle.  If the other altitudes are perpendicular to their sides, then the desired angle is right! 

 

Problem 3.21  Given 𝐸𝐹𝐺𝐻 a rectangle and 𝐹′ the foot of the perpendicular dropped on 𝐸𝐺, prove 

that ∠𝑀𝐺𝐻𝑀𝐸𝐹′𝐹 = 𝜌. 

 

Let 𝑃:= 𝐹𝐹′ ∩ 𝑀𝐸𝐹′𝑀𝐸𝐹′
′  with 𝑀𝐸𝐹′

′  the foot of the perpendicular dropped on 𝐹𝐺.  𝑃 is the 

orthocenter of 𝑀𝐸𝐹′𝐹𝐺, so 𝐺𝑃⃡⃗⃗⃗  ⃗ ⊥ 𝑀𝐸𝐹′𝐹⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Proving 𝐺𝑃⃡⃗⃗⃗  ⃗ ∥ 𝑀𝐺𝐻𝑀𝐸𝐹′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is left as an exercise, but we 

again use the orthocenter theorem to prove an angle right and then equate it with another angle. 

 

Problem 3.22  Given 𝐸𝐹𝐺, build squares on the exteriors of 𝐸𝐺 and 𝐹𝐺 with sides 𝐸𝐸′′ and 𝐹𝐹′′, 

respectively.  Prove that 𝑃:= 𝐸𝐹′′ ∩ 𝐹𝐸′′ is on the altitude 𝐺𝐺′. 

 

 Solution 

Let 𝐸′′′ and 𝐹′′′ be the feet of perpendiculars dropped on 𝐹𝐸′′ and 𝐸𝐹′′ from 𝐸 and 𝐹, 

respectively.  If 𝐺′𝐺⃗⃗ ⃗⃗ ⃗⃗   and 𝐸𝐸′′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐹𝐹′′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are concurrent at 𝑄, then 𝐸𝐹𝑄 is a triangle, 𝐸𝐹′′′ 

and 𝐹𝐸′′′ are altitudes, their intersection, 𝑃, is the orthocenter of 𝐸𝐹𝑄 and is on its 

common altitude with 𝐸𝐹𝐺.  Let 𝐽: = 𝐺′𝐺⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝐸𝐸′′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐾:= 𝐺′𝐺⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝐹𝐹′′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

 

∠𝐸𝐹𝐸′′′ = ∠𝐸𝐽𝐺′ because both are complementary to ∠𝐽𝐸𝐹.  ∠𝐸𝐸′′𝐸′′′ = ∠𝐽𝐸𝐺 

because both are complementary to angles that are equal due to the transversal theorem 

applied to 𝐸𝐽⃡⃗  ⃗ transversing 𝐸𝐸′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and the opposite side of the square on 𝐸𝐺.  𝐸′′𝐸 = 𝐸𝐺 

because they are sides of this square.  Thus, by AAS, 𝐹𝐸′′𝐸 ≅ 𝐽𝐸𝐺, so 𝐸𝐹 = 𝐺𝐽.  

Analogously, 𝐸𝐹′′𝐹 ≅ 𝐾𝐹𝐺, so 𝐹𝐸 = 𝐺𝐾.  Thus, 𝐽 ≡ 𝐾.             ∎ 
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Following are better trisection methods than C. 3.9.  But Euclid should not be forgotten; for 𝑛 not 

divisible by 2 or 3 (e.g., 𝑛 = 5 or 𝑛 = 7), a modification of Euclid’s method is best. 

 

Construction 3.11  Trisect a segment. 

 

 Medial Point Solution 

Draw a line across one end and lay off equal segments so this endpoint of the segment is 

the midpoint of the base of a triangle and the other endpoint the triangle’s apex.  Draw 

in one leg and bisect it.  Connect this midpoint to the other end of the base.            ∎ 

 

Proof 

By the two-to-one medial point theorem, it trisects the given segment.           ∎ 

 

Indian Solution 

Given 𝐸𝐹, draw circles 𝜔𝐸 and 𝜔𝐹 centered at 𝐸 and 𝐹 with a radius of about 
1

4
𝐸𝐹.  Draw 

a segment 𝐸𝐺 that is twice the circle radius and ∠𝐺𝐸𝐹 ≈ 𝜌.  Measure the chord cut by 

𝐸𝐹 and 𝐸𝐺 in 𝜔𝐸  and mark the same chord length in 𝜔𝐹 from 𝐸𝐹 ∩ 𝜔𝐹 to 𝐽 such that 𝐽 

and 𝐺 are on opposite sides of 𝐸𝐹⃡⃗⃗⃗  ⃗.  𝐺𝐽 cuts off a third of 𝐸𝐹.            ∎ 

 

Proof 

𝐾:= 𝐸𝐹 ∩ 𝐺𝐽.  ∠𝐹𝐸𝐺 = ∠𝐸𝐹𝐽 because they subtend at the center equal chords in equal 

circles.  By the vertical angles theorem, ∠𝐸𝐾𝐺 = ∠𝐹𝐾𝐽, and 𝐸𝐺 = 2𝐹𝐽 by construction.  

By the AAS half-scale triangle theorem, 𝐸𝐾 = 2𝐹𝐾.              ∎ 

 

Fast–but–Big Solution 

Given 𝐸𝐹, draw circles around 𝐸 and 𝐹 of radius 𝐸𝐹 and let 𝐽 and 𝐾 be their intersecting 

points.  Draw a circle around 𝐽 with the same radius and let 𝐹′′ be diametrically opposed 

to 𝐹 in this circle.  𝑀:= 𝐾𝐹′′ ∩ 𝐸𝐹 cuts off a third of 𝐸𝐹.              ∎  

 

 Proof 

𝐸𝐹𝐽 and 𝐹𝐸𝐾 are both equilateral and so ∠𝐸𝐹𝐽 = ∠𝐹𝐸𝐾.  Let 𝑀:= 𝐾𝐹′′ ∩ 𝐸𝐹.  By the 

vertical angles theorem, ∠𝐸𝑀𝐾 = ∠𝐹𝑀𝐹′′.  𝐸𝐾 is a radius and 𝐹𝐹′′ is a diameter; thus, 

by the AAS half-scale triangle theorem, 𝐸𝑀𝐾 is half lengths of 𝐹𝑀𝐹′′, so 𝐹𝑀 = 2𝐸𝑀.   ∎ 

 

Class VIII (8th grade, 13 to 14 years old) geometry students in India are taught a six-step method 

for trisecting a segment, which I call the Indian solution.  Six steps is considered par for the course.  

The fast-but-big solution is a birdie, and the medial point solution bogies.  Decide for yourself. 
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Is there an equally easy means of trisecting an arbitrary angle?  Since lengths and angles are both 

magnitudes, it seems like what goes for one should go for the other.  But no, it is impossible, and 

every geometer should know this of the history of his science.  In Geometry with Multiplication 

we will learn that multiplication and division of lengths is defined; of angles, not.  Common Core, 

in their rush to turn every geometry problem into an algebra problem, are often seen multiplying 

one angle by another and getting… something.  They just never label their units. 

 

Now let us get back to triangle frustums!  First, I will state five basic theorems that everybody 

knows, but people rarely cite.  They will come in handy at the very end of the red-belt chapter. 

 

Isosceles Triangle Frustum Theorem 

In an isosceles triangle frustum: (1) base angles are equal; (2) opposite angles are supplementary; 

(3) legs are equal; (4) diagonals are equal; and (5) the frustum is cyclic.  And the converses. 

 

The first four are easy.  I feel that Common Core textbooks spend entirely too much time on these 

basic proofs, so I left them as exercises. The fifth is also easy, but it waits for green belts to learn 

what cyclic quadrilaterals are.  We will just not cite the fifth statement until it is proven. 

 

Triangle Frustum Theorem I 

Given 𝐸𝐹 with midpoint 𝑀𝐸𝐹 and 𝐸′, 𝑀𝐸𝐹
′ , 𝐹′ the feet of perpendiculars dropped on a line that 

does not intersect 𝐸𝐹, then 2𝑀𝐸𝐹𝑀𝐸𝐹
′ = 𝐸𝐸′ + 𝐹𝐹′. 

 

 Proof 

By the transversal theorem corollary and the two transversals theorem, 𝑀𝐸𝐹
′  bisects 𝐸′𝐹′.  

By the triangle frustum mid-segment or rectangle bimedian theorem, the result by 

doubling.                   ∎ 

 

Triangle Frustum Theorem II 

Let 𝐸, 𝐹, 𝐺 be collinear, 𝑀𝐹𝐺  the midpoint of 𝐹𝐺, 2𝐸𝐹 = 𝐹𝐺 and 𝐸′, 𝐹′, 𝑀𝐹𝐺
′ , 𝐺′ be the feet of 

perpendiculars dropped on a line that does not intersect 𝐸𝐺.  Then, 3𝐹𝐹′ = 2𝐸𝐸′ + 𝐺𝐺′. 

 

 Proof 

 2𝐹𝐹′ = 𝐸𝐸′ + 𝑀𝐹𝐺𝑀𝐹𝐺
′    Triangle Frustum Theorem I 

 2𝐸𝐸′ + 2𝑀𝐹𝐺𝑀𝐹𝐺
′ = 4𝐹𝐹′   Double 

                2𝑀𝐹𝐺𝑀𝐹𝐺
′ = 𝐹𝐹′ + 𝐺𝐺′  Triangle Frustum Theorem I 

 2𝐸𝐸′                         = 3𝐹𝐹′ − 𝐺𝐺′  Subtract 

 3𝐹𝐹′ = 2𝐸𝐸′ + 𝐺𝐺′    Add 𝐺𝐺′ to both sides            ∎ 
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Problem 3.23  Let 𝐸𝐹𝐺 be a right triangle with ∠𝐸𝐹𝐺 right and 𝐹′ the foot of the altitude to the 

hypotenuse.  From 𝐹′ drop perpendiculars onto 𝐸𝐹 and 𝐹𝐺 with feet 𝐹𝐺
′  and 𝐹𝐸

′ , respectively.  

From 𝐹𝐺
′  and 𝐹𝐸

′  drop perpendiculars onto 𝐸𝐺 with feet 𝐹𝐺
′′ and 𝐹𝐸

′′, respectively.  Prove that           

(1)  𝐹′𝐹𝐺
′′ = 𝐹′𝐹𝐸

′′; and (2)  𝐹𝐹′ = 𝐹𝐺
′𝐹𝐺

′′ + 𝐹𝐸
′𝐹𝐸

′′. 

 

Both are proven by the parallelogram diagonals and triangle frustum mid-segment theorems.   

 

Problem 3.24  Given 𝐸𝐹𝐺 with midpoints 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  and medial point 𝐶, let 𝐸′, 𝐹′, 𝐺′, 

𝑀𝐸𝐹
′ , 𝑀𝐹𝐺

′ , 𝑀𝐺𝐸
′ , 𝐶′ be the feet of perpendiculars dropped on a line external to 𝐸𝐹𝐺, respectively;  

prove that  𝐸𝐸′ + 𝐹𝐹′ + 𝐺𝐺′  =  𝑀𝐸𝐹𝑀𝐸𝐹
′ + 𝑀𝐹𝐺𝑀𝐹𝐺

′ + 𝑀𝐺𝐸𝑀𝐺𝐸
′  =  3𝐶𝐶′  

 

 Solution 

By triangle frustum theorem I, 2𝑀𝐸𝐹𝑀𝐸𝐹
′ = 𝐸𝐸′ + 𝐹𝐹′ and 2𝑀𝐹𝐺𝑀𝐹𝐺

′ = 𝐹𝐹′ + 𝐺𝐺′ and 

2𝑀𝐺𝐸𝑀𝐺𝐸
′ = 𝐺𝐺′ + 𝐸𝐸′.  Add these together, collect like terms and halve. 

 

By the two-to-one medial point theorem and by triangle frustum theorem II, we have 

3𝐶𝐶′ = 2𝑀𝐹𝐺𝑀𝐹𝐺
′ + 𝐸𝐸′ and 3𝐶𝐶′ = 2𝑀𝐺𝐸𝑀𝐺𝐸

′ + 𝐹𝐹′ and 3𝐶𝐶′ = 2𝑀𝐸𝐹𝑀𝐸𝐹
′ + 𝐺𝐺′.  

Add these together: 9𝐶𝐶′ = 2𝑀𝐹𝐺𝑀𝐹𝐺
′ + 𝐸𝐸′ + 2𝑀𝐺𝐸𝑀𝐺𝐸

′ + 𝐹𝐹′ + 2𝑀𝐸𝐹𝑀𝐸𝐹
′ + 𝐺𝐺′.   

But 2𝑀𝐹𝐺𝑀𝐹𝐺
′ = 𝐹𝐹′ + 𝐺𝐺′ and 2𝑀𝐺𝐸𝑀𝐺𝐸

′ = 𝐸𝐸′ + 𝐺𝐺′ and 2𝑀𝐸𝐹𝑀𝐸𝐹
′ = 𝐸𝐸′ + 𝐹𝐹′ by 

the triangle frustum mid-segment theorem, so 9𝐶𝐶′ = 3𝐸𝐸′ + 3𝐹𝐹′ + 3𝐺𝐺′; dividing 

through by three, 3𝐶𝐶′ = 𝐸𝐸′ + 𝐹𝐹′ + 𝐺𝐺′.               ∎ 

 

Problem 3.25  Given 𝐸𝐹𝐺𝐻 a parallelogram and 𝐸′, 𝐹′, 𝐺′, 𝐻′ the feet of perpendiculars dropped 

onto a line exterior to the parallelogram, prove that 𝐸𝐸′ + 𝐺𝐺′ = 𝐹𝐹′ + 𝐻𝐻′. 

 

Let 𝑇 be the bi-medial of 𝐸𝐹𝐺𝐻 and 𝑇′ the foot of a perpendicular dropped onto the line.  The 

rest of the proof is just the parallelogram diagonals and triangle frustum mid-segment theorems. 

 

Problem 3.26  Given 𝐸𝐹𝐺 and 𝐸′, 𝐹′, 𝐺′,𝑀𝐸𝐹
′  the feet of perpendiculars dropped from 𝐸, 𝐹, 𝐺,𝑀𝐸𝐹  

onto a line through the medial point 𝐶 that does not cut 𝐸𝐹; prove 𝐺𝐺′ = 𝐸𝐸′ + 𝐹𝐹′. 

 

 Proof 

By the triangle frustum theorem, 2𝑀𝐸𝐹𝑀𝐸𝐹
′ = 𝐸𝐸′ + 𝐹𝐹′.  𝐶𝐺𝐺′~𝐶𝑀𝐸𝐹𝑀𝐸𝐹

′  by AA 

similarity.  By the two-to-one medial point and the ASA half-scale triangle theorems, 

𝑀𝐸𝐹𝑀𝐸𝐹
′  is half 𝐺𝐺′.  Thus, 𝐺𝐺′ = 𝐸𝐸′ + 𝐹𝐹′.              ∎ 
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Euclidean books define parallel as everywhere equidistant; for us, it is an orange-belt theorem. 

 

Parallel Lines Theorem 

Two lines never intersect if and only if they are everywhere equidistant. 

 

 Part One 

 If two lines never intersect, then they are everywhere equidistant. 

 

 Proof 

Let 𝐸 and 𝐹 be arbitrary but distinct points on one line.  By C. 1.4, drop perpendiculars to 

the other line with feet 𝐸′ and 𝐹′, respectively.  By the parallelogram theorem, 𝐸𝐹𝐹′𝐸′ is 

a parallelogram and, by definition, opposite sides are equal; hence, 𝐸𝐸′ = 𝐹𝐹′. • 

 

 Part Two 

 If two lines are everywhere equidistant, then they never intersect. 

 

 Proof 

Suppose they intersect.  Connect two points equidistant from the intersection on each 

line and, that much farther from the intersection, connect two more points.  By mid-

segment theorem #1, the former is half the latter; the lines are not equidistant.  •          ∎ 

 

Construction 3.12  Construct the two external tangents to two circles of different radii. 

 

 Solution 

The radii perpendicular to a tangent have parallel extensions and are of lengths 𝑟 and 

(𝑅 − 𝑟) + 𝑟; thus, by subtracting 𝑟, the tangent is parallel to the tangent from the center 

of the smaller circle to a circle of radius (𝑅 − 𝑟) concentric with the larger circle.  Draw 

this tangent by C. 2.2 and then a parallel to it 𝑟 distant.  Do the same on the other side.∎ 

 

If an 𝑅 − 𝑟 circle is too small to draw, then draw a 2(𝑅 − 𝑟) circle twice as far from the 𝑟 circle.  

For best accuracy without going off the paper, start with the tangent and then draw the circles. 

 

Construction 3.13  Construct the two internal tangents to two disjoint circles of different radii. 

 

 Solution 

The radii perpendicular to a tangent have parallel extensions and are of lengths 𝑟 and 

(𝑅 + 𝑟) + 𝑟; thus, by adding 𝑟, the tangent is parallel to the tangent from the center of 

the smaller circle to a circle of radius (𝑅 + 𝑟) concentric with the larger circle.  Draw this 

tangent by C. 2.2 and then a parallel to it 𝑟 distant.  Do the same on the other side.       ∎ 
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Medial Parallelogram Theorem I 

Connecting the midpoints of consecutive sides in a quadrilateral form a parallelogram. 

 

 Proof 

Construct the mid-segments of the two triangles whose union is the quadrilateral.  By 

mid-segment theorem #1, they are equal, and their extensions are parallel.  By the equal 

segments on parallels theorem, connecting their ends forms a parallelogram.          ∎    

 

This is called the medial parallelogram, or sometimes the Varignon parallelogram after Pierre 

Varignon, who was French, as were Pierre de Fermat, Henri Pitot, Auguste Miquel, Henri Brocard 

and Napoleon Bonaparte.  All are cited in this textbook and would roll over in their graves to read 

France’s core curriculum, “teut expos’e de logique formalle est exclu” [any formal logic is 

excluded], or to hear Jean Dieudonné shrieking his slogan, “A bas Euclide!  Mort aux triangles!”  

Such sloganeering is hatred for Gerard Debreu, an economist who spoke long and loud about 

logic, but used it very badly.  There was no reason to throw the baby out with the bath water! 

 

Medial Parallelogram Diagonals Theorem 

1. Medial parallelogram side extensions are parallel to a diagonal of the parent quadrilateral. 

2. The perimeter of the medial parallelogram equals the sum of the parent diagonals. 

 

Easy corollaries of mid-segment theorem #1; the latter is seen in competition problems. 

 

Medial Parallelogram Theorem II 

Given 𝐸𝐹𝐺𝐻 not a parallelogram or a triangle frustum, then 𝑀𝐹𝐺 , 𝑀𝐹𝐻, 𝑀𝐻𝐸 , 𝑀𝐸𝐺 are the vertices 

of a parallelogram, as are 𝑀𝐸𝐹 , 𝑀𝐸𝐺 , 𝑀𝐺𝐻, 𝑀𝐹𝐻.  (The order depends on the shape of 𝐸𝐹𝐺𝐻.) 

 

 Proof 

𝑀𝐻𝐸𝑀𝐹𝐻 and 𝑀𝐸𝐺𝑀𝐹𝐺  are mid-segments of 𝐸𝐹𝐻 and 𝐸𝐹𝐺, respectively, and so both 

extensions are parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ and to each other.  𝑀𝐻𝐸𝑀𝐸𝐺  and 𝑀𝐹𝐻𝑀𝐹𝐺  are mid-segments 

of 𝐻𝐺𝐸 and 𝐻𝐺𝐹, respectively, and so both extensions are parallel to 𝐻𝐺⃡⃗⃗⃗  ⃗ and to each 

other.  By the parallelogram theorem, 𝑀𝐻𝐸𝑀𝐹𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑀𝐸𝐺𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑀𝐻𝐸𝑀𝐸𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑀𝐹𝐻𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

imply the first result, with the vertices in some order; the second result is analogous.   ∎   

 

These are skinny parallelograms and, if 𝐸𝐹𝐺𝐻 is a parallelogram or a triangle frustum, then they 

are more than just skinny; they are segments because 𝑀𝐸𝐺 ≡ 𝑀𝐹𝐻. 

 

Varignon Theorem 

The bimedians of a quadrilateral bisect each other.   
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Be aware that Varignon was also a physicist – there was little difference between physicists and 

geometers in those days – so, to those taking a class in statics, “Varignon theorem” refers to a 

physics theorem that he proved.  Lambert made his own astronomical instruments; Pitot 

invented the pitot tube (it measures air speed), and Torricelli invented the barometer.  But the 

most famous physicist of all was Isaac Newton, whose Principia was proven with geometry.  The 

header on page 13 reads, “Axioms, or Laws of Motion,” and from there on it is all lemmas and 

theorems written in the style of Euclid’s Elements and with geometric figures on every page.  It 

is absurd that the editor of the Real-World Economics Review writes, “It is a completely mistaken 

idea that scientific theory is based on deductions from a series of postulates.”  This outrageous 

quotation, which appeared in the American Journal of Islamic Social Sciences, explains why post-

autistic (aka real-world) economists are not welcome in scholarly circles.   

 

Right Triangle Theorem      (Euclid, Book VI, Prop. 8) 

The altitude to the hypotenuse of a right triangle forms two triangles similar to it and each other. 

 

 Proof 

AA similarity by the right-angle postulate and by reflexivity.            ∎ 

 

Nested Triangle Theorem 

Nested triangles (two transversals that intersect outside two parallel lines) are similar. 

 

 Proof 

AA similarity by T & V and by reflexivity; or by two applications of T & V.           ∎ 

 

Nested Triangle Theorem Corollary 

Perpendiculars dropped from points on a ray onto the other ray of an angle form similar triangles. 

 

Crossed Triangle Theorem 

Crossed triangles (two transversals that intersect between two parallel lines) are similar. 

 

 Proof 

AA similarity by T & V; or by two applications of the transversal theorem.           ∎ 

 

 

This image is from Glencoe Geometry and is 

typical of Common Core textbooks.  How did it 

take them 249 pages to get to this simple 

work?  The rest of the page is about a real-

world career:  personal trainer.  There is a 

picture of a girl stretching!  She’s hot! 
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ROFL!  Let us lean forward and see if we can accomplish something more daring than that drivel. 
 

Lemma 3.1 

A quadrilateral is a rhombus if and only if its diagonals are mediators of each other. 
 

With SSS, this is an easy corollary of the parallelogram diagonals theorem.  Rhombi are one of 

the special parallelograms that were put in the practice problems list for the sake of brevity. 

 

Problem 3.27  Given rhombus 𝐸𝐹𝐺𝐻 with center 𝐶, drop perpendiculars from 𝐻, 𝐶, 𝐺 to 𝐸𝐹⃡⃗⃗⃗  ⃗ at 

𝐻′, 𝐶′, 𝐺′, respectively.  Prove that 𝐻𝐶′ is perpendicular to the median from 𝐸 in 𝐸𝐺′𝐺. 
 

Solution 

By the transversal theorem corollary, 𝐻𝐻′⃡⃗ ⃗⃗⃗⃗  ⃗  ∥ 𝐶𝐶′⃡⃗⃗⃗⃗⃗  ∥ 𝐺𝐺′⃡⃗ ⃗⃗⃗⃗ .  By lemma 3.1, 𝐶 is the midpoint 

of 𝐹𝐻; by mid-segment theorem #2 on 𝐻𝐻′𝐹, 𝐶′ bisects 𝐻′𝐹.  𝐻𝐶′ is median to 𝐻𝐻′𝐹. 
 

𝐸𝐺′𝐺~𝐸𝐶′𝐶~𝐶𝐶′𝐹~𝐻𝐻′𝐹  The first and last similarities are by the nested triangle 

theorem.  The middle similarity is by the right triangle theorem on 𝐸𝐶𝐹, which we know 

to be right by lemma 3.1.  Thus, 𝐸𝐺′𝐺~𝐻𝐻′𝐹.  Since every side of 𝐸𝐺′𝐺 is perpendicular 

to the corresponding side of 𝐻𝐻′𝐹, their medians are also perpendicular.           ∎ 

 

It may seem that kites have been given short shrift.  We have proven a lot of interesting and 

useful theorems about parallelograms; but kites, which are defined as almost the same thing 

except that the equal sides are consecutive instead of opposite, got only two theorems.  Do not 

worry; as a red belt, you will solve the isosceles kite problem – that is a tough one! 
 

Kite theory finds practical application in tiling.  Nobody likes repetitive patterns (e.g., squares or 

hexagons) on tile floors or wallpaper; it hurts everybody’s eyes, and the most sensitive people 

can go into epileptic fits because the repetitiveness messes with their minds.  Thus, much thought 

has been given to tiling in non-repetitive ways, a field pioneered by Roger Penrose which is today 

the hottest topic in practical geometry applications.61  The other Penrose tile, darts, are concave, 

and are thus not quadrilaterals.  We will call them anti-kites to make this distinction clear. 
 

The definitional diagonal bisects the angles at the vertices that it connects.  The rhombus is the 

only quadrilateral that is both a parallelogram and a kite.  The square is the only rectangle that is 

both a parallelogram and a kite.  Right rectangles do not exist in non-Euclidean geometry.  The 

most important type of kite in high-school geometry is the right kite, which is one in which the 

two congruent triangles that define it are right triangles.  Early in the next chapter, immediately 

 
61 New 2023 geometry research!  Google “einstein tiles” and “vampire einstein” to learn about these inventions. 
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after the converse to the cyclic quadrilateral theorem, I write, “It is an easy corollary that right 

kites are cyclic.”  Cyclic quadrilaterals are ones for which a circumcircle exists, and we already 

know that an incircle does because all kites are tangential. 

 

Quadrilaterals that are both cyclic and tangential are called bi-centric.  Right kites are not the 

only bi-centric quadrilaterals, but they are the easiest to construct and, in first-year geometry, 

probably the only ones that you will encounter.  Brahmagupta proved that the area of a cyclic 

quadrilateral is √(𝑠 − 𝑒)(𝑠 − 𝑓)(𝑠 − 𝑔)(𝑠 − ℎ) where 𝑒, 𝑓, 𝑔, ℎ are the lengths of the sides and 

𝑠 is the semiperimeter.  Also, he proved that the area of a bi-centric quadrilateral is √𝑒𝑓𝑔ℎ = 𝑟𝑠 

where 𝑟 is the inradius.  This is blue-belt geometry, after multiplication is introduced. 

 

Theorems about special parallelograms are in an appendix to this chapter:  Squares and 

Rectangles and Rombi!  Oh My!  What other textbooks call a trapezoid we call a triangle frustum, 

which is the part of a triangle between the base and a parallel line.  This will make sense when 

we get to solid geometry and learn what a right cone frustum is.  The following theorem is in 

Practical Shop Mathematics ([1935] 1958, pp. 178-179) by Wolfe and Phelps, whose stated 

purpose (p. v) was use “not only in factory schools, trade schools, vocational high schools, etc., 

but also in all high schools to replace the usual geometry course for those students not intending 

to go to college.”  Common Core eliminated this theorem on the grounds that it is too difficult for 

their so-called “college ready” students.  Lame!  It makes some Olympiad problems a slam dunk. 

 

Right Triangle Incircle Theorem 

A right triangle’s indiameter is the sum of the legs minus the hypotenuse. 

 

 Proof 

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right, by the tangent theorem, ∠𝐼𝐼𝐺𝐹 and ∠𝐼𝐼𝐸𝐹 are right.  By the 

Lambert theorem, 𝐼𝐼𝐺𝐹𝐼𝐸  is a right rectangle; indeed, a right square because 𝐼𝐼𝐺 = 𝐼𝐼𝐸.  

𝐼𝐺𝐹 + 𝐼𝐸𝐹 is the indiameter.  By the two tangents theorem, 𝐸𝐼𝐺 = 𝐸𝐼𝐹  and 𝐺𝐼𝐸 = 𝐺𝐼𝐹.  

𝐸𝐹 + 𝐺𝐹 − 𝐸𝐺 = 𝐸𝐹 + 𝐺𝐹 − (𝐸𝐼𝐹 + 𝐺𝐼𝐹) = 𝐸𝐹 + 𝐺𝐹 − (𝐸𝐼𝐺 + 𝐺𝐼𝐸) = 𝐼𝐺𝐹 + 𝐼𝐸𝐹.   ∎ 

 

Problem 3.28  Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right and altitude 𝐹𝐹′, prove that the sum of the inradii of 

the three triangles is 𝐹𝐹′. 

 

Right Kites in a Right Triangle Theorem 

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right and 𝐹′ the foot of the altitude to 𝐸𝐺, let 𝐽 and 𝐾 be the intersections 

of the bisectors of ∠𝐸𝐹𝐹′ and ∠𝐺𝐹𝐹′ with 𝐸𝐺, respectively, and let 𝐽′ and 𝐾′ be the feet of 

perpendiculars from 𝐽 and 𝐾 dropped onto 𝐸𝐹 and 𝐺𝐹.  𝐽𝐽′ + 𝐾𝐾′ is the indiameter of 𝐸𝐹𝐺. 
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 Proof 

2𝛼 = ∠𝐹′𝐹𝐸 = ∠𝐹′𝐺𝐹 and 2𝛽 = ∠𝐹′𝐹𝐺 = ∠𝐹′𝐸𝐹 by the right triangle similarity 

theorem.  By the exterior angle theorem, ∠𝐸𝐾𝐹 = ∠𝐾𝐺𝐹 + ∠𝐾𝐹𝐺 = ∠𝐸𝐹𝐾 = 2𝛼 + 𝛽.  

𝐸𝐹 = 𝐸𝐾 by the isosceles triangle theorem converse.  Analogously, ∠𝐺𝐽𝐹 = 𝛼 + 2𝛽 so 

𝐺𝐹 = 𝐺𝐽.  By AAS, 𝐹′𝐹𝐽 ≅ 𝐽′𝐹𝐽 and 𝐹′𝐹𝐾 ≅ 𝐾′𝐹𝐾 (𝐹′𝐹𝐽′𝐽 and 𝐹′𝐹𝐾′𝐾 are right kites); 

thus, 𝐽𝐹′ = 𝐽𝐽′ and 𝐾𝐹′ = 𝐾𝐾′.  By the right triangle incircle theorem, the indiameter of 

𝐸𝐹𝐺  is  𝐸𝐹 + 𝐺𝐹 − 𝐸𝐺 = 𝐸𝐾 + 𝐺𝐽 − 𝐸𝐺 = 𝐽𝐾 = 𝐽𝐹′ + 𝐾𝐹′ = 𝐽𝐽′ + 𝐾𝐾′.          ∎ 

 

Grasshopper!  Are you still with us?  You do remember this passage from the introduction, yes? 

 

Geometry will be like going back to 1st grade.  Sticking segments together end 

to end or angles together side by side is no more difficult than 1st grade problems 

about adding chocolates to or subtracting chocolates from a bowl of candies.   

 

Have the proofs so far not been easy?  You have heard of the No Child Left Behind Act, right?  

That law was repealed.  In Geometry–Do, it is devil take the hindmost!  Triangle construction, 

coming next, will cut enrollment in half.  Hopefully, you will be among the elite few who survive. 

 

The following theorem is distinguished by being the only theorem about centroids that can be 

proven in geometry.  Common Core textbook authors vainly attempt to dazzle their students with 

the unproven claim that the medial point is the centroid; that is, the balance point of a triangular 

metal plate.  Charlatans!  While true, this can only be proven with calculus.  It is pure chicanery 

to insert this fact here with a wave of the hand and a boastful smirk. 

 

Thus, in this textbook, we do not use the term centroid to refer to the medial point as other 

geometry textbooks do.  Vague hand-waving references to advanced mathematics is what killed 

New Math in the 1970s and is what is currently killing Common Core.  It is important that students 

understand that everything in this book is not just true, but is proven here, within our system. 

 

The only thing we borrow from physics is the teeter-totter principal:  A segment of uniform mass 

subject only to gravity and supported at only one point balances iff that point is the center. 

 

Parallelogram Centroid Theorem 

The bi-medial point of a parallelogram is its centroid. 

 

 Proof 

Let 𝐽 and 𝐾 be points on 𝐸𝐹 and 𝐺𝐻, respectively, and collinear with the bi-medial, 𝐶, of 

parallelogram 𝐸𝐹𝐺𝐻.  By ASA, 𝐸𝐶𝐽 ≅ 𝐺𝐶𝐾, which holds the equality 𝐶𝐽 = 𝐶𝐾.          ∎ 
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Triangle construction is the province of green belts; but, just to let those intermediate geometers 

know that they are not really all that special, we will here construct some triangles.   

 

Green belts will learn that the first step to constructing a triangle is to form a hypothesis about 

what theorem is relevant; then they test their hypothesis by attempting to draw a figure that 

makes use of the theorem.  For instance, construction 3.6 gives the legs and the median to the 

base.  Medians bisect segments.  The parallelogram diagonals theorem, which was proven on the 

previous page, is one of only two theorems about segments being bisected.  Big hint! 

 

Here we will make it easy for orange belts by just telling them:  The excircle theorem and its 

corollaries are relevant.  Green belts will not get hints.  They must scan the index looking for 

theorems that seem relevant to the triangle construction that they are tasked with solving. 

 

Construction 3.14 

Construct a triangle given its semiperimeter, its apex angle and its apex angle bisector. 

 

 Solution 

By the excircle theorem, 𝐺𝑋𝐸 is the semiperimeter of 𝐸𝐹𝐺; thus, by ASA, 𝐺𝑋𝐸𝑋 is fully 

defined.  Construct it.  Draw the excircle 𝜔𝑋 and 𝐺𝑋𝐹.  Lay off the apex angle bisector on 

𝐺𝑋⃗⃗⃗⃗  ⃗ and label this point 𝑃.  By C. 2.2, draw a line through 𝑃 tangent to 𝜔𝑋.  It cuts 𝐺𝑋𝐸 at 

𝐸 and 𝐺𝑋𝐹 at 𝐹.                  ∎ 

 

Whenever you construct a triangle, you must discuss how many possible solutions there are.  

Here, C. 2.2 requires that 𝑃 be outside 𝜔𝑋; so, if the apex angle bisector is long enough that it is 

inside or past 𝜔𝑋, then there is no solution.  If 𝑃 is on 𝜔𝑋, then there is one solution.  If the apex 

angle bisector falls short of 𝜔𝑋, so 𝑃 is outside 𝜔𝑋, then there are two solutions. 

 

Construction 3.15 

Construct a triangle given its base, its apex angle and its inradius. 

 

 Solution 

By AAS, 𝐺𝐼𝐹𝐼 is fully defined.  Construct it.  Draw the incircle 𝜔𝐼 and 𝐺𝐼𝐸⃗⃗ ⃗⃗ ⃗⃗  .  By the excircle 

theorem and its second corollary, 𝐺𝑋𝐸 = 𝑠 = 𝐺𝐼𝐹 + 𝐸𝐹.  Lay this off on 𝐺𝐼𝐹⃗⃗ ⃗⃗ ⃗⃗  .  By C. 1.3, 

raise a perpendicular from 𝑋𝐸; where it crosses 𝐺𝐼⃗⃗⃗⃗  is 𝑋.  Draw 𝜔𝑋.  By C. 3.13, construct 

the internal tangent to 𝜔𝐼 and 𝜔𝑋; it cuts 𝐺𝐼𝐹⃗⃗ ⃗⃗ ⃗⃗   at 𝐸 and 𝐺𝐼𝐸⃗⃗ ⃗⃗ ⃗⃗   at 𝐹.            ∎ 

 

𝜔𝐼 and 𝜔𝑋 must be disjoint; if they touch, there is only one solution, otherwise there are two. 
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Construction 3.16 

Construct a triangle given its inradius, its apex angle and the sum of its legs. 

 

 Solution 

By AAS, 𝐺𝐼𝐹𝐼 is fully defined.  Construct it and measure 𝐺𝐼𝐹.  By the second excircle 

theorem corollary, 𝐺𝐼𝐹 = 𝑠 − 𝐸𝐹 =
1

2
(𝐸𝐹 + 𝐹𝐺 + 𝐺𝐸) − 𝐸𝐹 =

1

2
(𝐹𝐺 + 𝐺𝐸 − 𝐸𝐹).  But 

𝐺𝐼𝐹 is known and 𝐹𝐺 + 𝐺𝐸 is given, so 𝐸𝐹 = 𝐹𝐺 + 𝐺𝐸 − 2𝐺𝐼𝐹 fully defines 𝐸𝐹.  Thus, 

the problem is reduced to C. 3.15.                ∎ 

 

2𝐺𝐼𝐹 < 𝐹𝐺 + 𝐺𝐸 must be true for 𝐸𝐹 to exist, which is necessary.  But, even if 𝐸𝐹 exists, 𝜔𝐼 and 

𝜔𝑋 must be disjoint; if they touch, there is only one solution, otherwise there are two. 

 

Construction 3.17 

Construct a triangle given its inradius, a base angle, the difference of its legs, and which is longer. 

 

 Solution 

Given ∠𝐸, by AAS, 𝐸𝐼𝐺𝐼 is fully defined.  Construct it and draw the incircle, 𝜔𝐼.  By the 

third excircle theorem corollary, 𝐼𝐺𝑋𝐺 is the absolute difference of 𝐸𝐺 and 𝐹𝐺.  By the 

incircle and excircle theorem corollary, 𝑀𝐸𝐹 bisects 𝐼𝐺𝑋𝐺.  There are three cases: 

1. If 𝐸𝐺 = 𝐹𝐺, then 𝑀𝐸𝐹 ≡ 𝐼𝐺, so 𝑀𝐸𝐹 is located. 

2. If 𝐸𝐺 < 𝐹𝐺, then extend 𝐸𝐼𝐺  by 
1

2
𝐼𝐺𝑋𝐺 past 𝐼𝐺  to locate 𝑀𝐸𝐹.   

3. If 𝐹𝐺 < 𝐸𝐺, then shorten 𝐸𝐼𝐺 by 
1

2
𝐼𝐺𝑋𝐺 off the 𝐼𝐺  end to locate 𝑀𝐸𝐹.   

Double 𝐸𝑀𝐸𝐹  to get 𝐸𝐹.  Drop tangents to 𝜔𝐼 from 𝐸 and 𝐹; they intersect at 𝐺.          ∎ 

 

Construction 3.18 

Construct a triangle given its inradius, the altitude to one leg and the difference of its legs. 

 

 Solution 

By the third excircle theorem corollary, 𝐼𝐺𝑋𝐺 = |𝐹𝐺 − 𝐸𝐺|.  By SAS, 𝐼𝐼𝐺𝑋𝐺 is fully defined.  

By C. 1.2, bisect 𝐼𝐺𝑋𝐺.  This midpoint is 𝑀𝐸𝐹 by the incircle and excircle theorem corollary.  

If 𝐸𝐸′ is the altitude we are given, then let 𝑀′𝐸𝐹 be the foot of a perpendicular dropped 

onto 𝐹𝐺⃡⃗⃗⃗  ⃗ from 𝑀𝐸𝐹.  We cannot draw it without 𝐹𝐺; but, by the transversal theorem 

corollary and mid-segment theorems #2 and #1, 𝑀𝐸𝐹𝑀′𝐸𝐹 =
1

2
𝐸𝐸′.  Draw a circle of this 

radius around 𝑀𝐸𝐹; also draw the incircle.  By C. 3.12, draw an external tangent to these 

circles; it cuts the extension of 𝐼𝐺𝑋𝐺 at 𝐹.  Double 𝑀𝐸𝐹𝐹 to find 𝐸.  By C. 2.2, find 𝐺.     ∎ 
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Orange Belt Exit Exam 
 

Four Feet on Angle Bisectors Theorem 

The feet of the perpendiculars dropped from the apex of a triangle onto the bisectors of the 

interior and exterior base angles are collinear. 

 

Inscribed Octagon Theorem 

Given a square with circles around each vertex of radii equal to half the diagonal, the circles cut 

the square at the vertices of a regular octagon. 

 

Parallelogram Angle Bisectors Theorem 

Given a parallelogram that is not a square, its angle bisectors form a rectangle. 
 

1. Three roads, 𝐸𝐹⃡⃗⃗⃗  ⃗, 𝐸𝐺⃗⃗⃗⃗  ⃗, 𝐹𝐺⃗⃗⃗⃗  ⃗, would make a triangle, 𝐸𝐹𝐺, with vertices 𝐸 at (−120,−110), 

𝐹 at (90, −160) and 𝐺 at (0, 240), in meters.  But, instead of making sharp turns at the 

vertices, 𝐸𝐹⃡⃗⃗⃗  ⃗ will have exits to curve into 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗ that are arcs of the 𝜔𝑍 and 𝜔𝑌 

excircles.  What is the distance between the exits to roads 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗ on road 𝐸𝐹⃡⃗⃗⃗  ⃗? 

 

2. A right triangle has sides of 8 cm, 15 cm and 17 cm.  What is the sum of the indiameter 

and the circumdiameter? 
 

3. Two points on a segment or its extension are an isotomic conjugate if they are equidistant 

from the segment midpoint.  Prove that 𝑌𝐸 and 𝑍𝐹 are isotomic conjugates relative to 𝐸𝐹. 
 

4. Given a segment, construct another segment that is one fifth as long. 
 

5. Construct a triangle given its perimeter, its apex angle, and its apex altitude. 

 

6. Given a parallelogram 𝐸𝐹𝐺𝐻 that is not a rhombus, draw a ray from 𝐸 through 𝐺𝐻 at 𝐽 

and through 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾.  Prove that (1) 𝐸𝐹𝐾~𝐽𝐻𝐸~𝐽𝐺𝐾; and (2) ∠𝐸 is bisected iff 𝐽𝐺 = 𝐾𝐺. 
 

7. Given 𝐸𝐹𝐺 and parallelogram 𝐸𝐽𝐿𝐾 with 𝐽 inside 𝐸𝐹, 𝐾 inside 𝐸𝐺 and 𝐿 long of ∠𝐸 (past 

𝐹𝐺), let 𝑀:= 𝐹𝐺 ∩ 𝐽𝐿 and 𝑁:= 𝐹𝐺 ∩ 𝐾𝐿.  Prove that 𝐸𝐹𝐺~𝐽𝐹𝑀~𝐿𝑁𝑀~𝐾𝑁𝐺. 
 

8. Given two circles, a line, and a length, construct a line parallel to the given one so it cuts 

the two given circles the given length apart.  How many possible solutions are there? 
 

9. Given 𝐸𝐹𝐺 with medians 𝑚𝐸 , 𝑚𝐹, 𝑚𝐺, construct a triangle whose sides are these lengths 

and prove that its medians are three quarters the lengths of the sides of 𝐸𝐹𝐺. 
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Practice Problems   
 

3.29 Mathematical induction means proving a statement 𝑃(𝑛) true for every positive integer 

by first proving it true for 𝑛 = 1 and then proving that, if 𝑃(𝑘) is true for some integer 𝑘, 

then 𝑃(𝑘 + 1) follows.  An example is proving that the sum of all the integers from 1 to 𝑛 

is 
𝑛(𝑛+1)

2
.  Prove the polygon angle sum theorem using mathematical induction. 

 

3.30 Given 𝐸𝐹𝐺 with orthocenter 𝐻 and orthic triangle 𝐸′𝐹′𝐺′, prove the following: 

1.  If 𝐸′𝐹′𝐺′ is also the orthic triangle of 𝐻𝐹𝐺, 𝐸𝐻𝐺 and 𝐸𝐹𝐻. 

2.  𝐸, 𝐹, 𝐺 are the orthocenters of 𝐻𝐹𝐺, 𝐸𝐻𝐺, 𝐸𝐹𝐻, respectively. 

 

3.31 Prove that the distance from the midpoint of the base to the circumcenter is half the 

distance from the apex to the orthocenter. 

 

3.32 Given 𝐸𝐹𝐺 with 𝑒 = 8 and 𝑓 = 15 and 𝑔 = 17, what are the following lengths? 

 1. The distance from 𝐺 to the touching points of 𝜔𝐼. 

 2. The distance from 𝐺 to the touching points of 𝜔𝑋. 

 3. The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐹⃡⃗⃗⃗  ⃗. 

 4. The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 

 5. The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐹⃡⃗⃗⃗  ⃗. 

 6. The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 
 

3.33 Prove the theorems about special quadrilaterals that were left unproven in the text: 

1. Rhombus diagonals are perpendicular.  (The converse is not necessarily true.) 

 2. Rectangle diagonals are equal.  (The converse is not necessarily true.) 

 3. A quadrilateral is a rectangle if and only if all its angles are right. 

 4. A parallelogram is a rectangle if and only if its diagonals are equal. 

 5. A parallelogram is a rhombus if and only if its diagonals bisect the vertex angles. 

 6. The diagonals of a triangle frustum are equal if and only if the triangle is isosceles. 

 

3.34 Draw 𝑂1 and 𝑂2 circles of radii 𝑟1 < 𝑟2 such that (1) 𝑂1𝑂2 < 𝑟2 − 𝑟1; (2) 𝑂1𝑂2 = 𝑟2 − 𝑟1; 

(3) 𝑟2 − 𝑟1 < 𝑂1𝑂2 < 𝑟2 + 𝑟1; (4) 𝑂1𝑂2 = 𝑟2 + 𝑟1; and (5) 𝑂1𝑂2 > 𝑟2 + 𝑟1. 

 

3.35 Inscribe a rectangle in a right triangle so the sum of the diagonals is minimal. 

 

3.36 Prove that any one angle and any one side fully define an isosceles triangle. 
 

3.37 Prove that, if one interior angle of a parallelogram is right, then they all are. 
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3.38 Two circles are tangent externally at 𝑃 and have an external tangent that touches them 

at 𝐸 and 𝐹.  Prove that ∠𝐸𝑃𝐹 = 𝜌.  Note that this proves Thales’ diameter theorem. 

 

3.39 The extensions of two radii of a circle, at a right angle to each other, are cut at 𝐸 and 𝐹 

by a line tangent at 𝑃.  Prove that the other tangents from 𝐸 and 𝐹 are parallel. 

 

3.40 The altitude of an equilateral triangle is equal to the sum of the distances to the legs minus 

  the distance to the base from any point in the apex’s field of fire past the base. 
 

3.41 Given 𝐸𝐹𝐺 with base 𝐸𝐹 and 𝐸′, 𝐹′ the feet of altitudes, prove that 𝐸𝐸′𝐺~𝐹𝐹′𝐺. 
 

3.42 Given 𝐸𝐹𝐺 isosceles with base 𝐸𝐹 and 𝐸′, 𝐹′ the feet of altitudes, prove that 𝐸𝐹𝐺~𝐸′𝐹′𝐺. 

 

3.43 Given a right triangle frustum such that a diagonal is perpendicular to a leg, prove the 

triangles it makes are similar.   
 

3.44 Two rivers, each with parallel banks, but not to each other, pass between two towns.  

Minimize the road between the towns; the bridges must be perpendicular to the rivers. 
 

3.45 The intersection of three streets makes a triangle with sides 50 m, 120 m, and 130 m.   

What is the turning radius of a traffic circle inside this triangle? 

 

3.46 Two country roads intersect at an arbitrary angle.  We wish to pave an arc connecting 

them; use the turning radius mandated by the Highway Department. 

 

3.47 To draw a trefoil window, construct an equilateral triangle and circumscribe it.  At each 

vertex, draw an arc of the same radius as the circumcircle and outside it.  If this window is 

to fit in a wall with studs 16” apart, draw detailed plans for framing it. 

 

3.48 Construct a triangle given the base, the apex altitude and (1) one base angle; (2) one leg; 

or (3) the median to the base. 

 

3.49 The inradius of an equilateral triangle is half its circumradius; also, an equilateral triangle 

with a given incircle has sides twice the length of one with that circumcircle. 
 

3.50 Given a circle and a triangle, circumscribe a similar triangle around the circle.  

 

3.51 Connect two circles with a segment parallel to and of the same length as a given segment. 
 

3.52 Construct a square so that four given points are each on a different side or its extension. 
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Orange Belt Geometry for Construction Workers, Revisited 

 

I moved Orange Belt Geometry for Construction Workers to the end of the yellow-belt chapter 

because, if this textbook is to be used for general students and not just in honors classes, then it 

must help carpenters and masons excel in their chosen trade.  But few construction workers 

survive orange belt,62 so I moved the section to where they will find it while they are still with us.  

 

Arches with one center are called Roman and their chord is called the spring line.  

A Gothic arch has two centers; if they are at the endpoints of the spring line, it 

is called equilateral.  If the centers are on the extensions of the spring line, it is 

called lancet; if inside, it is called deep.  

  

By the chord inside circle theorem, Roman arches exist in a non-Euclidean world if you start with 

the circle; but, if you start with the rectangle, then they do not.  By the chord inside circle and 

the triangle inequality theorem, Gothic arches and Tudor bridges exist.  Tudor arches exist; 

because the line of centers is less than double the crown arcs’ radii.  But the isosceles triangle 

frustums that the individual stones are cut into do not exist.  The ogee arch does not exist because 

proof that the haunch and crown arcs touch cites the parallelogram diagonals theorem.  Most 

arches are facades that must adapt to an existing structure, so situations like this are typical: 

 

Suppose that a beam bridge made of reinforced concrete spans a canal four 

meters wide and it is ℎ meters above the concrete sides of the canal.  This is ugly, 

so the city has hired you, a mason, to construct a façade to make it appear that 

the bridge is a Tudor arch made entirely of brick. 

 

Parallel means “lines that do not intersect.”  In hyperbolic geometry, a line and a point not on it 

do not fully define the parallel through it.  Recall C. 2.5; let 𝑄 ≡ 𝑀𝑀𝐸𝐹𝐹 so the subscripts do not 

stack up.   ∠𝐾𝐿𝑀𝑄𝐿 > 𝜌, but 𝐾𝐿⃡⃗⃗⃗  ⃗ may be parallel to the mediator of 𝑄𝐿, despite being angled 

towards it.  There is an angle of parallelism that depends on how far 𝐿 is from the mediator of 

𝑄𝐿.  Only inside this angle do rays intersect the line.  The farther the point is from the line, the 

smaller the angle of parallelism.  If 𝑥 = 𝐿𝑀𝑄𝐿 is this distance, then the angle of parallelism is 

2 atan(𝑒−𝑥).  𝑂 exists for C. 2.5 if the height is greater than a quarter of the width; but, in 

hyperbolic geometry, 𝑂 may exist only for arches significantly taller than a quarter of their width, 

the limit being determined by the defect of triangles that size.  This is why Gauss measured the 

angle sum of a triangle with vertices on mountain peaks.  If he had found a defect, then there 

would be a limit to big squat arches; a London-to-Paris arch may need to be taller than 86 km. 

 
62 If you are a construction worker and are still with us, then hurray for you!  (I have worked in construction too.) 
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The Cocktail Party Explanation of Non-Euclidean Geometry 

 

Incredibly, nobody at a cocktail party has ever asked me for advice on how they might set an 

ambush with heavy machine guns, which is what green-belt Geometry–Do is mostly about.  

Instead, I wind up fielding questions about non-Euclidean geometry, which the people apparently 

learned of in science-fiction novels.  In this section, I explain how to reply to such questions. 

 

Bernhard Riemann invented elliptic geometry, which is about geometric figures drawn on the 

surface of an ellipsoid.  The simplest ellipsoid is a sphere, and this geometry has great practical 

application to navigation on Earth.  A line is the path that circumnavigates the globe and there 

all lines intersect each other.  This has been extended to higher dimensions.  If you are asked if, 

given a powerful enough telescope, you would see the back of your own head, the simple answer 

is no.  Gravity can bend light, and a black hole can bend it into a circle or, more likely, a spiral; 

but black holes are not what people are referring to when they ask this question. 

 

Gauss measured the angle sum of a triangle with vertices on three mountain peaks.  This is a 

famous story, though some of the people telling it seem to have no idea what he was doing up 

there; I have heard everything from proving that the world is round to proving General Relativity.  

He was on mountain peaks because he knew that the world is round; he was trying to get line of 

sight over great distances.  General Relativity had not been invented yet, but it would not have 

affected his experiment because the Earth does not have enough gravity to noticeably bend light. 

 

There are many ways to prove that the Earth is round.  This has been known for a long time.  If 

Columbus had just asked, 15th century scientists could have estimated its diameter to within a 

few hundred klicks, which would have convinced him that he could not reach India by sailing 

westward.  But he knew something was out there and within range of his ships because, after a 

storm, seeds from American trees wash ashore on European beaches.  The triangle drawn on a 

globe between distant ports has an angle sum greater than straight, but this is not a good method 

of estimating the Earth’s diameter because neither ships nor airplanes make a dead reckoning 

for their destination, the former because of ocean currents and the latter because the Earth 

rotates underneath them.  This is why those scary maps with circles around North Korea to 

indicate who is within range of their missiles are wrong.  It is actually easier for the North Koreans 

to launch straight up, wait for the Earth to rotate and then drop their bomb on our East Coast 

than it is to launch at a low angle and try to overtake the spinning Earth to hit our West Coast. 

 

As discussed in the previous section, Gauss was testing the hypothesis that space is only locally 

Euclidean and is hyperbolic at longer distances.  Germany is not big enough, but it is still possible 

that, if we did this with telescopes at Earth, Jupiter, and Saturn, we might find a defect. 
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If asked for the Geometry–Do perspective on non-Euclidean geometry, the best response is to 

state some theorems that you know and contrast them with hyperbolic geometry theorems. 

 

Euclidean Geometry Hyperbolic Geometry 

 

Circumcenter Theorem 

The mediators are concurrent at a point 

equidistant from the vertices. 

The circumcircle may not exist.  Because the 

angles sum is less than a straight angle, the 

mediators of the sides may not intersect. 
 

Transversal Theorem 

If the two lines crossed by a transversal are 

parallel, alternate interior angles are equal. 

There are many lines through a point on a 

transversal that do not intersect the line.  

Alternate interior angles may not be equal. 
 

Angle Sum Theorem 

Interior angles of a triangle sum to one 

straight angle; that is, 𝛼 + 𝛽 + 𝛾 = 𝜎. 

Interior angles of a triangle sum to less than a 

straight angle; the larger the triangle, the 

greater the defect, 𝜎 − (𝛼 + 𝛽 + 𝛾). 
 

Angle–Angle (AA) Similarity Theorem 

Two corresponding angles equal is sufficient 

to prove the similarity of two triangles. 

Only congruent triangles are similar; a triangle 

with proportionally longer sides has smaller 

angles and is a distortion of the given triangle. 
 

Lambert Theorem 

Lambert quadrilaterals (three right angles) are 

right rectangles; all four angles are right. 

Right rectangles do not exist.  All rectangles 

are acute rectangles; four equal acute angles. 

 
 

Triangle Area Theorem 

Triangles with equal collinear bases and 

apexes on a line parallel to their bases are of 

equal area. 

Triangles have equal area if and only if the 

sum of their interior angles are equal; that is, 

a triangle’s area is proportional to its defect.  

 

Arthur Beiser (1987, p. 149) writes, “The requirement that quantum physics gives the same 

results as classical physics in the limit of large quantum numbers was called by Bohr the 

correspondence principle.”  For example, “When 𝑛 = 2, [quantum physics] predicts a radiation 

frequency that differs from [classical physics] by almost 300%.  When 𝑛 = 10,000, the 

discrepancy is only about 0.01%.” 

 

There is no direct relation between the two sciences, but the analogy is that Euclidean geometry 

is the boundary case of hyperbolic geometry as triangles get smaller in the same way that 

Newtonian physics is the boundary case of quantum mechanics as quantum numbers get larger.  

Thus, Gauss observed triangles on mountain peaks and Bohr observed hydrogen atoms.  
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What is Known of Triangles with an Inaccurate Apex? 

 

Given the base and the two base angles, by ASA, the triangle is fully defined.  But what if its apex 

is off the edge of the paper?  Scaling it down by bisecting or trisecting the base might get the 

whole triangle on the paper, but this is not a complete solution because it is now twice or three 

times as difficult to locate points related to the triangle, such as its medial point.  Getting a bigger 

sheet of paper helps,63 but only a little.  A compass with a beam can draw circles with radii up to 

24 cm, but most student compasses only reach 12 cm and a carpenter’s trammel is a bit clumsy.  

Also, poster-size paper is expensive; plus, your mom needs the kitchen table. 

 

Most people consider Euclid’s parallel postulate to be obvious and disparage Lobachevski for 

inventing a science that is just “playing with axioms” and clearly of no use to any practical man.64  

But we consider the angle sum theorem to be obvious only because we have good eyesight and 

can see from one mountaintop to another, as Gauss did in his famous experiment.  At the 

beginning of this chapter, I imagine a planet Zabol shrouded in a brown cloud so opaque that a 

surveyor cannot see the Zabolian pulling on the other end of a surveyor’s chain.  They do not 

know if Zabol is hyperbolic on the scale of civil engineering projects.  They trust in neutral 

geometry and denounce Euclid as the one playing with axioms that have no empirical verification. 

 

Geometry on Zabol is a productive thought experiment65 because the principal motivation for 

our science is that we can teach lesser scientists (e.g., economists) not to make tacit assumptions.  

But, if we are going to teach this lesson, we must first be sure that we have learned it ourselves.  

We trust in Euclid because we have good eyesight.  If pigs were the intelligent species on Earth, 

they would never have conducted the experiment that Gauss did because they can barely see a 

meter past their flat noses.  They would not put their trust in Euclid like the gullible humans do. 

 

To answer the question at the head of this section, we can accurately locate 𝑀𝐸𝐺  and 𝑀𝐹𝐺  with 

the mid-segment theorem even if 𝐺 is off the paper; draw lines through 𝑀𝐸𝐹 parallel to 𝐹𝐺⃡⃗⃗⃗  ⃗ and 

𝐸𝐺⃡⃗⃗⃗  ⃗ and where they intersect 𝐸𝐺 and 𝐹𝐺 are midpoints.  𝐶:= 𝐸𝑀𝐹𝐺 ∩ 𝐹𝑀𝐸𝐺  is accurate, and the 

circumcenter, 𝑂, is accurately found at the intersection of perpendiculars raised from 𝑀𝐸𝐺  and 

𝑀𝐹𝐺 .  We can drop perpendiculars from 𝑀𝐸𝐺  and 𝑀𝐹𝐺  onto 𝐸𝐹⃡⃗⃗⃗  ⃗ and know that 𝐺 is on the line 

parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ and at twice this width, and we know that it is on the circumcircle.  This does not 

locate 𝐺 exactly, but it provides quite a bit more information about it than we had before. 

 
63 This is why Geometry–Do is printed on U.S. letter-size paper, even in countries where A4 is the standard size. 
64 People said the same thing about complex analysis – until it became the foundation for electrical engineering. 
65 What interests me about exoplanets is not the prospect of ever visiting or even communicating with aliens – the 

distances are too great – but conducting thought experiments about what alien ecology is like in a different climate 

or with more carbon, what astronomy is like with no view of the sky, what ballistics is like with twice the gravity, etc. 
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“Translate” and “Rotate” Are Not Magic Spells 

 

Squares on Rectangles Theorem 

On the sides of a rectangle, 𝐸𝐹𝐺𝐻, squares are constructed, lying exterior to it.  Their centers, 

𝐶𝐸𝐹 , 𝐶𝐹𝐺 , 𝐶𝐺𝐻, 𝐶𝐻𝐸 , are themselves the vertices of a square. 

 

This theorem is easy; proof is left as an exercise.  Common Core proponents prove it, pronounce 

“rotate” like a magic spell and, with a wave of their hand, claim to have proven the following: 

 

Lemma 3.2  

1. The bi-medial point of a square is the vertex of right angles to the corners. 

2. A rhombus with one right angle is a right square. 

 

Thébault Theorem 

On the sides of a parallelogram that is not a rectangle, 𝐸𝐹𝐺𝐻, squares are constructed, lying 

exterior to it.  Their centers, 𝐶𝐸𝐹 , 𝐶𝐹𝐺 , 𝐶𝐺𝐻, 𝐶𝐻𝐸 , are themselves the vertices of a square. 

 

 Proof 

Let 𝛼 = ∠𝐸𝐹𝐺 = ∠𝐸𝐻𝐺 < ∠𝐹𝐸𝐻 = ∠𝐹𝐺𝐻 = 𝛽; if the inequality is backwards, switch 

the labels of the points.  By addition, ∠𝐶𝐸𝐹𝐹𝐶𝐹𝐺 = ∠𝐶𝐺𝐻𝐻𝐶𝐻𝐸 because both are half a 

right angle plus half a right angle plus 𝛼.  Let 𝛾 be the angle between the squares with 

vertex 𝐸.  All the angles around 𝐸 must sum to two straight angles and they are two right 

angles 𝛽 and 𝛾; thus, 𝛽 and 𝛾 are supplementary.  But, by the parallelogram angles 

theorem, 𝛼 and 𝛽 are supplementary, so 𝛼 = 𝛾 and we can re-label 𝛾 as 𝛼.  By SAS, 

𝐶𝐸𝐹𝐸𝐶𝐻𝐸 ≅ 𝐶𝐸𝐹𝐹𝐶𝐹𝐺 ≅ 𝐶𝐺𝐻𝐺𝐶𝐹𝐺 ≅ 𝐶𝐺𝐻𝐻𝐶𝐻𝐸, all with half the big diagonal and half the 

small diagonal making an angle of half a right angle plus half a right angle plus 𝛼.  Thus, 

𝐶𝐸𝐹𝐶𝐹𝐺𝐶𝐺𝐻𝐶𝐻𝐸 is a parallelogram by the equal segments on parallels theorem because  

𝐶𝐸𝐹𝐶𝐻𝐸 = 𝐶𝐸𝐹𝐶𝐹𝐺 = 𝐶𝐺𝐻𝐶𝐹𝐺 = 𝐶𝐺𝐻𝐶𝐻𝐸; specifically, it is a rhombus.  By lemma 3.2.1, 

∠𝐸𝐶𝐸𝐹𝐹 is right.  𝐶𝐸𝐹𝐸𝐶𝐻𝐸 ≅ 𝐶𝐸𝐹𝐹𝐶𝐹𝐺  holds the equality ∠𝐶𝐻𝐸𝐶𝐸𝐹𝐸 = ∠𝐶𝐹𝐺𝐶𝐸𝐹𝐹.  By 

addition, ∠𝐶𝐻𝐸𝐶𝐸𝐹𝐶𝐹𝐺  is right.  By lemma 3.2.2, 𝐶𝐸𝐹𝐶𝐹𝐺𝐶𝐺𝐻𝐶𝐻𝐸 is a square.          ∎ 

 

No fair omitting Victor Thébault’s name and using the word “rotate” to conceal all his hard work!  

Analogously, we have proven that the triangles of circumcenters and of incenters of the three 

triangles around the medial triangle are congruent.  We did not say “translate” and call it done. 

 

Later, we will define rotation in a way that does not involve motion and use it to solve some 

problems.  But programing a computer to display a figure rotating is a demonstration, not a proof. 
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Advanced Orange–Belt Geometry 

 

Sadly, some brilliant students will not go on to second-year Geometry–Do, either for financial 

reasons – they are in a private college preparatory academy and their parents cannot afford 

another year – or because they want to take calculus instead.  I advise against this latter path. 

 

It is not a good idea to test through calculus.  I tested through the five-credit algebra class for 

beginning mathematics and engineering majors and instead took Calculus I, II and III all in my 

freshman year.  This was a mistake because there were holes in my knowledge of advanced 

algebra that I would have filled had I taken that algebra class.  Also, there are really annoying 

requirements (e.g., government and world cultures) imposed on students of every major that are 

not going away; if you do not take them your freshman year, they will come back to haunt you 

your senior year.  My advice for talented high-school students is to get as solid a grounding as 

possible in algebra and geometry, including advanced topics that are not normally taught in high 

school, but not to study calculus.  As college freshmen, take advanced algebra and Euclidean 

geometry, along with the no-brainer classes like government and world cultures.  This is an easy 

schedule of math you mostly already know, so there is time to study calculus on your own using 

one of the many available self-guiding textbooks.  Take Calculus I, II, III and differential equations 

your sophomore year and ace them all.  In your junior year, you can begin pursuing your specialty. 

 

If not, then go your way, but I can at least leave you with some challenging orange-belt problems: 

 

Problem 3.53  Given square 𝐸𝐹𝐺𝐻, build equilateral triangles on 𝐹𝐺 and 𝐺𝐻, either both inside 

or both outside 𝐸𝐹𝐺𝐻, and with apexes 𝐽 and 𝐾, respectively.  Prove that 𝐸𝐽𝐾 is equilateral. 

 

Problem 3.54  Let 𝐸𝐹 be the diameter of a circle with center 𝑂 and 𝐺 be a point on the circle such 

that ∠𝐸𝑂𝐺 < 2𝜑.  Let 𝑀 be the intersection of the bisector of ∠𝐸𝑂𝐺 with the circle.  Let 𝐽 and 𝐾 

be the intersections of the mediator of 𝑂𝐺 with the circle, with 𝐽 on the 𝑀 side.  From 𝑂 draw a 

line parallel to 𝑀𝐺⃡⃗⃗⃗⃗⃗  and let it intersect 𝐹𝐺 at 𝐼.  Prove that 𝐼 is the incenter of 𝐹𝐽𝐾. 

 

Problem 3.55  Given parallelogram 𝐸𝐹𝐺𝐻 and a circle centered at 𝐸 tangent to 𝐹𝐻⃡⃗⃗⃗  ⃗, let 𝐽 be the 

intersection of it and 𝐺𝐸⃗⃗⃗⃗  ⃗ extended past 𝐸.  Construct a circle centered at 𝐺 that is tangent to 𝐹𝐻⃡⃗⃗⃗  ⃗ 

and let 𝐾 be the intersection of it and 𝐸𝐺⃗⃗⃗⃗  ⃗ extended past 𝐺.  Prove that 𝐽𝐹𝐾𝐻 is a parallelogram. 

 

P. 3.53 is due to Thébault, a French geometer who would be appalled to hear Dieudonné shriek, 

“A bas Euclide!  Mort aux triangles!”  Why should hate for Debreu mean hate for Thébault? 
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Elementary Quadrature Theory 

 

Theorems proving equality of areas are quadrature theory.  This is blue belt because some results 

cite green- and red-belt theorems, and because quadrature introduces multiplication.  In Eastern 

Europe, all high-school students must take three years of geometry, but decadent Western high 

schools require less, so we cannot assume that the general Western student will get to blue-belt 

study.  Thus, we here prove some of the elementary results that cite only orange-belt theorems. 

 

Until Geometry with Multiplication, we cannot calculate areas as we are yet unable to multiply 

the height and width of a rectangle.  Does proving two areas equal without being able to calculate 

area seem fantastic?  There is a physics analogy:  𝜇 = 𝐺𝑀  with 𝜇 the gravitational parameter for 

a body, 𝐺 the universal gravitational constant and 𝑀 the body’s mass.  For the Earth and the sun, 

scientists know 𝜇 quite accurately, as evidenced by their ability to calculate the flight of 

spaceships to the nearest meter, but they have only rough estimates of 𝐺 and 𝑀.  They are using 

the product without yet improving on Cavendish’s 1798 torsion balance (it measures 𝐺) and 

being able to do the multiplication.  We can equate areas because area is a magnitude and 

magnitudes are unique and an additive group.  The union of some disjoint triangles has the same 

area as any others that have the same union.  𝐸𝐹𝐺𝐻 = 𝐸𝐹𝐺 ∪ 𝐸𝐺𝐻 = 𝐸𝐹𝐻 ∪ 𝐹𝐺𝐻 implies 

|𝐸𝐹𝐺𝐻| = |𝐸𝐹𝐺| + |𝐸𝐺𝐻| = |𝐸𝐹𝐻| + |𝐹𝐺𝐻|.  Minus, −, means removing a triangle.  Replacing 

a union, 𝐸𝐹𝐺𝐻 = 𝐸𝐹𝐺 ∪ 𝐸𝐺𝐻, with a sum, |𝐸𝐹𝐺𝐻| = |𝐸𝐹𝐺| + |𝐸𝐺𝐻|, is left tacit. 

 

Parallelograms and Triangles Area Theorem 

All parallelograms with the same or congruent definitional triangles are of equal area. 

 

 Proof 

By choosing any two sides of a triangle, one as base and one as diagonal, it can be used 

in three ways to form a parallelogram.  By definition of parallelograms, they are all double 

the area of the triangle.  By transitivity, they are all of equal area.            ∎ 

 

Lemma 3.3        (Euclid, Book I, Prop. 35) 

Parallelograms with the same base and their opposite sides collinear are of equal area. 

 

Proof 

Given parallelograms 𝐸𝐹𝐺𝐻 and 𝐸𝐹𝐽𝐾 with 𝐺𝐻 = 𝐽𝐾 collinear, 𝐻𝐸 = 𝐺𝐹 and 𝐸𝐾 = 𝐹𝐽.  

By adding or subtracting 𝐾𝐺 to/from 𝐺𝐻 = 𝐽𝐾, we get 𝐾𝐻 = 𝐽𝐺.  By SSS, 𝐾𝐻𝐸 ≅ 𝐽𝐺𝐹.  

|𝐸𝐹𝐺𝐻| ± |𝐾𝐻𝐸| ∓ |𝐽𝐺𝐹| = |𝐸𝐹𝐽𝐾|, so |𝐸𝐹𝐺𝐻| = |𝐸𝐹𝐽𝐾|.  (± and ∓ means either          

+ and −, or − and +; draw several figures with 𝐺𝐻 = 𝐽𝐾 in different positions.)          ∎  
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Parallelogram Area Theorem     (Euclid, Book I, Prop. 36) 

Parallelograms with equal collinear bases and their opposite sides collinear are of equal area. 

 

 Proof 

Given parallelograms 𝐸𝐹𝐺𝐻 and 𝐽𝐾𝐿𝑀 with 𝐸𝐹 = 𝐽𝐾 collinear; 𝐺𝐻 and 𝐿𝑀 collinear.  

Connect 𝐸𝑀 and 𝐹𝐿.  By definition of parallelograms and transitivity, 𝐸𝐹𝐿𝑀 is a 

parallelogram.  By lemma 3.3 and transitivity, |𝐸𝐹𝐺𝐻| = |𝐸𝐹𝐿𝑀| = |𝐽𝐾𝐿𝑀|.          ∎ 

 

Let us pause to discuss Euclid’s terminology.  When Euclid says that figures are equal, he means 

that they are equal in area.  This is also what I do except that I say “of equal area” to exclude 

other characteristics, like height.  As I do, Euclid uses “equal” for angles and sides; e.g., Prop. 6, 

“If in a triangle two angles be equal, the sides which subtend the equal angles will also be equal.”  

No modifier is needed because angles and sides have only one characteristic.  For us, collinear is 

a set of points that are all on the same line.  Euclid writes, “in the same parallels;” e.g., Prop. 38, 

“Triangles which are on equal bases and in the same parallels are equal.”  I write this, “Triangles 

with equal collinear bases and apexes on a line parallel to their bases are of equal area.” 

 

Triangle Area Theorem      (Euclid, Book I, Prop. 38) 

Triangles with equal collinear bases and apexes on a line parallel to their bases are of equal area. 

 

 Proof 

 Given 𝐸𝐹𝐺 and 𝐽𝐾𝐿 with 𝐸𝐹 = 𝐽𝐾 collinear and 𝐺𝐿⃡⃗⃗⃗  parallel to their line, find 𝑀 and 𝑁 on 

𝐺𝐿⃡⃗⃗⃗  such that 𝐸𝐹𝐺𝑀 and 𝐽𝐾𝐿𝑁 are parallelograms.  |𝐸𝐹𝐺𝑀| = |𝐽𝐾𝐿𝑁| by the 

parallelogram area theorem.  By definition of parallelograms, 𝐸𝐹𝐺𝑀 and 𝐽𝐾𝐿𝑁 are unions 

of congruent triangles so, if the parallelograms are of equal area, so are the triangles.  ∎ 

 

Euclid’s contemporaries were astonished by the triangle area theorem because a triangle’s 

perimeter can be increased without bound and yet retain the same area.  A superficial analysis 

that compares triangles only when one is inside the other would conclude that perimeter and 

area go up and down together.  It must be remembered that geometry was not a pastime for idle 

aristocrats, but was of intense interest to farmers, because their livelihoods depended on it.  But 

they sometimes presented unsound arguments, like area and perimeter being directly related, 

which degenerated into fighting.  Had Euclid not formalized deductive logic, so everyone could 

agree on what was proven, the farmers would have stabbed each other fighting over boundaries, 

nothing would have been planted, and people would have gone hungry.  We are losing this 

certainty; the practice of propagandists to begin every sentence with “Statistics show that…” has 

left people in a fog of confusion with no means to distinguish between facts and alternative facts. 
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Triangle Area Theorem Corollaries    (Euclid, Book I, Prop. 39, 40, 41) 

1. Triangles with equal collinear bases and apexes on lines parallel to and equidistant from 

the base line are of equal area. 

2. Of triangles with equal and collinear bases on the same side of the base line, the locus of 

apexes such that the triangles are of a given area is a line parallel to the base line. 

3. If a triangle has the same base as a parallelogram and its apex is on the parallelogram 

side opposite the base, or its extension, then the triangle’s area is half the parallelogram’s. 

4. An orthodiagonal quadrilateral has half the area of the rectangle whose sides equal its 

diagonals. 
 

Triangle Area Theorem Converse 

Triangles of equal area with collinear bases and apexes parallel to them have equal bases. 

 

 Proof 

Given |𝐸𝐹𝐺| = |𝐸′′𝐹′′𝐺′′| with 𝐸, 𝐹, 𝐸′′, 𝐹′′ collinear and 𝐺𝐺′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ parallel to this line, suppose 

the bases are unequal, 𝐸𝐹 > 𝐸′′𝐹′′.  Then there exists an 𝑀 between  𝐸 and 𝐹 such that 

𝐸𝑀 = 𝐸′′𝐹′′.  By the triangle area theorem, |𝐸𝑀𝐺| = |𝐸′′𝐹′′𝐺′′|.  But this is a 

contradiction because |𝐸𝐹𝐺| = |𝐸𝑀𝐺| + |𝑀𝐹𝐺|.  Analogously if 𝐸𝐹 < 𝐸′′𝐹′′.           ∎ 

 

Two Triangles Area Theorem 

A median divides a triangle into two triangles of equal area. 

 

Three Triangles Area Theorem 

The three sides of a triangle as bases and the medial point as their apexes are of equal area. 
 

 Proof 

Given 𝐸𝐹𝐺 and medial point 𝐶, by the two triangles area theorem, |𝐺𝐸𝑀𝐸𝐹| = |𝐺𝑀𝐸𝐹𝐹| 

and |𝐶𝐸𝑀𝐸𝐹| = |𝐶𝑀𝐸𝐹𝐹|.  By subtraction, |𝐺𝐸𝑀𝐸𝐹| − |𝐶𝐸𝑀𝐸𝐹| = |𝐺𝑀𝐸𝐹𝐹| − |𝐶𝐹𝑀𝐸𝐹|, 

so |𝐺𝐸𝐶| = |𝐺𝐶𝐹|.  Again, with another median and, by transitivity, all three are equal.∎ 

 

Six Triangles Area Theorem 

The three medians divide a triangle into six triangles of equal area. 

 

Medial Triangle Area Theorem 

The medial triangle and the three triangles around it quarter the area of the parent triangle. 

 

Medial Parallelogram Area Theorem I 

The area of a medial parallelogram is half that of its parent quadrilateral. 
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Carpet Theorem I 

Given square 𝐸𝐹𝐺𝐻, 𝐽 an arbitrary point on 𝐸𝐹 and 𝐾:= 𝐸𝐺 ∩ 𝐽𝐻, then |𝐸𝐾𝐻| = |𝐽𝐾𝐺|. 

 

Heron has a blue-belt formula for triangle area given the sides:  𝐴 = √𝑠(𝑠 − 𝑒)(𝑠 − 𝑓)(𝑠 − 𝑔).   

 

Problem 3.56        (Euclid, Book I, Prop. 43)   

Given parallelogram 𝐸𝐹𝐺𝐻 and 𝑃 on 𝐹𝐻, (1) Prove that |𝐸𝑃𝐻| = |𝐺𝑃𝐻|;  (2) Draw lines through 

𝑃 parallel to the sides of 𝐸𝐹𝐺𝐻 and prove that the parallelograms with opposite vertices 𝐸, 𝑃 and 

opposite vertices 𝑃, 𝐺 are equal in area. 
 

Problem 3.57  Given 𝐸𝐹𝐺𝐻, draw a line through 𝑀𝐹𝐻  parallel to 𝐸𝐺⃡⃗⃗⃗  ⃗ and let 𝐽 be where it cuts 𝐸𝐹 

(If it cuts 𝐺𝐻, then change the labels.)  Prove that 𝐺𝐽 bisects 𝐸𝐹𝐺𝐻; that is, |𝐽𝐹𝐺| = |𝐸𝐽𝐺𝐻|. 

 

Lemma 3.4 

The square on the leg of a right triangle is equal in area to the rectangle whose sides are the 

hypotenuse and the projection of the leg on the hypotenuse. 
 

 Proof  

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right, construct external squares on each side; 𝐸𝐽𝐾𝐹,  𝐹𝐿𝑀𝐺 and 

𝐺𝑁𝑂𝐸.  Drop a perpendicular from 𝐹 through 𝐹′ on 𝐺𝐸 to 𝐹′′ on 𝑁𝑂.  Find 𝑃 on 𝐹′𝐹′′ 

such that 𝑂𝑃⃡⃗⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗.  Find 𝑄 on 𝐺𝐹⃗⃗⃗⃗  ⃗ such that 𝐽𝑄⃡⃗⃗⃗ ∥ 𝐸𝐺⃡⃗⃗⃗  ⃗.  By the parallelogram theorem, 

𝐸𝐹𝑃𝑂 and 𝐸𝐽𝑄𝐺 are parallelograms.  ∠𝐸𝐹𝑃 = ∠𝑄𝐺𝐸 by the pairwise perpendiculars 

theorem, so 𝐸𝐹𝑃𝑂 ≅ 𝐸𝐽𝑄𝐺.  |𝐸𝐹𝑃𝑂| = |𝐸𝐹′𝐹′′𝑂| and |𝐸𝐽𝑄𝐺| = |𝐸𝐽𝐾𝐹| by the 

parallelogram area theorem.  By transitivity, |𝐸𝐹′𝐹′′𝑂| = |𝐸𝐽𝐾𝐹|.            ∎ 

 

Pythagorean Theorem      (Euclid, Book I, Prop. 47)  

The square on the hypotenuse is equal in area to the sum of the squares on the legs. 
 

 Proof 

By lemma 3.4, |𝐸𝐹′𝐹′′𝑂| = |𝐸𝐽𝐾𝐹| and |𝐺𝑁𝐹′′𝐹′| = |𝐹𝐿𝑀𝐺|, using the same figure.  

𝐸𝐺𝑁𝑂 = 𝐸𝐹′𝐹′′𝑂 ∪ 𝐺𝑁𝐹′′𝐹′.  Thus, |𝐸𝐺𝑁𝑂| = |𝐸𝐽𝐾𝐹| + |𝐹𝐿𝑀𝐺|.           ∎ 

 

Problem 3.58 

Prove that the squares on the diagonals of a parallelogram sum to the squares on the sides. 

 

Lemma 3.5 

Squares are congruent if and only if their sides are equal if and only if their areas are equal. 
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Pythagorean Theorem Converse     (Euclid, Book I, Prop. 48) 

A triangle is right if the square on one side is equal in area to the sum of the other two squares. 

 

 Proof 

Given 𝐸𝐹𝐺 with the square built on 𝐸𝐺 equal in area to the sum of the squares built on 

𝐸𝐹 and 𝐹𝐺, construct 𝐽𝐾𝐿 such that 𝐽𝐾 = 𝐸𝐹 and 𝐾𝐿 = 𝐹𝐺 and ∠𝐽𝐾𝐿 = 𝜌.  By the 

Pythagorean theorem and lemma 3.5, the squares built on 𝐸𝐺 and on 𝐽𝐿 are congruent, 

so 𝐸𝐺 = 𝐽𝐿.  By SSS, 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿, so ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 = 𝜌.             ∎ 

 

Diagonal Bisection Theorem 

A diagonal divides a quadrilateral into two triangles of equal area iff it bisects the other diagonal. 

 

Proof – citing only orange-belt theorems – is left as an exercise.  It is foundational for blue belts.  

The following blue-belt theorems are in Practical Shop Mathematics by Wolfe and Phelps. 

 

Projection Theorem (without proof) 

The projection of a side of a triangle upon the base is equal to the square of this side plus the 

square of the base minus the square of the third side, divided by two times the base. 

 

Intersecting Chords Theorem (without proof)   (Euclid, Book III, Prop. 35) 

If two chords of a circle intersect inside the circle, the product of the two segments of one is equal 

to the product of the two segments of the other. 

 

Intersecting Secants Theorem (without proof)   (Euclid, Book III, Prop. 36, 37) 

If two secants of a circle intersect outside the circle, the product of the two segments of one, from 

the intersection to where the circle cuts it, is equal to the product of the two segments of the 

other, from the intersection to where the circle cuts it. 

 

Altitude and Diameter Theorem (without proof) 

The product of two sides of a triangle is equal to the product of the altitude to the third side and 

the diameter of the circumcircle. 

 

Triangle Similarity Theorem (without proof)   (Euclid, Book VI, Prop. 4, 5) 

If two triangles are similar, their corresponding sides are proportional. 

 

Side–Splitter Theorem (without proof)    (Euclid, Book VI, Prop. 2) 

A line through two sides of a triangle parallel to the third side divides those sides proportionally. 

 

Problem 3.59  Any line through two circles’ touching point is cut in proportion to their diameters. 
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Trigonometry has been eliminated and Geometry has been turned into a review of Algebra I – 

Does everybody have the distance and midpoint formulas memorized yet? – with three teachers, 

of Algebra I, II and Geometry, being told to toss in some trigonometry with their usual studies. 

 

Suppose you employ three people and have a task with an easy part and a hard part.  If you assign 

it to one employee, he will do it all – easy and hard – lest he be fired.  If you tell all three to help 

complete the task, the easy part will be done three times, redundantly, and the hard part will not 

get done.  Analogously, ladder-on-wall problems are taught three times; the laws of sines and 

cosines, never.  Common Core is sometimes just plain wrong, but what it lacks most is leadership. 

 

In the blue-belt chapter – sine and cosine are blue belt because they are ratios – geometry 

becomes more like algebra and the sides are given, or we are asked to find, numerical lengths in 

centimeters.  𝑒 = 𝐹𝐺, 𝑓 = 𝐺𝐸 and 𝑔 = 𝐸𝐹 are abbreviations meant to aid in doing this algebra.  

The inscribed angle theorem is early in green belt; look it up so you can follow this next proof. 

 

First Law of Sines  
𝑒

sin𝛼
=

𝑓

sin𝛽
=

𝑔

sin𝛾
= 2𝑅  

 

Proof 

Given 𝐸𝐹𝐺, in 𝑀𝐸𝐹𝑂𝐹, ∠𝑀𝐸𝐹𝑂𝐹 = 𝛾 by the inscribed angle theorem, 𝑂𝐹 = 𝑅, and 

𝑀𝐸𝐹𝐹 =
𝑔

2
.  Thus, 

𝑔

2
= 𝑅 sin 𝛾.  Rearranging, 

𝑔

sin𝛾
= 2𝑅.  Analogously for 

𝑒

sin𝛼
 and 

𝑓

sin𝛽
. ∎ 

 

Second Law of Sines  
𝑒−𝑓

𝑒+𝑓
=

sin𝛼−sin𝛽

sin𝛼+sin𝛽
 

 

From the first law of sines, 𝑒 = 2𝑅 sin 𝛼 and 𝑓 = 2𝑅 sin 𝛽, which implies the second law of sines. 

 

First Law of Cosines  𝑔2 = 𝑒2 + 𝑓2 − 2𝑒𝑓 cos 𝛾 

 

 Proof 

Given 𝐸𝐹𝐺 acute, let 𝐸′ be the foot of the altitude from 𝐸 to 𝐹𝐺.  𝐸𝐸′ = 𝑓 sin 𝛾 and  

𝐺𝐸′ = 𝑓 cos 𝛾 and 𝐹𝐸′ = 𝑒 − 𝑓 cos 𝛾 by the definition of sine and cosine in 𝐸𝐸′𝐺. 

 

 𝑔2 = (𝑒 − 𝑓 cos 𝛾)2 + (𝑓 sin 𝛾)2   Pythagorean theorem in 𝐸𝐸′𝐹 

       = 𝑒2 − 2𝑒𝑓 cos 𝛾 + 𝑓2 cos2 𝛾 + 𝑓2 sin2 𝛾 Expand the squares 

       = 𝑒2 + 𝑓2 − 2𝑒𝑓 cos 𝛾    cos2 𝛾 + sin2 𝛾 = 1  • 

 

Proving this for when 𝐸′ is on 𝐹𝐺⃗⃗⃗⃗  ⃗ past 𝐺, or is on 𝐺𝐹⃗⃗⃗⃗  ⃗ past 𝐹, is left as an exercise for the student.  

Also, verify that the largest interior angle of a 3 ∶ 5 ∶ 7 triangle is 
2

3
𝜋.  Good to know! 
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Second Law of Cosines 𝑔 = 𝑒 cos𝛽 + 𝑓 cos 𝛼 

 

Prove this by substituting cos 𝛼 and cos 𝛽 from the first law of cosines and simplifying to get 𝑔. 

 

It is important that the vertex angles not be labeled 𝐴, 𝐵, 𝐶 as most trigonometry textbooks do 

because 𝐴 also means area.  Use 𝑒, 𝑓, 𝑔 for the sides because 𝑎, 𝑏, 𝑐 are used in 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

and, when using the quadratic formula to solve a triangle problem, it is confusing for 𝑎, 𝑏, 𝑐 to 

have two meanings.  Also, 𝑎 sin( ) or 𝑎 cos( ) look like asin( ) or acos( ), which is how we 

write these inverse functions because sin−1( ) and cos−1( ) look like 
1

sin( )
 and 

1

cos( )
.     

 

Practical applications use tangent, but you usually do not want it when proving identities; convert 

it to sine over cosine.  You never need cosecant, secant, or cotangent; these words only confuse.  

Terminology is the only thing that makes this difficult to prove: 
1+cot𝜃

cot𝜃
= tan𝜃 + csc2 𝜃 − cot2 𝜃.   

 

 
1+

cos𝜃

sin𝜃
cos𝜃

sin𝜃

     ?    
sin𝜃

cos𝜃
+

1

sin2 𝜃
−

cos2 𝜃

sin2 𝜃
 Rid yourself of the confusing terminology! 

 

 
sin𝜃

cos𝜃
+ 1 =  

sin𝜃

cos𝜃
+

sin2 𝜃

sin2 𝜃
  1 − cos2 𝜃 = sin2 𝜃 by the Pythagorean theorem.∎ 

 

The Pythagorean equation, sin2 𝜃 + cos2 𝜃 = 1, is often cited, usually to simplify equations as 

above.  It can convert an equation into all sines or all cosines, which allows you to factor it.  

Towards this end, sin(−𝜃) = −sin 𝜃 and cos(−𝜃) = cos 𝜃 and sin (𝜃 −
𝜋

2
) = − cos 𝜃 and 

cos (𝜃 −
𝜋

2
) = sin 𝜃 convert the arguments to 𝜃.  sin(𝜋 − 𝜃) = sin 𝜃 gives the two angles in ASS. 

 

Angle Sum Formulas   sin(𝛼 ± 𝛽) = sin 𝛼 cos 𝛽 ± cos 𝛼 sin 𝛽 

     cos(𝛼 ± 𝛽) = cos 𝛼 cos𝛽 ∓ sin 𝛼 sin 𝛽 

 

Double Angle Formulas  sin(2𝜃) = 2 sin 𝜃 cos 𝜃 

cos(2𝜃) = cos2 𝜃 − sin2 𝜃  

         = 2 cos2 𝜃 − 1    These send cos(2𝜃) to sine 

         = 1 − 2 sin2 𝜃    or cosine, to aid in factoring. 

 

2 cos 𝛼 cos 𝛽 = cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)  2 sin 𝛼 sin 𝛽 = cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽) 

 

2 sin 𝛼 cos 𝛽 = sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)  2 cos 𝛼 sin 𝛽 = sin(𝛼 + 𝛽) − sin(𝛼 − 𝛽) 

 

It is easier to integrate a sum than a product; there is no need for the sum-product identities. 
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Surveying Techniques to Measure or Lay Off Lengths 

 

Blue belts will learn how to find the area of an irregular quadrilateral when one side cannot be 

measured.  Here we learn surveying fundamentals in preparation for these advanced techniques.  

The area of ranch land is the area of its projection onto the horizontal plane, not its actual surface 

area.  If you are building a fence and need to know its length to estimate materials, install an 

odometer on a mountain bike that outputs to 0.01 km and put five magnets on the spokes 

instead of just one.  Multiply by 200 to get meters; e.g., if it says 5.73 km, it is really 1146 m.     

But this measurement will not do if you are buying the land and need to know its acreage.  After 

some preliminary instruction, I will here explain how to accurately measure horizontal length. 

 

It is often the case that existing fences appear to follow the path of a drunkard on his way home 

from the saloon.  But the explanation is not (usually) drunkenness.  It is because the fence builder 

was locating where to pound in fenceposts by sighting across the tops of two that he had already 

pounded in.  There is much error in this procedure because, even with the aid of a level, none of 

the posts are perfectly vertical.  If the fence is traversing a hill, all the errors will be in the same 

direction because the pounder tends to hammer his posts into the slope, so they tilt towards the 

downhill side of the fence.  A fence that appears to be wandering aimlessly across the country is, 

on closer inspection, usually curving towards the downhill side of the slopes that it crosses. 

 

Even without the purchase of expensive surveying equipment and the rather time-consuming 

need to re-level the tripod every time it is moved, making a fence straight can be achieved with 

a scoped rifle.66  Hold the top of the vertical part of the crosshairs on a distant mountain peak 

and direct your helper to stick flags in the ground every five meters (or whatever the agreed upon 

distance between posts is) and in line with the bottom of the vertical part of the crosshairs. 

 

Most hills become increasingly steep until they reach an inflection point, after which they 

become decreasingly steep and finally flat at the top.  This inflection point is called the military 

crest of the hill because it is the highest point where a machine gun can be emplaced and cover 

all the hillside below it.  The military crest is higher on the hill for a person standing upright than 

it is for a machine gun just centimeters off the ground.67  Green belts will learn of machine gun 

emplacement and should know that, whatever other considerations must be taken into account, 

they should stay below the military crest of hills to avoid leaving blind spots at the base of the 

hill.  Here, you need to know about the military crest because, when surveying for a fence that 

goes over hills, it is at the military crest of each hill where you position the telescope. 

 
66 Leave the rifle bolt behind so nobody accuses you of poaching cattle; that is a hangable offense in cattle country. 
67 Battles have been lost because an officer on horseback surveyed the battlefield and positioned his machine guns 

too far up the hill, which left a blind spot at the base of the hill where the enemy was protected from fire. 
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I will begin with an overview of how to build a fence.  Cutting the bands on a new roll of wire can 

be dangerous because there is tension in the coils, and it can spring out at you.  Tighten wire only 

with a hand-cranked pulley.  Never use a tractor to tighten wire; if the wire snaps, it can 

disembowel you.  If you do not wear prescription glasses, then wear dark glasses; when not under 

high tension, coiled wire tends to flip around unexpectedly and, if it scratches your eye, it can 

blind you.  Leather gloves are a must, though they will not protect your hands entirely.  Keep 

bandages and spray bottles of saline and of antiseptic in your truck; treat wounds immediately.   

 

Disemboweled?  If you are not now convinced that flipping hamburgers is the life for you, then 

let us look at how fences fail.  Most fences are in hilly country; there are often gullies68.  Fences 

fail because cows push their way through, but cows do so only if they see preexisting weakness. 

 

1. Untreated wooden fence posts rot.  Use only treated wooden posts, and only at the 

corners, gates, and bottoms of depressions.  Use pounded-in steel posts between them. 

 

2. Cold weather tightens wire and pulls up posts.  Wire should be attached to the corner 

and gate posts but should otherwise slide in its fasteners.  Do not over-tighten it. 

 

3. A corner or gate post topples over.  These posts should be wood; a second post is buried 

1.3 meters away.  On this post, the wire slides in its fastener just like on the steel posts.  

This post’s purpose is to brace the corner post with a horizontal board and another board 

at an angle from the bottom of the brace post up to where the horizontal board meets 

the corner post.  Cut slots in the posts for the horizontal board.  Tighten a wire from the 

bottom of the corner post up to where the horizontal board meets the brace post. 

 

4. Posts at the bottom of a depression pull out.  Here you should have two wooden posts 

2.4 m apart with a horizontal board and with wire at both angles (from the bottom of one 

to the horizontal of the other) and tightened enough to squeeze the board.  If water flows 

in the depression, you may need boulders or solid concrete blocks to hold the fence down. 

 

Three wires are not enough.  Four is standard and five may be needed to enclose an alfalfa field, 

which cows lust after.  Put the wire on the side that the cows are on; stand on the other side of 

the fence when tightening it.  The actual mechanics of building fences cannot be explained here; 

work for someone who is experienced and observe him carefully, or take pictures of a well-made 

fence and try to duplicate that builder’s work.  If you come to a gully, put a corner post on each 

side and keep going.  Someone else will have to solve that problem.    The best solution is a culvert 

buried right up to the level, though this is expensive; dumping junk cars in the gully also works. 

 
68 Arroyos in Spanish, or wadis in Arabic; these terms are widely used even in English-speaking countries. 
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Find the endpoints of the fence.  When the land was settled, surveyors may have buried markers, 

or there may be a fence that is known to have been professionally surveyed and that can be relied 

upon.  A common situation is that you have only one endpoint or that you are constructing a 

rectangle on the side of a surveyed line.  In America, ranch land is cut into 40-acre squares, which 

are 440 yards or 402.336 meters on a side.  Louisiana may use French units and Texas may use 

Spanish units; there are other units in use around the world.  100 meters on a side is a hectare. 

 

Measuring horizontal length requires a telescope with a bubble level, which is called a sight level.  

Also, you need a laser rangefinder; the ones sold in golf shops are better for surveying than the 

ones for hunters.  They are more accurate than an odometer but can produce gross errors if the 

beam reflects off the wrong object; one should recon with a bicycle and recheck measurements 

that seem wrong.  Observe the vertical height on a measuring rod.  This measurement, ℎ, is made 

more accurate if each man has a sight level and a measuring rod because they can steady their 

level by using their rod like a monopod and can average their measurements.  𝑟 is the slant length 

and 𝑐 is the correction; 𝑐 = 𝑟 − 𝑥.  Then, ℎ2 = 𝑟2 − 𝑥2 = (𝑟 − 𝑥)(𝑟 + 𝑥) = 𝑐(𝑟 + 𝑥) by the 

Pythagorean theorem, so 𝑐 =
ℎ2

𝑟+𝑥
≈

ℎ2

2𝑟
.  For gentle enough slopes that you can measure the 

vertical height on a rod, this approximation has negligible error.  In hilly country, you must 

measure many short segments; on relatively flat land, you can measure a few longer segments. 

 

The horizontal length is always less than the slant length; thus, in measurement work, you 

subtract the correction from the measured slant length to get the horizontal length.  But, in layout 

work69, you are given the horizontal length (e.g., 440 yards if you are constructing a 40-acre plot 

of land) and you add the correction to this given length to know what slant length to look for. 

 

Confusion about whether to add or subtract a correction is one of the most common causes of 

error, not just in surveying but in all branches of engineering.  Thus, while modern laser 

rangefinders need no correction, I will here describe the old-fashioned use of a long steel tape.  

Steel has a coefficient of expansion of 0.000012; that is, it lengthens/shortens 0.000012 meters 

for every meter of its nominal length for each Celsius degree over/under 20℃.   

 

Lay off 100 meters on a hot 37℃ day?      Mark your point where the tape reads 99.98 meters. 

Lay off 100 meters on a cold 3℃ day?       Mark your point where the tape reads 100.02 meters. 

On a hot 37℃ day, the measured length is 100 meters?      The actual length is 100.02 meters. 

On a cold 3℃ day, the measured length is 100 meters?       The actual length is 99.98 meters. 

 
69 To lay off a length, extend a ray past a point by the given length out to a new point.  Hence the term “layout work,” 

in contrast to “measurement work,” where you are given two points and want to know their separation. 
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If you position your telescope at the military crest of hills, you can usually move from hilltop to 

hilltop with no loss of accuracy.  But what if you come to an obstacle that you cannot see through, 

and you are on flat ground so there is no elevated position that allows to see over it?  Professional 

surveyors would use a transit – a telescope that can rotate both horizontally and vertically on a 

tripod – to measure four right angles.  But a transit is a very expensive piece of equipment, it 

takes a long time to re-level it and orient its angle measurements with the compass each time it 

is moved, and it is difficult to read its double Vernier scales for degrees and for minutes of angle.   

 

 
 

If 𝐹 is the endpoint and 𝐸 is a point such that 𝐸𝐹 is approximately the needed offset, construct 

an isosceles triangle 𝐸𝐹𝑇 with the altitude from 𝑇 about half 𝐸𝐹.  Extend 𝐸𝑇⃗⃗⃗⃗  ⃗ and 𝐹𝑇⃗⃗⃗⃗  ⃗ that much 

again to 𝐺 and 𝐻, respectively.  By SAS, 𝐸𝐹𝑇 ≅ 𝐺𝐻𝑇, so, ∠𝐸𝐹𝑇 = ∠𝐺𝐻𝑇, and, by the transversal 

lemma 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗.  Extend 𝐻𝐺⃗⃗⃗⃗⃗⃗  past the house by at least 𝐻𝐺 and then construct another two 

triangles congruent to 𝐸𝐹𝑇 as shown.  Thales’ diameter theorem (next chapter) states that 

∠𝐸𝐹𝐺 = 𝜌 = ∠𝐺𝐻𝐸, so 𝐹𝐾 = 𝐺𝑁, but the latter is measurable while the former is blocked. 

 

Scenario:  You passed the green-belt entrance exam!  But there is trouble at home.  With the 

birth of another baby brother, your house is crowded.  If you cannot contribute some money so 

your parents can rent a bigger house, you will have to move out.  You have heard of a farmer 

who purchased a run-down 40-acre farm; the fences have all fallen and cattle from an adjoining 

pasture have trampled the irrigation ditches.  There is much work to be done!  Wearing your 

green belt, you walk up to the farmer, shake his hand and say, “I am a Geometry–Do green belt.  

I know how to survey.  I can build your fences arrow-straight and measure the area of your farm’s 

projection onto the horizontal plane to confirm that it is the acreage you paid for.”   

 

“You’re hired!” the farmer exclaims, amazed by his good fortune in meeting such a useful young 

man, “I’ll pay you a hundred dollars a day, plus room and board.”  The corner posts of the old 

fence define the southern border, which is bracketed by right angles.  The northern border is a 

straight river that runs at an angle to the southern border; the farm is a right triangle frustum.   
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With a 30-meter steel measuring tape, a hand level, and a meter rod, you take measurements.  

The slant length and the rise (declines are shown in red) are both measured in meters.  The 

temperature is measured in degrees Celsius.  Every pre-algebra student learns the formula for 

the area of a rectangle, 𝐴 = 𝑏ℎ, and for a triangle, 𝐴 =
𝑏ℎ

2
, where 𝑏 is base and ℎ is height, which 

is, for a triangle, the apex altitude.  Calculate hectares and then convert them to acres. 

 

SW Corner to River SW Corner to SE Corner SE Corner to River 
station length rise temp. 

  1 30  0.05 20 

  2 30 0.02 22 

  3 30 0.01 23 

  4 30 0.04 24 

  5 30 0.01 26 

  6 30 0.15 27 

  7 30 0.18 28 

  8 30 0.23 28 

  9 30 0.19 29 

10 30 0.26 30 

11 30 0.31 32 

12 30 0.29 32 

13 30 0.34 31 

14 30 0.27 17 

15 30 0.35 19 

16 30 0.31 20 

17 30 0.35 22 

18 11.31 0.27 23 
 

station length rise temp. 

  1 30  0.22 23 

  2 30 0.33 24 

  3 30 0.28 24 

  4 30 0.32 25 

  5 30 0.25 26 

  6 30 0.29 26 

  7 30 0.34 27 

  8 30 0.35 15 

  9 30 0.25 16 

10 30 0.31 16 

11 30 0.27 18 

12 30 0.30 18 

13 30 0.28 19 

14 12.34 0.23 21 
 

station length rise temp. 

  1 28.34 0.03 22 

  2 30 0.07 23 

  3 17.83 0.06 23 

  4 30 0.26 25 

  5 30 0.32 09 

  6 30 0.38 12 

  7 30 0.39 12 

  8 30 0.43 13 

  9 30 0.45 15 

10 27.19 0.42 16 

 
The 28.34 m. and 17.83 m. lengths 
were to allow stretching the tape 
over gulleys.  Objects you cannot 
see through, like a copse of trees, 
require constructing a rectangle as 
described on the previous page. 

 

DO 

 INPUT  𝑟0, ℎ0, 𝑡        ′  Measured slant length, rise and temperature. 

 𝑛 = 𝑛 + 1         ′  To conclude, input 𝑟0 longer than your tape, 30. 

 𝑐 = 0.000012𝑟0(𝑡 − 20) 

 IF  𝑟0 = 30  THEN  𝑟 = 𝑟0 − 𝑐  ELSE  𝑟 = 𝑟0 + 𝑐 

 ℎ = ℎ0(1 + 0.000012(𝑡 − 20)) 

 𝑥(𝑛) = √𝑟2 − ℎ2        ′  𝑥(𝑛) ≈ 𝑟 −
ℎ2

2𝑟
  is used when √  is unavailable. 

LOOP UNTIL 𝑟0 > 30 

FOR  𝑖 = 1  TO  𝑛 − 1  :  𝑥 = 𝑥 + 𝑥(𝑖)  :  NEXT  𝑖  :  PRINT  𝑥        ′  The answer is 𝑥 = 39.995 acres. 
 

Taking slope and temperature into consideration is what divides professional surveyors from 

amateur surveyors.  I grew up on a cattle ranch 2500 meters above sea level.  Much of my work 

every summer was fixing fences; many staples had pulled out of the wooden fence posts.  Why?  

Because the −40° C. winter temperatures caused the wire to contract enough to pull on the 

posts.  So don’t tell me temperature has no effect!  Also, even as a boy, I wondered at the perfect 

squares on the surveyor’s map.  This made sense only if the map was a projection on the plane. 
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Basic Terminology Used in Surveying 

 

You cannot be an official surveyor without a license but, if you get a job as a surveyor’s helper, 

knowing the lingo and showing an understanding of what your boss is doing will help you get 

promoted.  He has no time to answer basic questions but, if you already know the basics, he may 

help you study for the licensing exam.  If nothing else, it gets you out of a trench shoveling. 

 

The beginner section, Defense Positioning and Geometry, makes it clear that machine gunners 

want a smooth slope that they can graze with their fire; enemy infantry can get behind the high 

points and into the low points.  A smooth slope is also the desire of farmers, so the high points 

are not left bare, and the low points do not become a swamp.  With slight modification, the 

techniques described in the previous section can be used for giving grade, or grade staking as it 

is sometimes called.  This helps the excavators remove dirt from the cuts and put it in the fills.  

Boldface indicates surveyor terms; they are not in the geometers’ glossary. 

 

In the previous section, I described using a scoped rifle to build a fence straight.  A transit is a 

telescope that can rotate both horizontally and vertically on a tripod.  (A theodolite is the same 

thing, but it is more accurate.)  It is expensive and the need to re-level it every time the tripod is 

moved to a new station is time-consuming and tedious.  But its advantage over the rifle is that it 

has a built-in compass and that it can be rotated precisely 180° to take a backsight on the fence 

that has already been built, while the rifle can only be used for foresight.  A level is like a transit, 

but it does not tilt, and it does not measure angles, though it does have notches at 90° and 180° 

so it can be used to take a backsight or to construct a right angle.  The tripod is at eye level so, 

when climbing a hill, the next station cannot be so far that the elevation has increased more than 

1.5 meters.  Stations can be farther apart when descending a hill because the rod is longer than 

3 meters.  To balance foresights and backsights means that, while the stations do not have to 

be exactly the same distance apart, as they were in the example with the 30-meter tape, they 

should be roughly so; if they are clumped together on the uphills and spread out on the downhills, 

the measurement is different than it is for another surveyor moving in the opposite direction. 

 

The quadrature chapter will assume only a laser rangefinder, not a transit, because angle 

measurements lend themselves to trigonometry.  There is nothing wrong with trigonometry – it 

is an interesting subject too – but it is not what this book is about.  The orange-belt theorem that 

is most relevant to surveying is the quadrilateral angle sum theorem.  If you measure the angles 

at each of the four vertices, they should add up to 360°, which is called closure.  This gives your 

results far more credibility than a series of roughly collinear stations; a mistake at any one of 

them renders the rest meaningless.  Transits are error-prone devices; mistakes happen.  Closing 

the horizon means adding up the angles around a point to get 360°, another check on accuracy. 
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Military surveyors are engaged in laying out static defenses with guns in concrete bunkers.  The 

guns will be roughly collinear, but the surveyor should still obtain closure – using the polygon 

angle sum theorem – by looping around through stations at markers behind the line.  These 

markers can then serve as reference points when guns are added or repositioned. 

 

There are also reference points in the enemy’s territory, which are prominent landmarks that are 

visible even in the smoke and dust of a battle.  Since you cannot go to them to set up your transit 

– the enemy is kind of fussy about that – the surveyor must triangulate their position.  This means 

that he uses the ASA theorem to construct a fully defined triangle with a known base and the 

enemy reference point at the apex.  Generally, there is a hill in the interior of the triangle so your 

mortar battery, located on the base of the triangle, does not have line of sight on the apex and, 

most importantly, enemy gunners do not have line of sight on them.   

 

Speed is of the essence.  You do not have ten years to be built static defenses, like the French 

had for their Maginot line; it is entirely possible that the enemy will attack while you are still 

doing calculations.  This is where geometry shines compared to trigonometry, though computer 

software has recently been introduced that can calculate trigonometry faster than one can draw 

a geometric figure.  But, if your tools consist of a map, a compass, a ruler, a protractor, and a 

scientific calculator, you will be wise to set the calculator aside and just draw the figure.  The 

upside of the scientific calculator is that it provides you with twelve decimal digits of accuracy; 

the downside is that you are dead before you have completed the calculation.  Drawing the figure 

on a map and measuring angles with a protractor and distances with a ruler only provides three 

decimal digits of accuracy, but it puts mortar rounds at least near the enemy before they kill you. 
 

An azimuth angle is measured clockwise from magnetic north.  This differs from the 

trigonometrician’s practice of measuring angles counterclockwise from due east.  It also differs 

from a mariner’s bearing, which measures the difference from north or south towards east or 

west; e.g., bearing 𝑆22°𝐸 is azimuth 158°.  The angle of elevation is on the vertical plane from 

−90° (down) to 90° (up).  In gunnery, you can ignore declination because all angles are relative. 

 

Problem 3.60 

From your mortar, 𝑀, you extend a line 170 meters with an azimuth angle of 107° to 𝐹.  Backsight 

and extend 170 meters to 𝐸.  If 𝐺 is an enemy gun to the north, ∠𝐸𝐹𝐺 = 67° and ∠𝐹𝐸𝐺 = 76°, 

at what azimuth angle and range should the mortar gunner be instructed to fire his weapon?  (It 

is best if maps are scaled so 1 cm is 10 m.  Here, 5 mm equals 10 m fits on U.S. letter-size paper.) 

 

 Solution 

From 𝑀 draw a ray to north and then 𝐸𝐹⃡⃗⃗⃗  ⃗ at 107°.  Construct the triangle by ASA.  Measure 

the azimuth angle from 𝑀 to 𝐺 at 12°; measure the range at 506.5 meters.          ∎ 
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How Military Surveying Differs from Civilian Surveying 

 

First, we will consider two problems that seem to have nothing to do with surveying but are 

analogous to two surveying problems.  Suppose that Musclehead Mike and Beanpole Bill are 

employed as ditch diggers.  Mike can dig a 10-meter ditch in 5 hours while Bill can dig a 10-meter 

ditch in 8 hours.  But their boss is in a hurry, so he has Mike start on one end and Bill start on the 

other end.  How long will it take for Mike and Bill, working together, to dig a 10-meter ditch? 

 

Many students stumble over this problem because they are used to thinking of rates as being 

units of distance divided by units of time, like 
𝑚

ℎ
.  But the ditches being dug are always the same 

length, so the 10-meter figure is just thrown in to confuse students – we could have said 

“standard ditch” without specifying the length in meters.  The rates are 5 =
𝑡𝑀

𝑛
 and 8 =

𝑡𝐵

𝑛
 where 

𝑡𝑀 is the time it takes Mike to dig 𝑛 ditches and 𝑡𝐵 is the time it takes Bill to dig 𝑛 ditches. 

 

Solve both equations for 𝑛 and then add them together to get the number of ditches dug by Mike 

in 𝑡𝑀 hours and Bill in 𝑡𝐵 hours:  
𝑡𝑀

5
+

𝑡𝐵

8
= 𝑛.  But 𝑡𝑀 = 𝑡𝐵  in this case because both boys finish 

simultaneously when they meet, so we will call this time 𝑡.  And 𝑛 = 1 because they have only 

one ditch to dig.  Thus, for this problem, 
𝑡

5
+

𝑡

8
= 1.  Getting a common denominator yields 

8𝑡+5𝑡

8×5
= 1, so 𝑡 =

8×5

8+5
=

40

13
≈ 3.08 hours.  It is the infamous product-over-sum formula! 

 

Now let us solve a more general problem of several – we will say three – people working together 

to accomplish 𝑛 tasks.  Suppose their rates are 𝑟1, 𝑟2, 𝑟3 hours per task.  𝑡 =
𝑟1𝑟2𝑟3

𝑟1𝑟2+𝑟2𝑟3+𝑟1𝑟3
𝑛.  This 

problem is often posed as several pumps filling (or draining) 𝑛 water tanks, with the strength of 

the pumps being given in hours per tank.  This is only true if the people can work independently. 

 

The product-over-difference formula is derived in almost the same way and is also characterized 

by the rates being given in time per task.  Suppose that Mike and Bill are running laps in P.E. class.  

Bill runs at a steady 70 seconds per lap while it takes Mike 100 seconds to haul his big butt around 

the track.  How long will it take for Bill to lap Mike?  
𝑡

100
+ 1 =

𝑡

70
.  Rearranging, 

𝑡

70
−

𝑡

100
= 1.  

Getting a common denominator yields 
100𝑡−70𝑡

100×70
= 1, so 𝑡 =

100×70

100−70
= 233. 33 seconds.  If this is 

a 1600-meter race and the track is a 400-meter oval, will Bill lap Mike?  Yes, in 
233.33

70
= 3

1

3
 laps.   

 

Suppose that two surveyors want to measure the altitude of a blimp tethered over their city.   

They could get directly under the blimp and aim their laser rangefinder upwards.  If there are 

obstructions, they can aim it from two points and then find the altitude of this triangle by using 



Geometry without Multiplication  Victor Aguilar 

146 
 

problem 1.25.  Suppose they are collinear with the projection and 300 meters apart.  The nearer 

one measures a diagonal distance of 513 meters and the farther one measures a diagonal 

distance of 750.5 meters.  If 𝑥 is the distance of the farther one from the projection, then, by the 

Pythagorean theorem, 750.52 − 𝑥2 = 5132 − (𝑥 − 300)2.  Solve for 𝑥 = 650 meters and then 

ℎ = √750.52 − 6502 ≈ 375 meters.  But, if the blimp is tethered over their city because an 

occupying army has surveillance cameras, snipers, and air-to-ground missiles on it, then aiming 

a laser rangefinder at the blimp is dangerous.  They can see your laser beam and will fire on you. 

 

Suppose the surveyors position themselves collinear with the blimp on opposite sides of it and 

1000 meters apart.  They use transits – devices that can measure the angle of elevation to a 

target – to measure angles of 30° and 47°.  We do not know how far either of them are from the 

projection of the blimp, so we call the distance of the farther surveyor from the projection 𝑥 

meters and the distance of the nearer surveyor from the projection 1000 − 𝑥 meters.  If ℎ is the 

unknown height of the blimp, then tan 30° =
ℎ

𝑥
 and tan 47° =

ℎ

1000−𝑥
.  By reasoning analogous 

to the ditch-digging problem above, ℎ =
tan47°×tan30°

tan 47°+tan30°
1000 ≈ 375 meters. 

 

Suppose the surveyors position themselves collinear with the blimp on the same side of it and 

300 meters apart.  They use transits to measure angles of 30° and 47°.  We do not know how far 

either of them are from the projection of the blimp, so we call the distance of the farther surveyor 

from the projection 𝑥 meters and the distance of the nearer surveyor from the projection            

𝑥 − 300 meters.  If ℎ is the unknown height of the blimp, then tan 30° =
ℎ

𝑥
 and tan 47° =

ℎ

𝑥−300
.  

By reasoning analogous to the foot-race problem above, ℎ =
tan47°×tan30°

tan47°−tan30°
300 ≈ 375 meters. 

 

If the surveyors are not collinear with the projection, after measuring the angle of elevation, they 

must lower their transits to the level and measure the transversal angle to the other surveyor.  If 

the nearer surveyor measures a 19.0° angle and the farther surveyor measures a 10.1° angle, by 

the angle sum theorem, the vertex at the projection has a 150.9° angle.  If they are 971 meters 

apart, 
971

sin150.9°
=

𝑥

sin10.1°
 by the Law of Sines, with 𝑥 the distance from the nearer surveyor to the 

projection.  𝑥 = 350 meters.  Thus, ℎ = 350 tan 47° ≈ 375 meters.  Beware!  Had we known 

𝑥 = 350 meters, asin 0.4865 ≈ 29°.  There are two possible angles, and you get the acute one! 

 

In civilian use, surveyors aim their rangefinder at a reflector held by their rod man.  Most lasers 

cannot measure 971 meters when aimed at a man wearing unreflective cotton clothes.  So, each 

aims at a metal light pole and measures the angle between it and the other surveyor.  If one 

measures 473 meters and 11° and the other measures 518 meters and 12°, then, by the Second 

Law of Cosines, the distance between them is 473 cos 12° + 518 cos 11° ≈ 971 meters. 
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How to Apply for a Job that Uses Geometry 

 

In most of the world (e.g., India and Russia), graduating from middle school requires three years 

of geometry, and aspiring mathematicians and engineers get another two years in high school.  

But America requires only one year of geometry so, sadly, there are some of you whom I will not 

be seeing again.  But I can at least give you some pointers on leveraging the little bit of geometry 

that you do know into a job of the type that requires being interviewed by a practicing engineer. 

 

1. The interviewer is an engineer, but that is not the job you are applying for.  So, don’t tell 

him about your ability to prove specific geometry theorems – he already knows them – 

but speak in general terms about how the study of geometry has taught you to employ 

cool logic in the face of adversity.  He has known adversity and he has seen people panic. 

 

2. He will take you on a tour of the building.  For older applicants with experience, this tour 

is meant to demonstrate that his is a state-of-the-art facility and to show them the 

machine that their résumé claims that they have experience on to see if they really do.  

But he knows that you have no experience, so why do you suppose he is taking you on 

this tour?  He is watching to see that you walk briskly and with your head up.  If you shuffle 

like an old man or swagger like a thug, he will not hire you.  Never, never lean on a wall. 

 

3. He will hand you a Vernier caliper or micrometer and ask you what it reads.  If you stumble 

over this simple task, he will not hire you.  The standard unit of measurement is the 

millimeter; the illustration shows 28.62 mm.  In America, the standard unit is the mil, 

which is 0.001 in.  Even if the last digit is zero, you report it in mils; e.g., 0.23 inches is 

230 mils.  American calipers are like the one shown, but the units are inches, and the 

Vernier scale is subdivided into ten parts, not five.  A micrometer is analogous, but the 

scale is on a cylinder with a turn knob.  This is important!  Buy one and practice at home. 
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Squares and Rectangles and Rhombi!  Oh My! 
 

Past Regents Examinations in Geometry (Common Core)70 are available on the internet.  Most of 

the questions require a knowledge of squares, rectangles, and rhombi.  Regents does not require 

you to prove them, only to memorize them.  Indeed, for most problems you do not need to have 

any theorems memorized because the exam shows a figure and asks which of four statements is 

not necessarily true.  They all look true but, if you redraw the figure using the given information 

but with different lengths and angles, it will be obvious which statement no longer looks true. 

 

Once I caught on to the test-taking technique of redrawing figures with different lengths and 

angles and then observing which of the four possible answers no longer looks true, I realized that 

it is entirely possible to pass this exam – though not to ace it – without having ever opened a 

geometry book.  Most of the questions are meant to catch out students who base their answers 

entirely on the appearance of the given figure.  Apparently, it did not occur to the examiners that 

students could redraw the figure themselves.71  Plugging in the five answers also works.72 
 

Common Core theorems come in two groups: squares, rectangles, and rhombi, the subject of this 

section; and similarity, the work of blue belts.  But almost all the similar triangles are nested or 

crossed – the easiest kind.  All that is really needed to solve these problems is knowing how to 

cross multiply.  Cross multiplication is an important skill!  In fact, Regents seem to feel that any 

problem involving cross multiplication is a geometry problem, even in the absence of triangles. 
 

Seawater contains approximately 1.2 ounces of salt per liter on average.  How many 

gallons of seawater would contain 1 pound of salt?            (Problem #18, June 2016) 
 

Cross multiply to get the answer in liters; panic time if you are unaware that there is a chart on 

the back page with the liters-to-gallons conversion and other factoids that have nothing to do 

with geometry.  That back-page chart is important!  Many of the problems require students to 

plug numbers into formulas, so you will want to tear it out of your exam booklet and place it 

prominently on your desk, so no errors are made transferring formulas while flipping through the 

booklet.  Two terms that do not appear on the back page are rectangular prism – a fancy name 

for a box – and sector, which is like a slice of pizza; its central angle is to 360° as its area is to 𝜋𝑟2. 

 

Many of the problems require basic trigonometry (no identities; just the definitions of sine, 

cosine, and tangent) and basic algebra.  Ladders leaning against walls is a popular topic.  If a 

 
70 An algebra exam masquerading as a geometry exam: www.nysedregents.org/geometrycc  
71 The GRE asks us to compare ∠𝐸𝐺𝑀𝐸𝐹  to ∠𝐹.  They illustrate with a nearly equilateral triangle, so ∠𝐸𝐺𝑀𝐸𝐹 < ∠𝐹.  

But, if you draw a triangle with a very small ∠𝐹 and an obtuse ∠𝐺, it is clear that the answer is indeterminate. 
72 What the SAT teaches:  blog.prepscholar.com/plugging-in-answers-a-critical-sat-math-act-math-strategy  

http://www.nysedregents.org/geometrycc
https://blog.prepscholar.com/plugging-in-answers-a-critical-sat-math-act-math-strategy
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problem gives the measure of the angle of elevation to a point from two points on the ground, 

use the definition of tangent to set up two linear equations and then solve them simultaneously.  

Parabolas and ellipses are not required, but circles are; know how to complete the square to get 

𝑟2 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 and the meaning of 𝑥0, 𝑦0, 𝑟.  Given two points, be able to find the 

line through them, the distance between them, and their midpoint.  Also, find a line through a 

point given its slope or given a perpendicular line.  Common Core “geometry” is almost all algebra 

and there is no new algebra to learn – this is all from freshman Algebra I.  There is trigonometry, 

but only the definitions of sine, cosine, and tangent; Common Core never asks for familiarity with 

or proof of trigonometric identities.  With proportions, algebra is 
3

4
 of the exam – enough to pass! 

 

Squares, Rectangles and Rhombi Theorem 

1. The diagonals of a rhombus bisect each other and the vertex angles. 

2. The diagonals of a rhombus are perpendicular.  (The converse is not necessarily true.) 

3. The diagonals of a rectangle are equal.  (The converse is not necessarily true.) 

4. A parallelogram is a rectangle if and only if its diagonals are equal. 

5. A parallelogram is a rhombus if and only if its diagonals bisect the vertex angles. 

6. In an isosceles triangle frustum: (1) base angles are equal; (2) opposite angles are 

supplementary; (3) legs are equal; and (4) diagonals are equal.  And the converses. 

7. The area of a square is half the area of the square built on the diagonal. 
 

All seven of these statements are easy and are left as exercises.  It is, frankly, incredible that this 

is almost all that an American high-school student needs to know about geometry to graduate 

and to get a high enough score on the SAT to be accepted into college.  (Hint!  All that American 

colleges really want is your money.  If you are a moron, then that is just all the more money for 

them when you have to pay for remedial college math classes.)  And the Common Core student 

does not even need to know how to prove them!  Memorization is all that is required. 

 

Construction 3.19         (Euclid, Book IV, Prop. 11) 

Inscribe a regular (equilateral and equiangular) pentagon in a circle. 
 

 Solution (without proof) 

By C. 3.1, locate the circle center, 𝑂, if it is not already known.  Draw a diameter 𝐸𝐹 and, 

by C. 1.3, raise a perpendicular from 𝑂 to intersect the circle at 𝐺.  Let the intersection of 

an arc with center 𝑀𝐸𝑂 and radius 𝑀𝐸𝑂𝐺 intersect 𝑂𝐹 at 𝑃.  𝐺𝑃 is the length of a side.  ∎ 
 

Proof waits for blue belts to prove the mean ratio theorem; but, for now, just memorize the 

construction.  If you plan to sell your soul to Satan, you will need to draw this on the floor.73 

 
73 Did you hear about the dyslexic devil worshipper?  He sold his soul to Santa!        
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The inscribed octagon theorem was in the orange-belt exit exam.  Did you get it? 

 

Inscribed Octagon Theorem 

Given a square with circles around each vertex of radii equal to half the diagonal, the circles cut 

the square at the vertices of a regular octagon. 

 

 Proof 

Given 𝐸𝐹𝐺𝐻 square with center 𝑂, lay off 𝐸𝑂 on 𝐸𝐹⃗⃗⃗⃗  ⃗ and 𝐹𝐸⃗⃗⃗⃗  ⃗ to 𝐽 and 𝐾, respectively.  

𝐸𝑂 = 𝐹𝑂 and ∠𝑂𝐸𝐽 = ∠𝑂𝐹𝐾 =
𝜌

2
 by the squares, rectangles, and rhombi theorem #1;   

𝜌 is a right angle.  By SAS, 𝑂𝐸𝐽 ≅ 𝑂𝐹𝐾.  By the isosceles angle theorem, their base angles 

are ∠𝑂𝐾𝐽 = ∠𝑂𝐽𝐾 =
3

4
𝜌.  By the isosceles triangle theorem converse, 𝐾𝐽𝑂 is isosceles; 

by the angle sum theorem, its apex angle is ∠𝐽𝑂𝐾 =
𝜌

2
.  By the isosceles angle theorem, 

the supplements of the base angles of 𝑂𝐸𝐽 and 𝑂𝐹𝐾 are ∠𝐸𝐾𝑂 = ∠𝐹𝐽𝑂 =
5

4
𝜌.  By AAS, 

𝐸𝐾𝑂 ≅ 𝐹𝐽𝑂 and, by the angle sum theorem, their apex angles are ∠𝐾𝑂𝐸 = ∠𝐽𝑂𝐹 =
1

4
𝜌. 

 

Lay off 𝐸𝑂 on 𝐺𝐹⃗⃗⃗⃗  ⃗ to 𝐿.  By an analogous construction, ∠𝐿𝑂𝐹 =
1

4
𝜌 and 𝐿𝑂 = 𝐽𝑂.  By SAS, 

𝐽𝑂𝐾 ≅ 𝐿𝑂𝐽.  Analogously, there are eight congruent triangles; thus, an octagon.          ∎ 

 

Suppose that you are tasked with this in a beginning algebra class.  Unsure of how to begin, you 

draw four segments cutting out the corners at 45° angles and ask yourself, what must be true of 

these cuts for the figure to be a regular octagon?  The angled segments must be equal to the 

uncut sections of the sides, between the cuts.  And what are these lengths?  If this is a unit square 

and what is cut from each side is of length 𝑥, then the uncut section is of length 1 − 2𝑥.  The 

hypotenuse of the cut-out right isosceles triangle is √2𝑥.  Let us set them equal! 

 

 √2𝑥 = 1 − 2𝑥    What must be true for the octagon to be regular 

 2𝑥2 − 4𝑥 + 1 = 0   Square both sides and collect like terms 

 𝑥 = 1 −
√2

2
≈ 0.2929   Quadratic formula; the other solution is too long  

 

We could stop here, draw a 10 cm square and then use calipers to lay off 2.93 cm, but it would 

be better if we could relate this to the square somehow.  𝑥 and 1 − 2𝑥 are collinear, so let us add 

them together:  
√2

2
.  Now we are cooking with gas!  By a lucky insight, we recognize this as a 

number we have seen before.  But where???  Just by randomly scanning our eyes over the figure, 

we spot it:  
√2

2
 is half of the square’s diagonal.  Even with no explanation for why these segments 

are equal, we then claim to have proven the inscribed octagon theorem.  What a lucky insight!!! 
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Algebraists boast of this “elegant” construction as an example of their prowess in “analysis,” but 

they nowhere establish cause and effect between the two lengths.  They just happened to notice 

that one segment in their figure is labeled 
√2

2
 and another segment has the same 

√2

2
 label.  My, 

what a happy and unexpected coincidence!  This is considered a proof in algebra because 
√2

2
 is 

the same length no matter where it appears.  But, in geometry, we demand an explanation of 

cause and effect.  The student cannot measure a length with his compass, randomly drop his 

compass around the figure until he finds another segment of the same length, and then shout 

“Eureka!”  There are elegant proofs in algebra (e.g., √2 being irrational), but this is not one of 

them.  Common Core shills like this proof because they have never studied geometry and they 

need an excuse to replace geometry with algebra.  But the role that such happy coincidences play 

in algebra excludes algebra from instructing students in logic, which is our purpose. 

 

The next problem is also one that algebraists boast of, though with even less justification.  Note 

that it is also true for a parallelogram, 𝐸𝐹𝐺𝐻, but proving it for parallelograms is black belt. 
 

Lemma 3.6 

Let 𝜌 be a right angle, 𝜎 be a straight angle and 𝜑 be the interior angle of an equilateral triangle.   

𝜑 trisects 𝜎 and 
1

2
𝜑 trisects 𝜌.  The exterior angle of an equilateral triangle is 𝜌 +

1

2
𝜑. 

 

Dakota Defense Problem 

Given a rectangle, 𝐸𝐹𝐺𝐻, find 𝐽 on 𝐹𝐺⃡⃗⃗⃗  ⃗ and 𝐾 on 𝐺𝐻⃡⃗⃗⃗  ⃗ such that 𝐸𝐽𝐾 is an equilateral triangle. 
 

Solution 

Build an equilateral triangle on 𝐺𝐻 with its apex, 𝑃, on the same side of 𝐺𝐻⃡⃗⃗⃗  ⃗ as 𝐸 and 𝐹.  

Let 𝐽: = 𝐸𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐹𝐺⃡⃗⃗⃗  ⃗.  Build an equilateral triangle on 𝐹𝐺 with its apex, 𝑄, on the same side 

of 𝐹𝐺⃡⃗⃗⃗  ⃗ as 𝐸 and 𝐻.  Let 𝐾:= 𝐸𝑄⃗⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃡⃗⃗⃗  ⃗.  It is proven below that 𝐸𝐽𝐾 is equilateral. 
 

Proof 

Assume that 𝐹𝐺 ≤ 𝐺𝐻; if it is not, relabel.  By the center line theorem, 𝑃 is on the 

mediator of 𝐺𝐻.  By the transversal theorem corollary and the triangle frustum mid-

segment theorem converse, 𝑃 ≡ 𝑀𝐸𝐽.  By the center line theorem and the mid-segment 

theorem, 𝑄 is on 𝑀𝐹𝐺𝑀𝐹𝐾
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗; by the mid-segment theorem, 𝑄 ≡ 𝑀𝐸𝐾.  𝐸𝐹 = 𝐻𝐺 = 𝑃𝐺; 

and, by lemma 3.6, ∠𝐸𝐹𝑄 = ∠𝑃𝐺𝑄 =
1

2
𝜑; also, 𝐹𝑄 = 𝐺𝑄.  Thus, by SAS, 𝐸𝐹𝑄 ≅ 𝑃𝐺𝑄, 

which holds the equalities ∠𝐹𝑄𝐸 = ∠𝐺𝑄𝑃 and 𝑄𝐸 = 𝑄𝑃.  If the angle between them, 

∠𝑃𝑄𝐸, is 𝜑, then 𝑃𝑄𝐸 is equilateral.  ∠𝑃𝑄𝐸 = ∠𝐺𝑄𝐹 + ∠𝐹𝑄𝐸 − ∠𝐺𝑄𝑃 = ∠𝐺𝑄𝐹 = 𝜑.  

By medial triangle theorem I, 𝑃𝑄𝐸 equilateral implies that 𝐸𝐽𝐾 is equilateral.          ∎ 
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The Dakota Defense is of interest to military cadets.  Soldiers are sometimes tasked with building 

something that they know will be targeted by the enemy – say, a munitions dump – in the middle 

of open farmland that has been cut into rectangles by paved roads.  They know: 

 

1. Their bases must be on paved roads, so they can quickly move to confront enemy infantry 

approaching from anywhere, and so they can enfilade the roads to hit enemy vehicles. 

 

2. Enemy aircraft are best met by anti-aircraft guns at the vertices of an equilateral triangle. 

 

Helping the U.S. military fight more effectively is also why Geometry–Do will emphasize machine 

gun emplacement in the green-belt chapter.  Russia teaches real geometry in their high schools, 

not that bogus Common Core drivel, and we must too if we are going to fight them.  It is ridiculous 

that American military officers go into battle without a scientific approach to laying ambushes. 

 

But, right now, let us get back to the task at hand: mocking algebraists who are always on the 

lookout for an excuse to replace geometry with algebra.  Paul Yiu74 writes: 

 

This construction did not come from a lucky insight.  It was found by an analysis!  Let 

𝐸𝐹 = 𝐺𝐻 = 𝑎, 𝐹𝐺 = 𝐸𝐻 = 𝑏.  If 𝐹𝐽 = 𝑦,𝐻𝐾 = 𝑥 and 𝐸𝐽𝐾 is equilateral, then a 

calculation shows that 𝑥 = 2𝑎 − √3𝑏 and 𝑦 = 2𝑏 − √3𝑎.  From these expressions of 𝑥 

and 𝑦, the above construction was devised. 

 

Isn’t that amazing?  Paul Yiu “devised” a construction based entirely on two algebra equations! 

 

D. E. Smith (2013, p. 95) explained that the teaching of constructions using ruler and 

compass serves several purposes: “it excites [students’] interest, it guards against 

slovenly figures that so often lead them to erroneous conclusions, it has genuine value 

for the future artisan, and it shows that geometry is something besides mere theory…”  

For all the strength and power of algebraic analysis, it is often impractical to carry out 

detailed constructions with paper and pencil, so much so that in many cases one is 

forced to settle for mere constructability. 

 

After quoting D. E. Smith on ruler and compass constructions, Paul Yiu then denounces them as 

“impractical,” settles for “mere constructability,” and extols the “strength and power” of algebra.  

Absurd!  Yiu did not prove anything; he just smeared some algebra over someone else’s result.  

The geometer that he stole from drew an almost square rectangle; Yiu does not know how to do 

this for skinny ones.  Forum Geometricorum is a charade; it is algebra masquerading as geometry. 

 
74 Yiu, Paul.  2005.  “Elegant Geometric Constructions.”  Forum Geometricorum.  5: 75-96  

math.fau.edu/yiu/GeometricConstructions/ElegantGeometricConstructions.pdf  

http://math.fau.edu/yiu/GeometricConstructions/ElegantGeometricConstructions.pdf
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A Brief Introduction to Linear Algebra 
 

Having mocked algebraists who are always on the lookout for an excuse to replace geometry with 

algebra, we must now confront the reality that passing standardized geometry exams in America 

requires a rudimentary knowledge of linear algebra.  Unfortunately, Jason Zimba had his head up 

his you-know-what when he defined the high-school mathematics curriculum, because matrices 

are in Algebra II, which comes after Geometry.  Oops!  Thus, for the remainder of this chapter, 

we will diverge from geometry to help students with Zimba’s annoying fill-in-the-bubble exams. 

 

𝑒𝑥 + 𝑓𝑦 = 𝑢 

𝑔𝑥 + ℎ𝑦 = 𝑣 

 

[
𝑒 𝑓
𝑔 ℎ

] [
𝑥
𝑦] = [

𝑢
𝑣
] 

These are equivalent expressions of two linear equations 

in two unknowns, 𝑥 and 𝑦, given constants 𝑒, 𝑓, 𝑔, ℎ, 𝑢, 𝑣. 
 

Solving the first equation for 𝑦 yields 𝑦 = −
𝑒

𝑓
𝑥 +

𝑢

𝑓
, which is the slope-intercept form of a line, 

so it should be clear that the two equations on the left are two lines, which are either concurrent, 

parallel, or intersect at a point.  But the student may not be familiar with the matrix form of this.  

The square matrix [
𝑒 𝑓
𝑔 ℎ

] is simply four numbers arranged in a square pattern.  [
𝑥
𝑦] and [

𝑢
𝑣
] are 

two numbers arranged one above the other.  Rectangular arrangements and numbers side by 

side are also possible, but the two arrangements shown are all that is needed now.  Placing two 

matrices together, as [
𝑒 𝑓
𝑔 ℎ

] [
𝑥
𝑦], represents multiplication.  Matrix multiplication is not a 

symmetric relation.  Switching the order of the two multiplicands generally does not have the 

same product and, indeed, the multiplication may not be defined both ways.  The beginning 

student does not need a thorough understanding of matrix multiplication; he only needs to know 

that [
𝑒 𝑓
𝑔 ℎ

] [
𝑥
𝑦] = [

𝑢
𝑣
] is defined and it means 𝑒𝑥 + 𝑓𝑦 = 𝑢 and 𝑔𝑥 + ℎ𝑦 = 𝑣, simultaneously. 

 

The student should know that this expression is sometimes abbreviated ; it is simply 

stated in the text that 𝑥 and 𝑦 are the two unknown variables.  𝑥 and 𝑦 are used throughout pure 

math; but, in applications, one must state what variables are being solved for.  This format is 

helpful when solving the equations using Gaussian elimination, which will not be explained here 

because it is mostly of interest to computer programmers.  Instead, we will explain how to solve 

systems of linear equations using Cramer’s rule, which requires this format: .   
 

Linear systems of equations are used in high-school physics for the motion of projectiles, billiard 

balls, and the analysis of electrical circuits.  Because it is so quick and efficient, Cramer’s rule is 

what separates A students from B students; the latter run out of time on exams.  Sadly, Algebra 

II comes after Physics.  The formerly straight-A student can thank Jason Zimba for his B in physics.   
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Cramer’s rule is delayed because students find matrix arithmetic complicated.  In America, 

geometry is a sophomore class that comes between Algebra I and II.  Common Core turns triangle 

congruence into a review of Algebra I; the congruent triangles are just an excuse for attaching 

linear equations to two lengths, two angles or – God forbid! – a length and an angle.75  This is 

wrong on so many levels!  (1) It ignores real geometry; (2) It is bad Algebra I to add lengths and 

angles; and (3) Cramer’s rule is in Algebra II, so it is taught after it is needed. 
 

Glencoe Geometry (p. 256) declares two triangles congruent, one with all its sides and angles 

labeled: 𝑎 = 38.4 mm, 𝑏 = 54 mm, 𝑐 = 32.1 mm and 𝛼 = 45°, 𝛽 = 99°, 𝛾 = 36°.  The other 

triangle has the side corresponding to 𝑎 labeled (𝑥 + 2𝑦) mm and the angle corresponding to 𝛽 

labeled (8𝑦 − 5)°.  Glencoe then solves 8𝑦 − 5 = 99 and 𝑥 + 2𝑦 = 38.4 simultaneously to get 

𝑥 = 12.4 and 𝑦 = 13.  The former equation implies that 𝑦 is an angle and the latter equation 

implies that 𝑥 is something that, when added to an angle, is a length.  What?  𝑥 is the mysterious 

lengle!  This is stupid – Look at the units! – but at least we can solve the equations efficiently. 
 

[
1 2
0 8

] [
𝑥
𝑦] = [

38.4
104

]  This is the system of linear equations in matrix form.  Now put it into the 

Cramer’s rule format:  .  Learn how to assemble this matrix!  It is important. 
 

The determinant of a 2 × 2 square matrix is the product of the downward diagonal minus the 

product of the upward diagonal.  It is denoted with vertical lines:  |
1 2
0 8

| = 1 × 8 − 2 × 0 = 8.  

Trace this motion  over the matrix with your fingertip to remind yourself of how to calculate 

the determinant.  The determinant of the middle matrix is the denominator of the solutions, like 

this:  𝑥 =
8

 and 𝑦 =
8

.  The numerators will also be determinants.  Easy! 

 

Put your finger over the left-hand column of the middle matrix.  The determinant of the matrix 

on either side of your finger is the 𝑥 numerator.  |
38.4 2
104 8

| = 38.4 × 8 − 2 × 104 = 99.2 

 

Put your finger over the right-hand column of the middle matrix.  The determinant of the matrix 

on either side of your finger is the 𝑦 numerator.  |
1 38.4
0 104

| = 1 × 104 − 38.4 × 0 = 104 

 

The answer is 𝑥 =
99.2

8
= 12.4 and 𝑦 =

104

8
= 13 with their units having mysteriously vanished.  

Now put your finger back in your nose and show your loyalty to Jason Zimba by mindlessly 

reciting, “adding a length to an angle makes sense.”  (He gets off on having this power over you.)76 

 
75 I do not know how many times I have to say this:  You cannot add lengths to angles.  No!!!!!! 
76 Jason Zimba: “not only not for STEM, they are also not for selective colleges.”  youtu.be/eJZY4mh2rt8  

https://youtu.be/eJZY4mh2rt8
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What would beginner algebra be like if Cramer’s rule were introduced early?  Initially, it would 

simply replace the point-point formula for a line.  This is an easy problem regardless of which 

method is used, so it may seem that little has been accomplished.  But the point-point formula 

does not lead anywhere and just turns into one of the many things on the students’ memorization 

list.  Cramer’s rule allows the students to smoothly transition into more advanced material. 
 

There is no point-point-point formula for finding a quadratic equation that goes through three 

given points, which is why this question is never asked of American high-school students.  This is 

accomplished by solving a system of three linear equations in three unknowns.  Cramer’s rule is 

not the best way to solve third-order linear systems – the best way is to use a computer – but, if 

an early introduction to Cramer’s rule has gotten the beginning algebra student in the habit of 

always writing linear systems as matrices, then it is easy for him to input them into a computer 

that can solve higher-order systems.  Every scientific calculator can do this for three linear 

equations in three unknowns, which is the highest order ever expected of high-school students.   
 

To find the slope, 𝑚, and 𝑦-intercept, 𝑏, of a line given two points, solve [
𝑥1 1
𝑥2 1

] [
𝑚
𝑏
] = [

𝑦1

𝑦2
].  If 

the points are (6, 5) and (2, 2), then you take your finger out of your nose – We are not following 

Jason Zimba anymore! – and perform the Cramer’s rule technique on  to get  𝑚 =
3

4
 

and 𝑏 =
2

4
, so the function is 𝑦 =

3

4
𝑥 +

1

2
.  The fact that many of the multiplications are by unity 

makes this super easy; e.g., the denominator is just 6 − 2 = 4.  Note that 𝑥2 < 𝑥1 makes the 

denominator positive.  It works either way, but negative denominators can confuse beginners. 

 

To find the exponential function that describes a rabbit population, 𝑟 = 𝑟0𝑒
𝑘𝑡, we first log both 

sides to get a linear equation, ln(𝑟) = 𝑘𝑡 + ln(𝑟0).  By solving [
5 1
2 1

] [
𝑘

ln(𝑟0)
] = [

ln(43393)

ln(482)
] we 

learn that, if I count 482 rabbits two years after my arrival in Australia and 43,393 rabbits at the 

end of my fifth year, then 𝑘 = 1.5.  The number of initial rabbits is 𝑟0 = 𝑒3.17787 = 24.  It is a 

mistake to extrapolate too far into the future, but 𝑟(6) = 24𝑒1.5×6 = 194,474 rabbits.  Trouble! 
 

The height of projectiles is described by the much milder quadratic function.  Suppose that a rock 

one, two and three seconds after I throw it downwards is at heights of 79.19 𝑚, 66.76 𝑚 and 

52.71 𝑚 .  Solve [
1 1 1
4 2 1
9 3 1

] [
−

𝑔
2⁄

𝑣0

ℎ0

] = [
79.19
66.76
52.71

] to get ℎ = −0.81𝑡2 − 10𝑡 + 90.  Thus, the initial height is 

90 meters, the initial velocity is −10 
𝑚

𝑠
 and the acceleration is 𝑔 = 1.62 

𝑚

𝑠2.  By assuming initial 

height, initial velocity, or the planet, this is a second-order system.  For instance, if you know that 

𝑔 = 1.62 
𝑚

𝑠2
 (it’s the moon), then solve [

1 1
2 1

] [
𝑣0

ℎ0
] = [

79.19 + 1 × 0.81
66.76 + 4 × 0.81

] to get [
𝑣0

ℎ0
] = [

−10
90

]. 



Geometry without Multiplication  Victor Aguilar 

156 
 

We have already ridiculed Glencoe Geometry for adding a length to an angle, but let us not 

overlook the fact that they set up a triangular system (one coefficient is zero) because this is all 

that is expected of Common Core students in 10th grade.  Triangular systems can be solved by 

isolating the variable on one side of the equals sign, so 8𝑦 − 5 = 99 becomes 𝑦 =
99+5

8
= 13, 

and then substituting the solution of that equation into the other, so 𝑥 + 2𝑦 = 38.4 becomes 

𝑥 = 38.4 − 2 × 13 = 12.4.  Outside of America, this method of substitution is 7th grade algebra.   

 

Common Core students can solve linear systems like [
6 1
2 1

] [
𝑚
𝑏
] = [

5
2
] by replacing the bottom 

row with the difference: [
6 1
4 0

] [
𝑚
𝑏
] = [

5
3
].  But they are shattered by [

3 5
5 7

] [
𝑢
𝑣
] = [

5
11

] because 

its coefficients are not evenly divisible and there is no obvious means of zeroing one of them.  

This is a principal reason why Common Core students drop out of college: their professors are no 

longer playing nicey-nice with systems of equations that readily fall to the substitution method.  

No Common Core teacher can or will, so I must step up to the plate and teach the general method! 

 

It is in partial fraction decomposition that Cramer’s rule really shines.  Let us do an example! 

 

𝑒𝑥+𝑓

(𝑎𝑥+𝑏)(𝑐𝑥+𝑑)
=

𝑢

𝑎𝑥+𝑏
+

𝑣

𝑐𝑥+𝑑
   with 𝑢 and 𝑣 the solution of [

𝑐 𝑎
𝑑 𝑏

] [
𝑢
𝑣
] = [

𝑒
𝑓] 

 

The columns in the coefficient matrix and the coefficients of the denominators in the addends 

switch their order because we get a common denominator:  𝑒𝑥 + 𝑓 = 𝑢(𝑐𝑥 + 𝑑) + 𝑣(𝑎𝑥 + 𝑏) 

 

5𝑥 + 11

15𝑥2 + 46𝑥 + 35
  =   

𝑢

5𝑥 + 7
  +   

𝑣

3𝑥 + 5
  =   

5

5𝑥 + 7
  −   

2

3𝑥 + 5
 

 

This is not a calculus lesson but suffice it to say that  
5

5𝑥+7
 −  

2

3𝑥+5
  is easy to integrate.  The point 

that I want to make here is that no calculus professor is going to wait while you stumble through 

something that vaguely resembles Gaussian elimination.  You need to just take your finger out of 

your nose, do your Cramer’s rule trick and, in less than a minute, find that 𝑢 = 5 and 𝑣 = −2. 

 

There is more to linear algebra than just solving systems of equations!  The determinant that we 

defined for use in Cramer’s rule can also be defined for 3 × 3 matrices.  The same  motion 

helps you remember the method, but we will here assume that you have a scientific calculator.  

Suppose that you are asked for the area of a triangle with vertices (−6, 8), (2, 1) and (−1,−3). 

𝐴 =
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| with the vertices counterclockwise.  Thus, 𝐴 =
1

2
|
−1 −3    1
   2    1    1
−6    8    1

| = 26.5 

Clockwise vertices give a negative number; if you unsure of their orientation, use absolute value.  
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It is time to put what we have learned about trigonometry and linear algebra to the test!  The Art 

of Problem Solving has an exam77, “If you can solve nearly all of the following problems with little 

difficulty, then the text Introduction to Geometry would only serve as a review for you.” 

 

1. In Elementary Quadrature Theory, I prove the Pythagorean theorem without citing the 

triangle similarity theorem, as did Euclid, who put the Pythagorean theorem in Book I and 

triangle similarity in Book VI.  It is traditional to teach geometry step by step like this.   

 

2. Algebra I teachers employed as Geometry teachers often know nothing of the subject beyond 

the intersecting chords and intersecting secants theorems (Elementary Quadrature Theory).  

They use them to set up quadratic equations; solving them is all that they know.  By the latter, 

3(𝑥 + 8) = 𝑥(𝑥 + 5); collect like terms, 𝑥2 + 2𝑥 − 24 = 0; factor, (𝑥 + 6)(𝑥 − 4) = 0; so 

𝑥 = 4.  By the former, 𝑦√𝑥 = 5𝑥; so 𝑦 = 5√𝑥.  Substitute; 𝑦 = 10.  Algebra, not geometry! 

 

3. Common Core teachers just love the formula 
𝜃

360°
=

𝑠

2𝜋𝑟
=

𝐴

𝜋𝑟2 where  𝜃 is angle, 𝑠 is arc length 

and 𝐴 is the area of a sector (like a slice of pie) in a circle of radius 𝑟.  The triangle is half 

equilateral, so the angle subtended at the center by the chord is 𝜃 = 120°.  Thus, the arc 

length is 𝑠 =
2×90×𝜋

3
.  The other leg is 45√3, so the chord is twice that.  The difference is 

60𝜋 − 90√3 meters.  Arc length is trigonometry and is thus never defined in Geometry–Do.  

Had this not been a half equilateral triangle, 𝜃 = 2 acos (
𝑥

𝑟
) with 𝑥 the given leg; more 

trigonometry!  By Pythagoras, the chord is 2√𝑟2 − 𝑥2.  Trigonometry, not geometry! 

 

4. The edge and the diagonal are 1 + √2 ≈ 2.414.  If the ant walks to the midpoint of the side 

and then to the other vertex, it is 2√12 + 0.52 = √5 ≈ 2.236.  To be certain that this is the 

minimum, let 𝑥 be where the edge is cut; 𝑓(𝑥) = √𝑥2 + 1 + √(1 − 𝑥)2 + 1; differentiate, 

𝑓′(𝑥) =
𝑥

√𝑥2+1
+

𝑥−1

√(1−𝑥)2+1
; Newton’s method, 𝑓′(𝑥) = 0 if 𝑥 = 0.5.  Calculus, not geometry! 

 

5. If Spot’s collar had a loop on a rigid pole so he could slide in and out but could not wrap 

around his doghouse, he would cover two-thirds of a circle with area 4𝜋.  Add to this the two 

sectors that he can reach if given a flexible leash; they are sixths of unit circles, area 2
𝜋

6
.  Thus, 

Spot rampages over an area of 
8

3
𝜋 +

1

3
𝜋 = 3𝜋 square yards.  Trigonometry, not geometry! 

 

6. This is the same problem that we considered in How Military Surveying Differs from Civilian 

Surveying; but, instead of measured angles that we must calculate the tangents of, we are 

 
77 data.artofproblemsolving.com//products/diagnostics/introduction-geometry-posttest.pdf  

https://data.artofproblemsolving.com/products/diagnostics/introduction-geometry-posttest.pdf


Geometry without Multiplication  Victor Aguilar 

158 
 

given the leg lengths, so we can calculate the tangents directly.  Also, nobody is shooting at 

us with air-to-surface anti-tank missiles, which makes doing the math ever so much easier!  

The Art of Problem Solving wants us to dodge trigonometry and use linear algebra instead.  

By the triangle similarity theorem, 
𝑦

𝑥+4
=

8

4
  and  

𝑦

𝑥+9
=

8

6
, with 𝑥 = 𝐹𝐷 and 𝑦 = 𝐹𝐺.  Thus, 

𝑦 = 2𝑥 + 8 and 𝑦 =
4

3
𝑥 + 12.  So, [

−2 1

−
4

3
1] [

𝑥
𝑦] = [

8
12

].  Take your finger out of your nose 

and do your Cramer’s rule trick!  𝑦 = 20.  Algebra, not geometry! 

 

7. Let 𝑥 = 𝐸𝐹, 𝑦 = 𝐵𝐹 and 𝑧 = 𝐷𝐹.  By the triangle similarity theorem, 
𝑥

𝑦
=

16

𝑦+𝑧
 and 

𝑥

𝑧
=

12

𝑦+𝑧
.  

Eliminate 𝑥 from these equations, 
16𝑦

𝑦+𝑧
=

12𝑧

𝑦+𝑧
.  Thus, 16𝑦 = 12𝑧, so 𝑦 =

3

4
𝑧.  Substitute 𝑦 into 

𝑥 =
12𝑧

𝑦+𝑧
 to get 𝑥 =

12𝑧
7

4
𝑧

=
48

7
.  Substituting 𝑦 into 𝑥 =

16𝑦

𝑦+𝑧
 also works.  Algebra, not geometry! 

 

8. Let 𝑥, 𝑦, 𝑧 be radii of the spheres tangent to the vertices opposite the sides of lengths 10, 8, 6.  

Standing vertically on the endpoints of the 6-side are sphere centers 𝑥 and 𝑦 above the plane 

of the triangle.  Thus, in this quadrilateral is a right triangle with legs 6 and 𝑦 − 𝑥; the 

hypotenuse is 𝑥 + 𝑦.  By the Pythagorean theorem, 62 + (𝑦 − 𝑥)2 = (𝑥 + 𝑦)2.  Expand and 

simplify; 4𝑥𝑦 = 36, so 𝑥𝑦 = 9.  Analogously, 𝑥𝑧 = 16 and 𝑦𝑧 = 25.  Log all three equations! 

 
 

[
1 1 0
1 0 1
0 1 1

] [
ln 𝑥
ln 𝑦
ln 𝑧

] = [
ln 9
ln 16
ln 25

] 

 

3 × 3 linear systems are best solved on a scientific 
calculator.  Once you solve for ln 𝑥 , ln 𝑦 and ln 𝑧, then 𝑒 

these numbers to get 𝑥 =
12

5
, 𝑦 =

15

4
  and  𝑧 =

20

3
.  

 

Logarithms and 3 × 3 systems are Algebra II.  This works for the general case of spheres on 

the vertices of a polygon; for a triangle, Algebra I students can solve 
𝑥𝑦

𝑥𝑧
=

9

16
 for 𝑦 =

9

16
𝑧 and 

substitute into 𝑦𝑧 = 25 to get 𝑧 =
20

3
.  Analogously for 𝑥 and 𝑦.  Algebra, not geometry! 

 

9. Let 𝑥 be the height of the little cut-off cone.  By the triangle similarity theorem, 
𝑥

𝑟
=

𝑥+ℎ

𝑅
.  By 

cross multiplication, 𝑥 =
ℎ𝑟

𝑅−𝑟
; thus, 𝑥 + ℎ =

𝑥𝑅

𝑟
=

ℎ𝑅

𝑅−𝑟
.  By the Single Page of Formulas at the 

beginning of Geometry–Do, the big cone minus the little cut-off cone is 𝑉 =
𝜋(𝑥+ℎ)𝑅2

3
−

𝜋𝑥𝑟2

3
.  

Substitute in for 𝑥 and 𝑥 + ℎ.  𝑉 =
𝜋ℎ

3
(
𝑅3−𝑟3

𝑅−𝑟
).  Factor 𝑅3 − 𝑟3.  Thus, 𝑉 =

𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2).  

Memorizing the Single Page of Formulas is expected of Algebra I students – Common Core is 

all about memorization! – but factoring 𝑅3 − 𝑟3 is Algebra II.  Algebra, not geometry! 

 

Getting “nearly all with little difficulty” requires Trigonometry and Algebra II.  But, except for 

the triangle similarity, intersecting chords and intersecting secants theorems, no geometry!!! 
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How to Take Standardized Exams that Define Geometry in Terms of Motion 

 

There are strange things done, 

Under the big spherical sun, 

By the men who moil for proof, 

The students have seen strange sights, 

But the strangest they ever did see, 

Was in geometry class that day, 

When their Common Core teacher did lay, 

A segment against an angle,  

And then he announced the “sum.” 

 

My apologies to Robert Service.  Sometimes Common Core is straight-out wrong; e.g., turning 

everything into real numbers, including the lengths of segments and the measures of angles, and 

then doing a bunch of algebra that includes adding them together.  But mostly it is just strange. 

 

Why, for instance, are transformations the so-called “spine” of Common Core geometry?  This 

claim would make more sense if transformations were defined in a way that is meaningful to 

mathematicians; that is, counterclockwise rotation of a vector [𝑥0, 𝑦0] by an angle 𝜃 is pre-

multiplication by [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

].  What actually happens is that students just use their intuition 

to figure out which one- or two-step sequence of the isometric transformations can turn a figure 

into a congruent one somewhere else.  Or the examiners give the students cook-book 

instructions for one transformation after another and then ask where a particular point ends up. 

 

Defining geometry as “properties of geometric figures that are not changed by motion” makes 

sense only to those who know linear algebra; without vectors, motion is nowhere defined.  Vague 

references to advanced math that neither the students nor their teacher have had is what killed 

New Math in the 1970s and is what will kill Common Core.  Parents can see that it is not for the 

kids, but just to satisfy the teacher’s vanity that he has even heard of such advanced subjects.   

 

What would isometric transformations look like if they were done right?  They are done in three 

dimensions!  Nobody can define reflective motion of a rigid figure without leaving the plane.  

There are actually only two isometric transformations: translation, which is adding a vector; and 

rotation, which is pre-multiplication by a 3 × 3 matrix.78  Common Core’s “rotation” is rotation 

around a line whose 𝑥 and 𝑦 coordinates are zero; their “reflection” is a 180° rotation around a 

line whose 𝑧 coordinate is zero.  Done right, algebraists can rotate to any angle around any line. 

 
78 Dilation is scalar multiplication.  It is conformal – angle preserving – but is not isometric because lengths change. 
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I am not opposed to defining geometry in terms of motion – there are many definitions and that 

is one of them – but I am opposed to doing so before the students have considered motion in 

physics, which uses linear algebra.  Also, without being cynical, we must consider the obvious 

motivation for Bill Gates to spend hundreds of millions of dollars a year promoting Common Core.  

This definition means that geometry exists only on school computers running educational 

software sold by Microsoft™.  But observing moving triangles is not a proof; it is a demonstration. 

 

Isometric transformations preserve both lengths and angles.  This can be demonstrated with a 

triangular wooden block on a tabletop, and without giving Bill Gates any money.  Translation 

means sliding the block across the table.  Reflection means drawing a line on the tabletop and 

then lifting the block in a somersault over the line.  Rotation means sticking an ice pick through 

a hole in the block and spinning it, or screwing the block to a meter stick that has a hole near the 

other end and then rotating the block in an arc around an ice pick through that hole.   

 

If an exam gives two congruent figures and asks what sequence of transformations move one to 

the other’s location, realize that there is more than one possible sequence, so these problems 

must be solved by the process of elimination.  The first transformation to include or eliminate is 

reflection because it is the only one that requires lifting the figure off the plane.   

 

Problem 2.14 found the center of rotation, and the line of reflection is the mediator of the 

segment between any two corresponding vertices.  But Common Core never asks this, nor do 

they ever rotate to any angle other than right or straight.  They never reflect over any line but a 

parallel to an axis.  So, if an exam gives instructions for one transformation after another and 

then asks where a particular point winds up, memorize these matrices:  90° is [
0 −1
1 0

], −90° is 

[
0 1

−1 0
], 180° is [

−1 0
0 −1

], 𝑥-axis reflection is [
1 0
0 −1

] and 𝑦-axis reflection is [
−1 0
0 1

].  An 𝑥-

reflection and a 𝑦-reflection is a 180° rotation (verify) and this is commutative (verify), but matrix 

multiplication is generally not.79  To rotate around an arbitrary point, subtract it, rotate, and then 

add it; e.g., rotating [
6

−8
] 90° around [

2
−3

] is done like this:  [
2

−3
] + [

0 −1
1 0

] [
6 − 2

−8 + 3
] = [

7
1
]. 

 

In the Common Core way of bringing classic literature into math class, it is now time to teach the 

top students about the Sword of Damocles suspended over the principal’s office.  Funding comes, 

and hence his job depends on, dumb #%$^@ that should be expelled filling in the right bubbles.  

Assign each top student several dullards and tell them that each team will receive their average 

score on the exam.  Ask the leaders if they have read the classic literature Ender’s Game by Card.   

 
79 Reflection over the lines 𝑦 = 𝑥 and 𝑦 = −𝑥 is [

0 1
1 0

] and [
0 −1

−1 0
], respectively, though this is not expected of 

Common Core students.  Try some combinations!  They are not commutative; order the sequence right to left. 
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Regents Examinations in Geometry (Common Core), August 201680 with hints 

 

  1 2, because 112° + 68° = 180° 19 2, by the SP formulas 

  2 2, dilation is not isometric 20 4, by the SP formulas 

  3 1, cone by visualization 21 4, by algebra and definition of dilation 

  4 2, by the angle sum theorem 22 3, but you need addition as well as SAS 

  5 1, Draw a line through 𝑃 and the origin; by 
C. 1.3 raise a perpendicular from the origin 

23 1, by Thales’ diameter theorem 

  6 1, by elementary trigonometry 24 1, ∠𝐶𝐵𝐸 = 68° by the parallelogram 
angles theorem; by the isosceles triangle 
and angle sum theorems, ∠𝐸 = 44°. 

  7 3, because 𝐶𝐷⃡⃗⃗⃗  ⃗ could be any transversal 25 𝐶𝐴 = 𝐶𝐵 and 𝐶𝐷 = 𝐶𝐸 by the two tangents 
theorem; then 𝐶𝐷 =

3

3+5
56 = 21 

  8 3, by elementary trigonometry 26 See the sketch below. 

  9 4, rotate and dilate by visualization 27 Hexagons have six sides, so 60° =
360°

6
 

10 2, by the right triangle similarity theorem 28 By C. 1.2, bisect 𝐴𝐵, then connect it to 𝐶 

11 4, 𝐶 and 𝐷 can be anywhere on 𝐶𝐷⃡⃗⃗⃗  ⃗ 29 ∠𝑀 = ∠𝐽, ∠𝑃 = ∠𝐿, ∠𝑁 = ∠𝐾 isometricity. 
∠𝑀 = 76° by the angle sum theorem. 

12 3, by the short-to-long similarity theorem 30 Yes, (𝑥 − 1)2 + (𝑦 + 2)2 = 42 is satisfied 

13 3, the cross section of a solid is a plane; 
note that they said “contains,” not “cuts.”  

31 sin 75° =
15

𝑥
 implies 𝑥 =

15

sin 75°
≈ 15.5 by the 

triangle proportions theorem 

14 1, rhombus diagonals are perpendicular 32 Lay off 𝐴′𝐵 = 2𝐴𝐵 and 𝐶′𝐵 = 2𝐶𝐵 and 

connect 𝐴′𝐶′; by the nested triangle 

similarity theorem, 𝐴′𝐶′ = 2𝐴𝐶.  Note.81 

15 3, by the triangle area theorem, only 𝑥 

matters; then solve 8
|𝑥−3|

2
= 24 

33 Given 𝐴′𝐶′, construct 𝐴′𝐵′𝐶′ ≅ 𝐴𝐵𝐶 by SSS, 

observe 𝐵′ at [7, 1].  𝐷𝐸𝐹 ≅ 𝐴′𝐵′𝐶′ because 
reflection over 𝑥 = −1 is isometric. 

16 1, complete the square to get 
(𝑥 − 2)2 + (𝑦 + 4)2 = 32  

34 9.09° = atan
12

75
, then 𝜃 + 9.09° = atan

72

75
, 

and so 𝜃 ≈ 34.7° 

17 2, by the formulas in Single Page of 
Formulas, at the beginning of the book 
before the table of contents.  These will be 
called the SP formulas.  

35 ∠𝐵𝐸𝐶 = ∠𝐷𝐸𝐴 by vertical angles th. 
∠𝐵𝐶𝐷 = ∠𝐵𝐴𝐷 by inscribed angle th.  
Thus, by the AA similarity postulate82 
and the triangle similarity theorem. 

18 4, by a lot of algebra, or draw it on graph 
paper and use C. 3.11 and then C. 1.2.  See 
the sketch below.  There is an easier way 
that is discussed in more detail here.83 

36 𝐵 = 𝜋𝑟2, 𝑉𝐶 =
𝐵ℎ

3
, 𝑉𝐻 =

1

2
 
4

3
𝜋𝑟3 by the SP 

formulas, thus 𝑉 ≈ 333.65𝑐𝑚3.  Mass is 
volume times density, 𝑉𝜌 ≈ 0.23255𝑘𝑔. 
Cost:  50 × $3.83/𝑘𝑔 × 0.23255𝑘𝑔 ≈ $44.53 

 

 
80 www.nysedregents.org/geometrycc/816/geomcc82016-examr.pdf  
81 𝐵 ≡ 𝐵′ is called the homothetic center, a term that Common Core proponents do not know and just talk around. 
82 Geometry is super easy when you assume your conclusions!  We prove AA similarity.  It is no postulate! 
83 blog.prepscholar.com/plugging-in-answers-a-critical-sat-math-act-math-strategy  

http://www.nysedregents.org/geometrycc/816/geomcc82016-examr.pdf
http://blog.prepscholar.com/plugging-in-answers-a-critical-sat-math-act-math-strategy
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Problem #18 

 
 

Problem #26 
 

 
 

Problem #32 

 

 
 

Problem #33 
 

Bottom Line:  Common Core is all about memorization.84  Regents provides a formula sheet; cut 

it out and tape it to your desk.  Otherwise go into the exam with your head full of formulas and 

write them down before you begin, and your mind becomes muddled.  What is most important? 

 

1. I surveyed all the online Regents exams and marked the theorems it uses in the index: CC. 
 

2. The formulas from Single Page of Formulas before the table of contents.   
 

3. The algebra formulas mentioned in Squares and Rectangles and Rhombi!  Oh My!   
 

4. The matrices for  90°, −90° and 180° rotations; also, for 𝑥-axis and 𝑦-axis reflections. 

 
84 Did everybody notice that Common Core does not follow the convention of labeling triangle vertices counter-

clockwise?  This is because their exams are composed by education majors who have never taken any college math. 
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Simsa!  Green Belt Entrance Exam 
 

A hundred men will test today; but only three, win the green beret! 

 

1. Construct a right triangle given the lengths of the legs.  What is the length of the median 

to the hypotenuse? 

First Leg:  ______________________    

Second Leg: __________________________ 
 

a. ___________ 

b. _____________ 

c. _______________ 

d. _________________ 

e. ___________________ 
 

2. Construct a triangle given the lengths of the base, the median to the base and one leg.  

What is the length of the other leg? 

Base:  __________________ 

Median: _________________ 

Leg:  __________ 
 

a. _______________________ 

b. _________________________ 

c. ___________________________ 

d. _____________________________ 

e. _______________________________ 
 

3. Johnny Geometer has read in a textbook that, “a mid-segment connects the midpoints of 

two sides of a triangle.  It is parallel to the other side and half of it.”   But Johnny feels that 

this theorem should be a bi-conditional! 

 

A segment connecting points on two sides of a triangle is a mid-segment if and only if it is 

parallel to the other side and half of it. 

 

a. No, because proving the converse implication requires citing the forward implication. 

b. Yes, because the conditions on either side of “if and only if” are both always true. 

c. Yes, because, if either condition is true, then the other can be proven to be true. 

d. Yes, because, if a conditional and its converse are both true, they are a bi-conditional. 

e. None of the above.  
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4. A teacher let her students take the white-belt exit exam home!  Johnny Geometer copied 

the proof of the mediator theorem converse from his old Houghton-Mifflin-Harcourt 

textbook (p. 197), but the teacher marked his answer wrong!  Was the teacher justified? 
 

Given 𝐸𝐹𝐺 with 𝐸𝐺 = 𝐹𝐺, assume that 𝐺 is not on the mediator of 𝐸𝐹. 

𝐸𝐺′
2
+ 𝐺𝐺′

2
= 𝐸𝐺

2
    Pythagorean Theorem 

𝐹𝐺′
2
+ 𝐺𝐺′

2
= 𝐹𝐺

2
    Pythagorean Theorem 

𝐸𝐺′
2
− 𝐹𝐺′

2
= 𝐸𝐺

2
− 𝐹𝐺

2
   Subtraction 

𝐸𝐺′
2
− 𝐹𝐺′

2
= 0    𝐸𝐺 = 𝐹𝐺 implies 𝐸𝐺

2
− 𝐹𝐺

2
= 0 

𝐸𝐺′
2
− 𝐹𝐺′

2
= 0 implies 𝐸𝐺′ = 𝐹𝐺′.  Thus, by the contradiction method.              

 

a. No justification!  Houghton-Mifflin-Harcourt should demand that the teacher be fired! 

b. 
1

2
 credit!  He’s right, but 𝐸𝑀𝐸𝐹𝐺 ≅ 𝐹𝑀𝐸𝐹𝐺 by SSS, so ∠𝐸𝑀𝐸𝐹𝐺 = ∠𝐹𝑀𝐸𝐹𝐺 is easier! 

c. Yes!  She can do what she wants!  There is no agreement on what “proof” means. 

d. Yes!  The Pythagorean theorem cites the parallel postulate, which is not white belt. 

e. Yes!  𝐸𝐺′
2
− 𝐹𝐺′

2
= 0 does not imply 𝐸𝐺′ = 𝐹𝐺′ because lengths can be negative. 

 

5. Given a leg and the hypotenuse of a right triangle, what is its indiameter? 

Leg:  ________  Hypotenuse:  _________________ 
 

a. _____ 

b. ______ 

c. _______ 

d. ________ 

e. _________ 
 

6. A village is a given distance from a long straight highway leading to a town.  To minimize 

the commute, you intend to build a straight gravel road to the highway and angle it 

towards town.  If the speed limits on the gravel and paved roads are 30 mph and 50 mph, 

respectively, how far off the perpendicular should your gravel road intersect the highway? 

Perpendicular Distance to Highway:  ________ 
 

a. ______ 

b. _______ 

c. ________ 

d. _________ 

e. __________ 
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7. A right triangle has the following side lengths.  What is the sum of the inradii of the three 

triangles formed by dropping an altitude from the right apex onto the hypotenuse? 

Leg:   _____________ 

Leg:   ____________________ 

Hypotenuse:  _____________________ 

 

a. __________ 

b. ___________ 

c. ____________ 

d. _____________ 

e. ______________ 

 

8. Construct a right triangle given the sum and the difference of its legs.  What is the length 

of the median to the hypotenuse? 

Sum:  __________________________________ 

Difference: ______________ 

 

a. ___________ 

b. ____________ 

c. _____________ 

d. ______________ 

e. _______________ 

 

9. Given the radius of a circle and the distance from its center to the center of another circle, 

what is the radius of that circle if their common chord bisects the given circle? 

Radius of Given Circle:  ________ 

Distance Between Centers:  _______________ 

 

a. ________________ 

b. _________________ 

c. __________________ 

d. ___________________ 

e. ____________________ 
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10. Two roads intersect at half a right angle.  Given the turning radius, how far from the 

intersection is the turnout for a shortcut arc so drivers can speed around the corner? 

Turning Radius: __________ 

 

a. __________________ 

b. ____________________ 

c. ______________________ 

d. ________________________ 

e. __________________________ 

 

11. How far is it between the touching points of the incircle and of the excircle on side 𝐸𝐹? 

𝐸𝐺 is __________________  𝐹𝐺 is _________________________ 

𝐸𝐹 is ____________________________________________ 

 

a. ____ 

b. _____ 

c. ______ 

d. _______ 

e. ________ 

 

12. Proof of angle-side-angle congruence is a trichotomy.  What are the three alternatives? 

 

a. A segment less than, equal to, or greater than another. 

b. An area smaller than, equal to, or larger than another. 

c. A triangle that is isosceles, scalene or equilateral. 

d. An angle that is acute, right or obtuse. 

e. None of the above. 

 

13. Construct a triangle given its perimeter and two of its angles; one is half a right angle and 

the other is a third of a straight angle.  What is the length of the included side? 

Perimeter: _____________________________ 

 

a. _________ 

b. __________ 

c. ___________ 

d. ____________ 

e. _____________ 

 



Victor Aguilar  Geometry without Multiplication 

167 
 

14. There is a point inside an equilateral triangle whose distances from the three sides are 

known.  What is the height of this triangle? 

Known Distances: ___ and _______ and      ____________________ 

 

a. __________________________ 

b. ____________________________ 

c. ______________________________ 

d. ________________________________ 

e. __________________________________ 

 

15. I am given a circle with center (0, 0) and radius 25 cm, and a circle with center (21, 0) 

and radius 12 cm.  I draw a line through one of their intersections whose passage through 

the two circles is 39 cm.  What is the difference in the chords to the nearest centimeter? 

 

a. 20 cm b.   21 cm c.   22 cm d.   23 cm e.   24 cm 

 

16. I am given a circle with center (0, 0) and radius 15 cm, and another circle with center 

(6, −4) and radius 13 cm.  I draw a horizontal line that makes equal chords in the two 

circles and another horizontal line whose chords sum to 44 cm.  What is the distance 

between these two lines to the nearest centimeter? 

 

a. 14 cm b.   15 cm c.   16 cm d.   17 cm e.   18 cm 

 

17. I am given a circle with center (0, 13) and radius 11 cm, and another circle with center 

(−2, 10) and radius 7 cm.  I draw two horizontal lines that are both cut by these circles 

11 cm apart.  What is the sum of the heights of my lines to the nearest centimeter? 

 

a. 16 cm b.    17 cm c.   18 cm d.   19 cm e.   20 cm 

 

18. Construct a triangle whose apex angle is a third of a straight angle and whose perimeter 

and base are given.  What is the length of the longest leg? 

Perimeter: ____________________________________        Base:         _____________ 

 

a. ___________ 

b. ____________ 

c. _____________ 

d. ______________ 

e. _______________ 
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19. Construct a triangle given two sides and the median to the third side.  What is the length 

of the third side? 

First Side:     ___________        

Second Side: ________________        

Median:     _________ 

 

a. _____________________ 

b. ______________________ 

c. _______________________ 

d. ________________________ 

e. _________________________ 

 

20. Construct a triangle whose apex angle is a third of a straight angle and whose base and 

apex altitude are given.  What is the sum of the legs? 

Base:  ______________________ 

Altitude: ________________ 

 

a. _________________________________ 

b. ___________________________________ 

c. _____________________________________ 

d. _______________________________________ 

e. _________________________________________ 

 

Go to my online geometry test85 to see how you stack up against other Geometry–Do students!  

 

Volume One is a two-year course of study.  White and yellow (1st semester) and orange (2nd 

semester) are beginner geometry.  Thus, this exam is meant to come after one year of study.     

 

I invite geometers from around the world to take the green-belt entrance exam and compare this 

to what is expected of students in your country after one year of study.  Are green belts of 

Geometry–Do justified in calling themselves intermediate?  Or do you feel that the exam is too 

difficult for students after only one year?  Unlike David Conley, who boasted that Common Core 

is “internationally benchmarked,” but was humiliated when it was discovered that he has never 

taken a college-level math class and that he cannot name a single country that teaches anything 

remotely resembling Common Core, I really do want Geometry–Do compared to other countries. 

 

 
85 Online green-belt entrance exam.  This is for practice; to obtain rank in Geometry–Do, you must take a live text. 

www.axiomaticeconomics.com/geometry_exam_registration.php  

http://www.axiomaticeconomics.com/geometry_exam_registration.php
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Green Belt Instruction:  Triangle Construction 
 

Congratulations!  Originally, there were only three colored belts: white, green, and black, 

representing beginner, intermediate and advanced.  Yellow and orange were added to encourage 

beginners, though these colors are really just different shades of white.  But green is not just 

another shade of white; it represents the intermediate level.  You have come far, Grasshopper! 

 

Becoming a green belt is like advancing from apprentice to journeyman in the trades.  An 

apprentice speaks only to his supervisor, never directly to the customer.  In martial arts, orange 

belts spar with or argue with each other, but not yet with outsiders.  But for green belts, shihap! 

(Bouts or matches!)  Now that you wear the coveted green belt, Grasshopper, you must beware 

of cheap shots employed by fighters or geometers from other less reputable do-jangs (schools).  

In geometry and in all of science, the most common cheap shot is assuming one’s conclusions.  

We have now proven over a hundred theorems based on our six postulates.  (The circle postulate 

is needed whenever we say, “construct an isosceles triangle.”)  Do the proofs of these theorems 

prove our six postulates?  No.  Axioms are the foundation of a science, not its results. 

 

To assume one’s conclusions is to purposefully conflate axioms and theorems and then, when 

the reader has lost track of which are which, the author boasts of having proven everything he 

has said.  For instance, Mark Ryan writes geometry books in which every important statement is 

marked by a symbol with the words “theorems and postulates” written in a circle.  Ryan writes, 

 

Both theorems and postulates are statements of geometric truth.  The difference 

between postulates and theorems is that postulates are assumed to be true, but 

theorems must be proven to be true based on postulates and/or already-proven 

theorems.  It’s a fine distinction, and if I were you, I wouldn’t sweat it. 

 

Gerard Debreu boasts of introducing the axiomatic method to economics, but Theory of Value 

nowhere presents a list of axioms.  It begins with a chapter that ostensibly summarizes the 

needed mathematics, but it is actually a long list of assumed conclusions masquerading as 

definitions.  Just the fact that one has learned Debreu-speak means that one already believes. 

 

Glencoe Geometry (p. 423) writes, “By definition, a rectangle has the following properties. 

•  All four angles are right angles. 

•  Opposite sides are parallel and congruent. 

•  Consecutive angles are supplementary. 

•  Diagonals bisect each other.” 

 

The authors have pulled a Gerard Debreu on us!  Real geometers do not rely on fait accompli. 
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Orange belts were given hints, usually in the form of a problem’s position in the textbook.  For 

instance, it is not a coincidence that C. 3.6 follows on the heels of the parallelogram diagonals 

theorem.  With this big hint, its proof could be left as an exercise.  But you are intermediate 

geometers, now.  No more hints!  The International Mathematical Olympiad does not offer hints. 

 

Problem 4.1  Through a point, draw a line that is cut by two parallel lines equal to a segment. 

 

Problem 4.2   

Given three non-collinear points, draw a parallelogram with them as midpoints of three sides. 

 

This is easy once the student sees which theorem about parallelograms is needed.  We have quite 

a few, so review them to find one that is about the midpoints of the sides of a parallelogram.  It 

is the Varignon theorem!  Three cheers for those old-time French geometers, who lived before 

Gerard Debreu’s bloated body fell into the well that he had been drawing water from and 

poisoned it for all later Frenchmen who would have liked to be allowed to use deductive logic. 

 

The procedure of reviewing the theorems to find one that seems relevant is, indeed, the standard 

procedure for solving triangle construction problems.  If C. 3.6 came now, what would you do? 

 

Construction 3.6  Construct a triangle given the legs and the median to the base. 

 

There is an index in the back of the book that lists all the theorems, constructions, and problems, 

without proofs or commentary.  Medians bisect a segment, so scan that list, and make a list of 

everything you know about segments being bisected.  In point of fact, there are only two items 

on this list: the diameter and chord theorem, and the parallelogram diagonals theorems.  The 

latter seems like the better guess, but, even if you guess badly, it will not take long to realize that 

the diameter and chord theorem is a dead end; the construction of circles is just adding 

complication.  Thus, even in adversity, you should always begin with a survey of what you know. 

 

This procedure, of scanning through everything I know on a subject and making a clear and finite 

list of those theorems that might be helpful, was one that I learned early in life.  When I was 

about five years old, I accidentally locked myself in a service station restroom.  It was filthy!  In 

my mind’s eye, I can still see how every surface was covered in black grime.  And I can still 

remember the terrible fear that they might someday get that door open and find nothing left but 

the skeleton of a little boy lying on that filthy floor.  The service station attendant was shouting 

incoherent instructions that made it clear that he had never been in there – certainly not with a 

mop – and my father was describing the doorknob on our own house, which was nothing like the 

commercial-grade mortise lock I was looking at.  Neither man was angry – they were shouting to 
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make themselves heard through concrete walls and a steel door that might have been borrowed 

from Fort Knox – but the sound of grown men shouting was frightening to me.   

 

After several minutes of this, I reluctantly concluded that my father, whom I had previously 

thought to be omniscient, had no idea what he was talking about.  There was no round knob.  

Instead of listening to him, I decided to try a method that I had heard of but had never before 

used – logic!  With tears in my eyes, I squared my shoulders, and faced the door.  There was a big 

lever that could be up, down, or level, and a small lever that could go left or right.  With no 

training in combinatorics or even in multiplication, I saw that there were only six combinations 

of the possible positions of the two levers; one of the six had to open the door.  I tried them all. 

 

It may seem silly to recount this story now, to green-belt geometers.  But there are a lot of people 

who have never learned this method.  In White Belt Geometry for Construction Workers, I draw 

a line on the ceiling and ask the students to draw a line on the floor directly underneath it.  This 

problem has ended many a math career.  But white belts only know six theorems, the same 

number that I had to consider in that public toilet so long ago.  It is the mediator theorem! 

 

The concepts of analytic and synthetic knowledge were introduced by Immanuel Kant.  Analytic 

is knowledge contained in the given information and analysis is just restating it in a different way, 

hopefully clearer.  Auxiliary are lines or arcs not given whose intersection goes beyond analytic.  

For instance, in construction 1.1 we drew equal circles around 𝐽 and 𝐾.  Their intersection gives 

us knowledge of the apex 𝐿 that is not contained in the information and is thus not analytic.  But, 

for this knowledge to be synthetic, it must remain after the auxiliary lines and arcs are erased.  

There are a million lines and arcs that could potentially be added to a geometric diagram, but 

only the ones that leave relevant information after being erased are productive.  If the 

information they provide only exists as long as they are in place, then that information is not 

solving the given problem, but solving a different one with additional given information. 

 

In problems 2.7 to 2.9, we guessed at what the answer is and then constructed a figure so that it 

is clear what is wrong with the guess, and how to redraw the figure so the guess is not wrong.  

This became a technique used throughout the orange-belt chapter.  For instance, in construction 

3.10, we guessed at the answer – we constructed a quadrilateral that was very much like the 

desired solution except that the lengths of the sides and of the bimedian were all a little bit off – 

and then we added some auxiliary lines until we had learned what we needed to start over with 

the construction, this time using the given lengths and, when done, we were able to then erase 

the auxiliary lines, leaving synthetic knowledge.  The solution!  In two steps! 

 

We now formalize this procedure for triangle construction and illustrate it by solving C. 3.6. 
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1. Hypothesis.  Guess at the solution by drawing the desired triangle, though with some or 

all the given lengths and angles only approximate.  Make a hypothesis about what 

auxiliary lines or arcs will be useful.  This is a guess, but it is not a blind guess.  Scan the 

index and make a list of everything you know that might be relevant.  Try them all. 

 

Extend the median past the base and lay off an equal length so this double-length 

segment and the base bisect each other.  Connect that point to the endpoints of the base. 

 

2. Proof.  Using the relevant theorem or construction and any other useful theorems – 

particularly congruence theorems – prove that the figure has all the information needed 

to fully define the solution, if only it were begun again with the given lengths and angles. 

 

By the parallelogram diagonals theorem, the diagonals of a parallelogram bisect each 

other, so the solution triangle has the given sides and median. 

 

3. Construction.  Begin again with the given lengths and angles and construct the solution 

triangle using the auxiliary lines or arcs found to be useful.  Then erase the auxiliary lines 

and arcs, which are no longer needed, leaving synthetic knowledge – the solution! 

 

By SSS, construct a triangle with the given legs and twice the given median.  By SSS, 

construct a congruent triangle adjacent on the side that is twice the median, and with the 

equal sides opposite each other so it is a parallelogram, not a kite.  The other diagonal 

cuts this parallelogram into two triangles, both of which are solutions to the problem. 

 

4. Discussion.  Discuss what conditions the given lengths and angles must meet for a solution 

to be possible.  Also, when a solution is possible, might there be more than one?  Are there 

an infinite number of solutions because the problem is badly posed; that is, under defined? 

 

We said, “the other diagonal cuts this parallelogram into two triangles,” but, since these 

triangles are provably congruent, the solution is unique.  We have existence so long as 

the two given sides and twice the given median meet the triangle inequality theorem. 

 

For brevity, this last step is sometimes omitted.  Many problems have zero or one solution, 

depending on whether the triangle inequality theorem is met.  Problems involving circles, which 

we will encounter after proving the inscribed angle theorem, have zero, one or two solutions, 

depending on whether a line misses, is tangent to or crosses a circle.  Students should not neglect 

this discussion.  Real-world problems have non-geometric conditions (e.g., in machine gun 

emplacement, you will want the solution that is near a rock outcropping), so find them all. 
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Construction 4.1  Construct a triangle given its perimeter and two of its angles. 

 

 Solution 

Draw 𝐸𝐹𝐺 with the interior angles at vertices 𝐸, 𝐹, 𝐺 labeled 𝛼, 𝛽, 𝛾, respectively.  Angles 

𝛼 and 𝛽 are given but the lengths of the sides are a guess.  Find a point 𝐽 on 𝐹𝐸⃗⃗⃗⃗  ⃗ past 𝐸 

such that 𝐸𝐽 = 𝐸𝐺, and a point 𝐾 on 𝐸𝐹⃗⃗⃗⃗  ⃗ past 𝐹 such that 𝐹𝐾 = 𝐹𝐺.  Thus, 𝐽𝐾 should 

equal the perimeter, but it does not.  How can the figure be redrawn so it does? 

 

By the isosceles angle theorem, ∠𝐸𝐽𝐺 =
𝛼

2
 and ∠𝐹𝐾𝐺 =

𝛽

2
.  By ASA (these two angles and 

the perimeter), construct 𝐽𝐾𝐺.  By the mediator theorem, the mediators of 𝐽𝐺 and 𝐾𝐺 

intersects 𝐽𝐾 at 𝐸 and 𝐹, respectively.                    ∎  

 

The hypothesis is that the definition of segment is relevant, and so the auxiliary lines needed are 

to lay off 𝐸𝐺 and 𝐹𝐺 on 𝐸𝐹⃡⃗⃗⃗  ⃗ so 𝐽𝐾 is the perimeter.  Connecting 𝐽𝐺 and 𝐾𝐺 makes two isosceles 

triangles, so the rest of the construction is basic white-belt geometry.  The discussion is that 𝐽𝐾𝐺 

is fully defined only if 
𝛼

2
+

𝛽

2
< 𝜎; otherwise, 𝐽𝐾𝐺 would defy the angle sum theorem. 

 

Construction 4.2  Construct a triangle given its base, its apex angle and the sum of its legs. 

 

 Solution 

Draw 𝐸𝐹𝐺 with the interior angles at vertices 𝐸, 𝐹, 𝐺 labeled 𝛼, 𝛽, 𝛾, respectively.  Angle 

𝛾 and the base 𝐸𝐹 are given, but the lengths of the legs are a guess.  Find a point 𝐽 on 𝐹𝐺⃗⃗⃗⃗  ⃗ 

such that 𝐸𝐺 = 𝐽𝐺.  Thus, 𝐹𝐽 should equal the sum of the legs, but it does not.  How can 

the figure be redrawn so it does?  By the isosceles angle theorem, ∠𝐸𝐽𝐺 =
𝛾

2
.  By ASS, 

construct 𝐸𝐹𝐽.  By the mediator theorem, the mediator of 𝐸𝐽 intersects 𝐹𝐽 at 𝐺.          ∎ 

 

Theorems require triangles to be fully defined, but constructions just need a solution, so we can 

use ASS.  𝐽𝐸⃗⃗⃗⃗  intersects the 𝐹-circle of radius 𝐸𝐹 zero, one or two times; any intersection works. 

 

Thales’ Diameter Theorem      (Euclid, Book III, Prop. 31) 

A chord subtends a right angle if and only if it is a diameter. 

 

 Proof 

Assume it is a diameter.  Connect the vertex of the inscribed angle to the center to make 

two triangles.  By the isosceles triangle theorem, their base angles are equal; call them 𝛼 

and 𝛽.  By the angle sum theorem, 𝛼 + (𝛼 + 𝛽) + 𝛽 is straight and thus  𝛼 + 𝛽 is right. 
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Assume the subtended angle is right.  Construct a parallelogram with the chord as the 

definitional diagonal.  By the Lambert theorem corollary, it is a right rectangle.  By SAS, 

the diagonals of a rectangle are equal.  By the parallelogram diagonals theorem, the 

diagonals bisect each other, so the vertices are equidistant from the bi-medial point.  

Thus, the vertices are concyclic and chords through the center are diameters.          ∎ 

 

Thales’ Diameter Theorem Corollaries 

1. The circumcenter is inside/outside a triangle if and only if the triangle is acute/obtuse. 

2. A kite is right if and only if it is cyclic. 

 

Problem 4.3  Given a cyclic quadrilateral with sides 25, 39, 52, 60 long, find the circumdiameter. 

 

Eight–Point Circle Theorem 

A quadrilateral 𝐸𝐹𝐺𝐻 with bi-medial 𝑇 is orthodiagonal iff (1) the midpoints of its sides and the 

feet of its maltitudes are concyclic; or (2) the feet of perpendiculars dropped from 𝑇, 

𝑇𝐸𝐹 , 𝑇𝐹𝐺 , 𝑇𝐺𝐻, 𝑇𝐻𝐸, and 𝑇′′
𝐸𝐹: = 𝑇𝐸𝐹𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺𝐻 and 𝑇′′

𝐹𝐺: = 𝑇𝐹𝐺𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐻𝐸 and 𝑇′′
𝐺𝐻: = 𝑇𝐺𝐻𝑇⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∩ 𝐸𝐹 

and 𝑇′′𝐻𝐸: = 𝑇𝐻𝐸𝑇⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∩ 𝐹𝐺 are concyclic.  The (1) and (2) circles coincide iff 𝐸𝐹𝐺𝐻 is cyclic. 

 

Inscribed Angle Theorem     (Euclid, Book III, Prop. 20, 21, 26, 27) 

1. Two chords that share an endpoint make an angle half the central angle of their arc. 

2. Angles with vertices on a circle on the same side of a chord and subtended by it are equal. 

3. Chords that subtend equal angles inscribed in the same or equal circles are equal. 

 

Part One, Case One 

 Two chords with the circle center between them. 

 

 Proof 

Let 𝐸𝐹 and 𝐹𝐺 be the two chords, 𝑂 the circle center and 𝐹′′ the intersection of 𝐹𝑂⃗⃗⃗⃗  ⃗ with 

the circle.  Because all radii are equal, 𝐹𝑂𝐸 and 𝐹𝑂𝐺 are both isosceles.  By the exterior 

angle theorem, ∠𝐸𝑂𝐺 = ∠𝐹′′𝑂𝐸 + ∠𝐹′′𝑂𝐺 = ∠𝑂𝐹𝐸 + ∠𝑂𝐸𝐹 + ∠𝑂𝐹𝐺 + ∠𝑂𝐺𝐹.  By 

the isosceles triangle theorem, ∠𝐸𝑂𝐺 = 2∠𝑂𝐹𝐸 + 2∠𝑂𝐹𝐺 = 2∠𝐸𝐹𝐺.  •  

 

The other part-one cases are the center being on a chord or outside them; proofs are left as 

exercises.  Also left as exercises are parts two and three.  Sometimes Thales’ diameter theorem 

is treated as a special case, but it can be proven independently, and I think it should be. 

  

Problem 4.4  Given 𝐸𝐹𝐺, let 𝐸′, 𝐹′ be the feet of altitudes from 𝐸, 𝐹; and 𝐸′′, 𝐹′′ be the 

intersection of 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗  , 𝐹𝐹′⃗⃗ ⃗⃗ ⃗⃗   with the circumcircle, respectively.  Prove that 𝐸′′𝐺 = 𝐹′′𝐺. 
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Triangle and Parallelogram Theorem  

Given 𝐸𝐹𝐺 and parallelogram 𝐸𝐽𝐿𝐾 with 𝐽 inside 𝐸𝐹, 𝐾 inside 𝐸𝐺 and 𝐿 long of ∠𝐸 (past 𝐹𝐺),  

let 𝑀:= 𝐹𝐺 ∩ 𝐽𝐿 and 𝑁:= 𝐹𝐺 ∩ 𝐾𝐿.  Let 𝜔1, 𝜔2, 𝜔3, 𝜔4 be the circumcircles of 𝐸𝐹𝐺, 𝐽𝐹𝑀,

𝐿𝑁𝑀, 𝐾𝑁𝐺, with centers 𝑂1, 𝑂2, 𝑂3, 𝑂4, respectively. 

1. 𝐸𝐹𝐺 ~ 𝐽𝐹𝑀 ~ 𝐿𝑁𝑀 ~ 𝐾𝑁𝐺 

2. 𝐸𝑂1
⃡⃗ ⃗⃗ ⃗⃗  ⃗  ∥ 𝐽𝑂2

⃡⃗ ⃗⃗⃗⃗  ∥ 𝐿𝑂3
⃡⃗ ⃗⃗⃗⃗  ⃗  ∥ 𝐾𝑂4

⃡⃗ ⃗⃗ ⃗⃗  ⃗ 

3. 𝜔1, 𝜔2 touch at 𝐹.  𝜔2, 𝜔3 touch at 𝑀.  𝜔3, 𝜔4 touch at 𝑁.  𝜔1, 𝜔4 touch at 𝐺. 

4. 𝑂1𝑂2𝑂3𝑂4 is a parallelogram. 

5. Let 𝜔1, 𝜔2, 𝜔3, 𝜔4 be incircles, not circumcircles; 𝑂1𝑂2𝑂3𝑂4 is a parallelogram. 

 

Proof 

1. By reflexivity and the transversal theorem, 𝐸𝐹𝐺 ~ 𝐽𝐹𝑀  ~ 𝐾𝑁𝐺, by AA similarity.  By the 

vertical angles theorem, 𝐿𝑁𝑀 also has two of these angles.  Note the order of the angles. 

 

This was in the orange belt exit exam; did everybody get it? 

 

2. All corresponding side extensions are parallel, either by collinearity or the parallelogram 

theorem.  If the side extensions are parallel, then 𝐸𝑂1
⃡⃗ ⃗⃗ ⃗⃗  ⃗  ∥ 𝐽𝑂2

⃡⃗ ⃗⃗⃗⃗  ∥ 𝐿𝑂3
⃡⃗ ⃗⃗⃗⃗  ⃗  ∥ 𝐾𝑂4

⃡⃗ ⃗⃗ ⃗⃗  ⃗. 

 

3. By (1), 𝐸𝐹𝐺 ~ 𝐽𝐹𝑀 so, since 𝐽 is inside 𝐸𝐹, 𝑂2 is inside 𝑂1𝐹.  By the common point 

theorem, 𝜔1 and 𝜔2 touch at 𝐹.  Analogously for the other three pairs of circles. 

 

4. By (1), ∠𝐺𝐸𝐹 = ∠𝑀𝐽𝐹 = ∠𝑀𝐿𝑁 = ∠𝐺𝐾𝑁, which we will call 𝛼.  By the inscribed angle 

theorem, ∠𝐺𝑂1𝐹 = ∠𝑀𝑂2𝐹 = ∠𝑀𝑂3𝑁 = ∠𝐺𝑂4𝑁 = 2𝛼.  Thus, one pair of opposite 

interior angles in 𝑂1𝑂2𝑂3𝑂4 is 2𝛼 and the other pair is the supplement of 2𝛼.  𝑂1𝑂2𝑂3𝑂4 

is a parallelogram by the parallelogram angles theorem. 

 

The preceding proofs all use the same figure, but the next one must be redrawn with incircles. 

 

5. 𝑂1, 𝑂2 are collinear with 𝐹 and 𝑂2, 𝑂3 are collinear with 𝑀 and 𝑂3, 𝑂4 are collinear with 

𝑁 and 𝑂1, 𝑂4 are collinear with 𝐺, because they are on the bisectors of angles with these 

vertices.  Let 𝑃:= 𝐸𝐹 ∩ 𝑂4𝑂1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑄:= 𝐸𝐹 ∩ 𝑂3𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  By the exterior angle theorem, 

∠𝐸𝑃𝐺 =
∠𝐺

2
+ ∠𝐹 and ∠𝐸𝑄𝑀 =

∠𝑀

2
+ ∠𝐹.  But ∠𝐺 = ∠𝑀 because, by (1), 𝐸𝐹𝐺 ~ 𝐽𝐹𝑀, 

so ∠𝐸𝑃𝐺 = ∠𝐸𝑄𝑀 and, by the transversal lemma, 𝑂4𝑂1
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∥ 𝑂3𝑂2

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  By the transversal 

theorem, ∠𝐾𝑁𝐺 = ∠𝐹 and 
∠𝐾𝑁𝐺

2
=

∠𝐹

2
.  By the pairwise parallels theorem, 𝑂2𝑂1

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∥ 𝑂3𝑂4
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

Thus, 𝑂1𝑂2𝑂3𝑂4 is a parallelogram by the parallelogram theorem.            ∎ 
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Problem 4.5  Find the locus of vertices for a given angle subtended by a given chord. 

 

 Solution 

Construct the mediator of the chord.  Replicate the given angle on the side long of the 

proposed vertex with its vertex at one endpoint, then raise a perpendicular to this ray 

from its endpoint.  It intersects the mediator at the center of an arc that passes through 

the endpoints of the chord.  On the other side of the chord, the arc is the locus.          ∎ 

 

Construction 4.3  Construct a triangle given the apex angle, base altitude and base median. 

 

Like C. 3.6 but use P. 4.5 on 2𝑚𝐺  for the angle of 𝜎 − ∠𝐺.  𝐸 is the intersection of this arc and 

the tangent from the midpoint of 2𝑚𝐺  to a radius ℎ𝐺  circle around 𝐺.  Double 𝐸𝑀𝐸𝐹  to find 𝐹. 

 

If the endpoints of the chord are two lighthouses, then this locus are the possible positions of a 

ship where, with a sextant, they have measured the subtended angle.  Three lighthouses fully 

define a ship’s position.  Arcs intersect at two points; one is the middle lighthouse, the other the 

ship.  When we say measure an angle, we are assigning a number of degrees to it only for the 

purpose of replicating it on the map.  Our axioms do not support multiplying these numbers. 
 

Problem 4.6  You are the captain of a ship out 

of London and bound for Dublin.  As you 

approach the Cornwall peninsula clockwise, 

you become disoriented in heavy fog.  The 

lookout reports that he can see three 

lighthouses, one dead ahead.  With a sextant, 

he measures the angle between the port and 

bow lighthouses as 80°, and the angle between 

the starboard and bow lighthouses as 120°.  

Locate your ship on the map. 

 

 

 

 

Because light travels at a constant speed, about three meters in a nanosecond, a laser 

rangefinder with a clock this accurate can measure the time it takes for light to go out to an object 

and be reflected back.  A GPS unit is a receiver that gets signals from satellites with in-sync clocks.  

If the GPS unit’s clock were in-sync, location would be the intersection point of three spheres.  It 

is too expensive to keep the GPS unit’s clock in sync, so it requires more math and line of sight 

on at least four satellites.  But no angles are ever measured, so it is not like a sextant. 

 

Isaac Newton used geometry to invent the sextant, though it was not until about 1730 when the 

Englishman John Hadley and the American Thomas Godfrey independently began manufacturing 
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the devices.  The name implies that they can only measure angles up to 𝜑, a sixth of a circle 86, 

though we will here assume that they can measure angles up to 𝜎.  Today, laser rangefinders no 

larger than a pair of opera glasses allow any soldier or outdoorsman to measure the distances to 

objects a kilometer away; the best ones can measure the distance to the moon.  These did not 

exist until the 21st century.  Sextants remain very delicate optical instruments that are kept on 

board ships in padded and watertight cases.  Thus, there are two applications for triangle 

construction problems.  In sextant problems, one is given the base, the apex angle and one other 

piece of information about the triangle.  In laser problems, one is given the lengths of three 

segments in a triangle; e.g., a side, a median, an altitude, its inradius or its circumradius.  Roughly 

speaking, these are the problems motivated by marine and land navigation, before GPS, and what 

we will do again if we fight a real army (not hillbillies in Afghanistan) that can down satellites. 
 

The following table classifies the more difficult constructions of triangle 𝐸𝐹𝐺 in which 𝐸𝐹 is the 

base, 𝑚𝐸 , 𝑚𝐹 , 𝑚𝐺  the medians,  ℎ𝐸 , ℎ𝐹 , ℎ𝐺 the altitudes, 𝑡𝐸 , 𝑡𝐹 , 𝑡𝐺  the angle bisectors, 𝑟 the 

inradius, 𝑅 the circumradius and 𝑠 the semiperimeter.  𝑥𝐺  is either 𝑚𝐺 , ℎ𝐺  or 𝑡𝐺 . 
 

Sextant Problems Laser Problems Other Triangle Constructions 

C. 4.2       𝐸𝐹,  ∠𝐺,  𝐹𝐺 + 𝐸𝐺 C. 3.6       𝐹𝐺,  𝐸𝐺,  𝑚𝐺 C. 3.7           𝐸𝐹,  ∠𝐹,  𝑚𝐸 

C. 4.6       𝐸𝐹,  ∠𝐺,  ∠𝐸 C. 4.11     𝐸𝐹,  𝑅,  𝑚𝐸 C. 4.1           2𝑠,  ∠𝐸,  ∠𝐹 

C. 4.7       𝐸𝐹,  ∠𝐺,  𝐹𝐺 − 𝐸𝐺 C. 4.13     𝐸𝐹,  𝑅,  𝑟 C. 4.3           ℎ𝐺 , 𝑚𝐺 , ∠𝐺 

C. 4.8       𝐸𝐹,  ∠𝐺,  ℎ𝐸 + ℎ𝐹 C. 4.14     𝑚𝐸 , 𝑚𝐹 , 𝑚𝐺  C. 4.12         𝑅,  𝑟, ∠𝐺 

C. 4.9       𝐸𝐹,  ∠𝐺,  ℎ𝐸 − ℎ𝐹 C. 4.15     𝑚𝐸 , 𝑚𝐹 , ℎ𝐺  C. 4.18-19   𝑅, 𝐹𝐺 + 𝐸𝐺, ∠𝐸 ∓ ∠𝐹 

C. 4.10     𝐸𝐹,  ∠𝐺,  ℎ𝐺  C. 4.20     𝑚𝐺 , ℎ𝐺 ,  𝑡𝐺  C. 4.21         𝑅, ∠𝐸 − ∠𝐹, 𝑥𝐺  

 C. 4.22     𝐸𝐹,  ℎ𝐺 ,  𝑡𝐺  C. 5.1       Equilateral; 𝐽, 𝐾, 𝐿 on sides 

 

Brahmagupta’s Bi–Medial Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic with 𝐸𝐺 ⊥ 𝐹𝐻 at 𝑇, if 𝑇′ is the foot of the perpendicular dropped on 𝐸𝐹 from 

𝑇, then 𝑀:= 𝑇′𝑇⃗⃗⃗⃗ ⃗⃗ ∩ 𝐺𝐻 is the midpoint of 𝐺𝐻; that is, 𝑀 ≡ 𝑀𝐺𝐻. 
 

 Proof 

By the inscribed angle theorem, ∠𝐸𝐹𝐻 = ∠𝐸𝐺𝐻, which we will call 𝛼.  ∠𝐸𝐹𝐻 = ∠𝐸𝑇𝑇′ 

by the pairwise perpendiculars theorem, and ∠𝐸𝑇𝑇′ = ∠𝐺𝑇𝑀 by the vertical angles 

theorem.  Thus, by the isosceles triangle theorem converse, 𝑇𝑀 = 𝐺𝑀.  By the inscribed 

angle theorem, ∠𝐹𝐸𝐺 = ∠𝐹𝐻𝐺, which is complementary to 𝛼 in the right triangle 𝑇′𝐸𝑇.  

∠𝐺𝑇𝐻 is given right, so ∠𝐺𝑇𝑀 is complementary to ∠𝐻𝑇𝑀 and ∠𝐻𝑇𝑀 = ∠𝑇𝐻𝑀.  By the 

isosceles triangle theorem converse, 𝑇𝑀 = 𝐻𝑀.  Thus, 𝐺𝑀 = 𝐻𝑀; so, 𝑀 ≡ 𝑀𝐺𝐻.         ∎ 

 
86 Calling it the hextant would have saved generations of teenage boys from fits of giggles in their geometry class. 
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A maltitude (midpoint-altitude) is the perpendicular dropped from the midpoint of a side of a 

quadrilateral onto the opposite side.87  In the previous theorem, we learned that, if the 

quadrilateral is both cyclic and orthodiagonal (its diagonals are perpendicular), then the 

maltitudes are concurrent at its bi-medial; that is, at the intersection of its diagonals, 𝑇.  The 

maltitudes’ point of concurrency, if it exists, is called the anticenter, denoted 𝑆 unless it is 𝑇. 

 

Anticenter Theorem 

1. A quadrilateral is cyclic if and only if the maltitudes are concurrent. 

2. The medial point is midway between the circumcenter and the anticenter. 

 

The medial point, 𝐶, is the intersection of the bimedians of a quadrilateral; it is also where the 

medians of a triangle are concurrent.  The context should make it clear which meaning is in use. 

 

 Proof 

Assume that 𝐸𝐹𝐺𝐻 is cyclic with 𝑂 the circumcenter, 𝐶 the medial point and 𝑆 a point on 

𝑂𝐶⃗⃗⃗⃗  ⃗ such that 𝑂𝐶 = 𝐶𝑆.  By the Varignon theorem, the bimedians bisect each other so, by 

SAS, 𝑀𝐻𝐸𝐶𝑆 ≅ 𝑀𝐹𝐺𝐶𝑂. Thus, ∠𝑀𝐻𝐸𝑆𝑂 = ∠𝑀𝐹𝐺𝑂𝑆 and, by the transversal lemma,      

𝑀𝐻𝐸𝑆⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∥ 𝑂𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  By the diameter and chord theorem, 𝑂𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐹𝐺, and by parallelism, 

𝑀𝐻𝐸𝑆⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐹𝐺.  Analogously, the other three maltitudes also all pass through 𝑆. 

 

Assume that the maltitudes are concurrent at 𝑆, so any one of the lines through 𝑆 and the 

midpoint of a side is perpendicular to the opposite side.  In particular, 𝑀𝐻𝐸𝑆⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐹𝐺; just 

walk backwards through the proof above to get 𝑂𝐶 = 𝐶𝑆, collinear.           ∎ 

 

If cyclic 𝐸𝐹𝐺𝐻 is orthodiagonal, then its anticenter and its bi-medial coincide; and if it is not? 

 

Lemma 4.1 

The bimedians of 𝐸𝐹𝐺𝐻 intersect at the bi-medials of 𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻 and 𝑀𝐹𝐺𝑀𝐹𝐻𝑀𝐻𝐸𝑀𝐸𝐺 .  

 

Look to medial parallelogram theorem II and to the parallelogram diagonals theorem. 

 

Anticenter–Orthocenter Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic with 𝑇 its bi-medial and 𝑆 its anticenter, 𝑆 is the orthocenter of 𝑀𝐸𝐺𝑀𝐹𝐻𝑇. 

 

Prove that 𝑀𝐸𝐺𝑆𝑀𝐹𝐻𝑂 is a parallelogram, so 𝑂𝐶 = 𝐶𝑆; then cite the anticenter theorem. 

 
87 Alternate usage:  When I take my entire geometry class out for malts, the soda jerk exclaims, “It’s a maltitude!” 
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Problem 4.7  Prove that, in a cyclic and orthodiagonal quadrilateral, the distance from the 

circumcenter to a side is half the opposite side. 

 

Construction 4.4  Through a point outside a circle, draw a line tangent to the circle. 

 

 Green Belt Solution 

Connect the point with the center and find the midpoint of this segment.  By Thales’ 

diameter theorem, from any point on the circle around this diameter, the angle made by 

lines to the endpoints is right; this includes the two points where it intersects the given 

circle.  By the tangent theorem, these are the two touching points.           ∎ 

 

Construction 4.5  Given the hypotenuse and a leg of a right triangle, construct the other leg. 

 

C. 4.4 is easier to draw than C. 2.2 because the auxiliary circle is half as large.  Construction 2.2 

allows first-year geometers to construct tangents, which gives them a shot at the IMO.  But now 

that we have C. 4.4, we should just put C. 2.2 into the past.  C. 4.5 is the same construction but 

stated without reference to a circle.   

 

Construction 4.6  Construct a triangle given its base, its apex angle and a base angle. 

 

Hypothesis:   Since we have the base and the apex angle, P. 4.5, finding the locus of vertices for 

a given angle subtended by a given chord, is probably relevant. 

 

Proof:    State that any point on the constructed arc has the given base and apex angle. 

 

Construction: By P. 4.5, find the locus of vertices for the apex angle, 𝛼, subtended by the base.  

By C. 1.5, construct the base angle, 𝛽, at one end of the base.  This ray and the arc 

of possible vertices intersect at the apex.  Connect the other leg of the triangle. 

 

Discussion: If 𝛼 + 𝛽 > 𝜎, the angle sum theorem is violated, and the loci do not intersect.  If 

they do, the given base angle could have its vertex at either end of the base, so 

there are two triangles, but they are provably congruent, so the solution is unique. 

 

Construction 4.7  Construct a triangle given its base, its apex angle and the difference of its legs. 

 

Guess at the solution by drawing the desired triangle, 𝐸𝐹𝐺, given 𝐸𝐹, ∠𝐺 and 𝐽 on the longer leg, 

𝐹𝐺, so 𝐸𝐽𝐺 is isosceles.  Hypothesis: the mediator theorem will locate 𝐺 if 𝐸𝐹𝐽 can be constructed 

and the isosceles angle theorem applied to 𝐸𝐽𝐺 may be helpful in constructing 𝐸𝐹𝐽. 
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In construction 4.6, our hypothesis was, “Since we have the base and the apex angle, P. 4.5, 

finding the locus of vertices for a given angle subtended by a given chord, is probably relevant.”  

Indeed, it was relevant!  But, in the following problem, it is not relevant, which should serve as a 

reminder of the aphorism, “If at first you do not succeed, then try, try again taking another path.” 

 

Construction 4.8  Construct a triangle given its base, its apex angle and the sum of the altitudes 

to the legs. 

 

Hypothesis:   Guess at the solution by drawing the desired triangle with the given base and 

altitudes to the legs that have the given sum, but the apex angle only approximate.  

Extend one altitude past its leg and lay off the length of the other altitude.  Orange 

belts were often given a length somewhere that it was not useful, but they then 

used the Lambert theorem to construct it on the opposite side of a right rectangle 

where it was useful.  Our hypothesis is that this is actually an orange-belt problem.   

 

Proof:   Given 𝐸𝐹𝐺 with 𝐸′ and 𝐹′ the feet of altitudes, lay off 𝐹𝐹′ on 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗   past 𝐸′ to 𝐽 and 

draw a rectangle, 𝐺𝐸′𝐽𝐾.  Let 𝐹′′: = 𝐽𝐾⃡⃗⃗⃗ ∩ 𝐸𝐹⃗⃗⃗⃗  ⃗ and 𝐺′′: = 𝐽𝐾⃡⃗⃗⃗ ∩ 𝐸𝐺⃗⃗⃗⃗  ⃗.  By T&V, 

∠𝐸𝐺𝐹 = ∠𝐸𝐺′′𝐹′′, so, by AAS, 𝐺𝐹′𝐹 ≅ 𝐺′′𝐾𝐺; thus, 𝐺𝐹 = 𝐺′′𝐺.  By the isosceles 

angle theorem, ∠𝐺𝐺′′𝐹 =
1

2
(𝜎 − ∠𝐹𝐺𝐺′′) =

1

2
∠𝐸𝐺𝐹 =

1

2
∠𝐸𝐺′′𝐹′′.  Thus, 𝐺′′𝐹⃗⃗⃗⃗⃗⃗⃗⃗  

bisects ∠𝐸𝐺′′𝐹′′.  By the mediator theorem, 𝐺 is on the mediator of 𝐺′′𝐹. 

 

Construction: Draw parallel lines of the given width 𝐸𝐸′ + 𝐹𝐹′.  Taking one as 𝐺′′𝐹′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , lay the 

given apex angle against it so the vertex is 𝐺′′ and the ray and the other line 

intersect at 𝐸.  Bisect ∠𝐸𝐺′′𝐹′′.  A circle around 𝐸 whose radius is the given base 

intersects this bisector at 𝐹.  𝐺 is the intersection of the mediator of 𝐺′′𝐹 and 𝐺′′𝐸⃗⃗⃗⃗ ⃗⃗⃗⃗ . 

 

Discussion: “A circle around 𝐸 whose radius is the given base intersects this bisector at 𝐹.”  A 

circle and a ray intersect at zero, one or two points; this is the number of solutions. 

 

Construction 4.9  Construct a triangle given its base, its apex angle and the difference of the 

altitudes to the legs. 

 

This is essentially the same problem as C. 4.8 except, where before we said, “extend one altitude 

past its leg and lay off the length of the other altitude,” we now lay it off in the other direction, 

so 𝐸𝐽 is the difference of the altitudes to the legs, not their sum.  Thus, our rectangle is inside the 

triangle, not sticking out from it.  The construction is left as an exercise; if you cannot do C. 4.9 

on your own, then you must not have really understood C. 4.8 when it was explained to you. 
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Construction 4.10  Construct a triangle given its base, its apex angle and the altitude to its base. 

 

 Solution 

By P. 4.5, find the locus of vertices for the apex angle subtended by the base.  Construct 

a line parallel to the base and at a distance from it equal to the given altitude on that side 

of the base.  Where it intersects the locus of vertices is the apex.  A line intersects an arc 

at zero, one or two points; this is how many solutions there are on a side of the base.   ∎ 

 

Problem 4.8  Find the locus of the midpoints of chords in a given circle passing through a given 

point on or inside the circle. 

 

 Solution 

 Let 𝑂 be the circle center and 𝑃 be the point.  The locus is the circle with diameter 𝑂𝑃.  ∎ 

 

 Proof 

By Thales’ diameter theorem, ∠𝑂𝑀𝑃 is right for any 𝑀 on the locus circle.  Since 𝑂𝑀 

passes through the center of the given circle, it can be extended to be a diameter.  By the 

diameter and chord theorem, 𝑀 is the midpoint of the chord through 𝑃.           ∎ 

 

Construction 4.11  Construct a triangle given its base, its circumradius, and the median to its base 

or to a leg. 

 

If the median is to the base, the construction is easy; if it is to a side, then one of the loci is the 

solution to P. 4.8.  Either way, the apex is on two arcs, which intersect at zero, one or two places. 

 

Construction 4.12  Construct a triangle given its inradius, circumradius and an interior angle. 

 

 Solution 

Draw the circumcircle, 𝜔, and label a point on it 𝐺′′.  At this vertex, replicate the given 

angle inside the circumcircle so it cuts off the chord 𝐸𝐹.  Draw a parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ on the 𝐺′′ 

side of width 𝑟, the inradius.  By P. 4.5, find the locus of vertices for 𝜌 +
1

2
∠𝐺 subtended 

by 𝐸𝐹 and on the 𝐺′′ side. Where this arc intersects the parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ is the incenter, 𝐼.  

Find 𝐺 on 𝜔 such that ∠𝐹𝐸𝐺 = 2∠𝐹𝐸𝐼.               ∎ 

 

Discussion 

There are zero, one or two possible incenters, 𝐼.  Zero if 𝑅 < 2𝑟, one if 𝑅 = 2𝑟, or two if 

𝑅 > 2𝑟.  In the latter case, the two triangles are congruent, so the solution is unique.   ∎ 
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Proof 

By the inscribed angle theorem, 𝐸𝐹 subtends the given angle for any 𝐺 on the 𝐺′′ side of 

the circumcircle.  We need 𝐺 so 𝐸𝐹𝐺 has the given inradius; suppose we have found it. 

1. ∠𝐸 + ∠𝐹 + ∠𝐺 = 𝜎   Angle sum theorem for 𝐸𝐹𝐺 

2. ∠𝐼𝐸𝐹 + ∠𝐼𝐹𝐸 +
1

2
∠𝐺 = 𝜌  Bisect all the angles in (1) 

3. ∠𝐼𝐸𝐹 + ∠𝐼𝐹𝐸 + ∠𝐸𝐼𝐹 = 𝜎  Angle sum theorem for 𝐸𝐹𝐼 

4. 𝜌 −
1

2
∠𝐺 = 𝜎 − ∠𝐸𝐼𝐹   Solve (2) and (3) for ∠𝐼𝐸𝐹 + ∠𝐼𝐹𝐸 and set equal. 

5. ∠𝐸𝐼𝐹 = 𝜌 +
1

2
∠𝐺   Solve for ∠𝐸𝐼𝐹             ∎ 

 

Construction 4.13  Construct a triangle given its inradius, circumradius and a side. 

 

This is the same as C. 4.12, but you start with 𝐸𝐹 and do not need 𝐺′′.   

 

Problem 4.9  Find lengths 𝑒 and 𝑔 such that 𝑒 + 𝑔 = 𝑧 and 𝑒2 + 𝑔2 = 𝑓2 with 𝑧 and 𝑓 given. 

 

In America, this would be an Algebra II problem because, while Algebra I students have the 

quadratic equation, solving the equations simultaneously, collecting like terms and applying the 

quadratic formula is too much for them.  But a geometer would see that, by Thales’ diameter 

theorem, 𝑒 and 𝑔 are the legs of a right triangle with hypotenuse 𝑓, which is its circumdiameter.  

With the right triangle incircle theorem and the triangle centers’ angles theorem, it is easy! 

 

 Solution 

By the right triangle incircle theorem, the indiameter is 𝑑 = 𝑧 − 𝑓.  𝐸𝐹𝐺 is right, so 𝑓 is 

the diameter of its circumcircle, 𝜔, by Thales’ diameter theorem.  Draw a parallel to the 

diameter, 𝑙, at width 𝑟 =
1

2
𝑑 =

1

2
(𝑧 − 𝑓).  Draw the mediator to 𝑓 and, from where it 

intersects 𝜔 on the other side of 𝑙, draw an arc through the endpoints of 𝑓.  By the triangle 

centers’ angles theorem part two and problem 4.5, it cuts 𝑙 at the incenter.  The incenter 

is on the angle bisector, so we have a ray and a point on the angle bisector; by C. 1.6, find 

the other ray of the angle. This ray cuts 𝜔 in one triangle leg.  Connect the other leg.     ∎ 

 

Discussion 

The arc around where the mediator intersects the circle intersects the line on the other 

side of the diameter, parallel to it and at width 𝑟; it will at zero, one or two points.           ∎ 

 

In addition to being easier than algebra, geometry clarifies the discussion.  Just a glance tells you 

that the arc radius is √2𝑅; thus, a solution exists if  𝑅 +
𝑧−𝑓

2
≤ √2𝑅  or  𝑧 ≤ √2𝑓.  Easy! 
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For example, suppose that 𝑧 = 8′′ and 𝑓 = 6′′ and I want 𝑒 and 𝑔 to the nearest 32nd of an inch.  

It takes only a few minutes to do the geometric construction and then measure the triangle sides 

with a ruler to get 2
19

32
′′ and 5

13

32
′′.  Working through all the algebra to get 𝑒 =

𝑧±√2𝑓2−𝑧2

2
 and 

then evaluating it on a slide rule would take longer and result in 2.6′′ and 5.4′′, which is only 

accurate to a 10th of an inch.  Of course, we now have calculators, which are quicker and more 

accurate.  But we are here to learn logic, not to plug numbers into formulas.  No employer wants 

a new hire with a diploma, a calculator, and a hazy memory of formulas.  And no history teacher 

wants to see Americans’ logic so weak that we elect a pathological liar to be our president. 

 

When you became a green belt, you became an intermediate geometer, which means that you 

are expected to help the white- and yellow-belt students.  Recall from the white-belt chapter, 

 

Teachers!  If you have read this far hoping for advice on how to get your #%$^@ 

students through the Common Core standardized exam, here it is:  Ask for the 

perimeter of a triangle with vertices (−2,3), (−4,−4), (−7,−1) and make it a 

race.  The easy way is to lay the three sides end-to-end on a line.  Taking the sum 

of three applications of the algebraic distance formula is the hard way. 

√(−2 − (−7))
2
+ (3 − (−1))

2
+ √(−2 − (−4))

2
+ (3 − (−4))

2
+ √(−7 − (−4))

2
+ (−1 − (−4))

2
≈ 17.9 

 

It should be clear by now why this is so important.  Algebra makes geometry needlessly difficult! 

 

Problem 4.10   

Given 𝐸𝐹𝐺 and 𝐺𝑆⃡⃗⃗⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐽: = 𝑀𝐸𝐹𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝐺𝑆⃡⃗⃗⃗ , prove that 𝐸𝑀𝐹𝐺 = 𝑀𝐺𝐸𝐽 and 𝑀𝐸𝐹𝐺 = 𝐽𝐹. 

 

 Solution 

By mid-segment theorem #1, 𝑀𝐺𝐸𝑀𝐹𝐺 =
1

2
𝐸𝐹 = 𝐸𝑀𝐸𝐹 and 𝑀𝐺𝐸𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∥ 𝐸𝑀𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  By the 

equal segments on parallels theorem, 𝐸𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸  is a parallelogram.  By T&V, 

∠𝑀𝐺𝐸𝐸𝑀𝐸𝐹 = ∠𝐺𝑀𝐺𝐸𝑀𝐹𝐺  so 𝑀𝐺𝐸𝐸𝑀𝐸𝐹 ≅ 𝐺𝑀𝐺𝐸𝑀𝐹𝐺 .  𝐸𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸 ≅ 𝑀𝐺𝐸𝑀𝐹𝐺𝐽𝐺 

because their definitional triangles are congruent.  Thus, their diagonals 𝐸𝑀𝐹𝐺 = 𝑀𝐺𝐸𝐽.  

𝐸𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸 ≅ 𝑀𝐺𝐸𝑀𝐹𝐺𝐽𝐺 also implies 𝐸𝑀𝐸𝐹 = 𝐺𝐽.  But 𝐸𝑀𝐸𝐹 = 𝑀𝐸𝐹𝐹 so, by the 

equal segments on parallels theorem, 𝑀𝐸𝐹𝐹𝐽𝐺 is a parallelogram and 𝑀𝐸𝐹𝐺 = 𝐽𝐹.       ∎ 

 

Now let us see if we can do it in reverse!  Instead of being given the triangle and asked to prove 

something about the medians, let us be given the medians and try to construct the triangle.  In     

P. 4.10, we prove that 𝐹𝐽𝐺𝑀𝐸𝐹 is a parallelogram, which holds the equalities we need.  In C. 4.14, 

we construct the same parallelogram, 𝐸𝐽𝐶𝐾 ∪ 𝐽𝐹𝐿𝐶, by laying off some equal segments. 
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Construction 4.14  Construct a triangle given the lengths of the three medians. 

 

 Solution 

By SSS, construct a triangle with the three medians as its sides and label the vertices 

𝐸, 𝐹, 𝐺.  By C. 3.11, trisect 𝐸𝐺 and label as 𝐶 the point that is twice as far from 𝐸 as from 

𝐺.  By C. 3.3, draw a line through 𝐶 parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗.  By C. 3.11, trisect 𝐸𝐹 and label as 𝐽 the 

point that is twice as far from 𝐹 as from 𝐸.  By the equal segments on parallels theorem, 

find 𝐾, 𝐿 so 𝐸𝐽𝐶𝐾, 𝐽𝐹𝐿𝐶 are parallelograms.  Let 𝑃:= 𝐸𝐾⃗⃗ ⃗⃗  ⃗ ∩ 𝐿𝐺⃗⃗⃗⃗  ⃗.  𝐸𝐿𝑃 is the triangle.    ∎ 

 

 Discussion 

The three given medians must satisfy the triangle inequality theorem.             ∎ 

 

Side–Angle–Side (SAS) Third–Scale Triangle Theorem  

If a triangle has two sides that are a third the corresponding sides in another triangle and the 

included angles are equal, then the other angles are equal and the other side also a third. 

 

Angle–Side–Angle (ASA) Third–Scale Triangle Theorem  

If two pairs of angles are equal in two triangles and the included side of one triangle is a third the 

included side in the other triangle, then the other sides are also a third their corresponding sides. 

 

Green belts can use the easy ratios  
1

4
,

1

3
,

1

2
,

2

3
,

3

4
.  Similarity will allow us to use any ratio 

𝑚

𝑛
.  

Indeed, most “similarity” problems in other textbooks are these easy ratios, so you have got that. 

 

Lemma 4.2 

A triangle’s medial point is a third of the way from the base to the apex. 

 

 Proof 

 By T&V and the two-to-one medial point and ASA third-scale triangle theorems.          ∎ 

 

Construction 4.15  Construct a triangle given the lengths of two medians and the altitude to the 

other side. 

 

 Solution 

By C. 3.11, trisect all three of the given lengths.  Draw parallel lines a third the altitude 

apart; by lemma 4.2, if the base is on one line, the medial point is on the other.  Put 𝐶 on 

one line and draw arcs of two thirds the given medians to intersect the other line at 𝐸 

and 𝐹.  𝐸𝐹 will be the base.  Extend 𝐸𝐶⃗⃗⃗⃗  ⃗ and 𝐹𝐶⃗⃗⃗⃗  ⃗ by half again to 𝐸′′ and 𝐹′′, respectively.  

𝐺:= 𝐸𝐹′′⃗⃗⃗⃗⃗⃗⃗⃗ ∩ 𝐹𝐸′′⃗⃗⃗⃗⃗⃗⃗⃗  is the apex.                 ∎ 
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Discussion 

If two-thirds of the shorter median is less than one-third of the altitude, there is no 

solution.  If it is equal, then 𝐶𝐸𝐹 is a right triangle and there is one solution.  If it is greater, 

then 𝐶𝐸𝐹 can be either an acute or an obtuse triangle and there are two solutions.         ∎ 

 

Tangent and Chord Theorem      (Euclid, Book III, Prop. 32) 

A line intersects a circle where it makes an angle with a chord equal to the angle subtended by 

that chord if and only if that is a touching point. 

 

 Proof   

Assume 𝐸𝐽⃡⃗  ⃗ is tangent to the circumcircle (center 𝑂) of 𝐸𝐹𝐺 at 𝐸, 𝐽 long of ∠𝐺.  By the 

tangent theorem, ∠𝑂𝐸𝐽 is right and, by the diameter and chord theorem, ∠𝑂𝑀𝐸𝐹𝐸 is 

right.  ∠𝐽𝐸𝐹 = ∠𝐸𝑂𝑀𝐸𝐹, both complementary to ∠𝑂𝐸𝑀𝐸𝐹.  By SSS, 𝐸𝑂𝑀𝐸𝐹 ≅ 𝐹𝑂𝑀𝐸𝐹 , 

so ∠𝐸𝑂𝑀𝐸𝐹 = ∠𝐹𝑂𝑀𝐸𝐹 and ∠𝐸𝑂𝐹 = 2∠𝐸𝑂𝑀𝐸𝐹.  By the inscribed angle theorem, 

∠𝐸𝑂𝐹 = 2∠𝐺.  Thus, ∠𝐸𝑂𝑀𝐸𝐹 = ∠𝐺 and ∠𝐽𝐸𝐹 = ∠𝐺.     •  

 

Proof of the converse is left as an exercise; just walk backwards through the proof. 

 

Construction 4.16         (Euclid, Book IV, Prop. 2) 

Given a circle and a triangle, inscribe a similar triangle in the circle. 

 

 Solution 

Let 𝛼, 𝛽, 𝛾 be the angles of the given triangle and 𝜔 be the circle; if the triangle is right, 

then label that angle 𝛾.  By C. 3.1, locate the circle center, 𝑂, if it is not already known.  

Choose a point 𝐺 on 𝜔 for the 𝛾 vertex and, by C. 1.3, draw a line at 𝐺 perpendicular to 

𝑂𝐺⃡⃗⃗⃗  ⃗ with 𝐽 and 𝐾 on this line and on opposite sides of 𝑂𝐺⃡⃗⃗⃗  ⃗.  By C. 1.5, find 𝐸 on 𝜔 so 

∠𝐸𝐺𝐽 = 𝛽 and 𝐹 on 𝜔 so ∠𝐹𝐺𝐾 = 𝛼.  By the tangent and chord theorem, ∠𝐸𝐹𝐺 = 𝛽 and 

∠𝐹𝐸𝐺 = 𝛼.  By AA similarity, 𝐸𝐹𝐺 is the desired triangle.             ∎ 

 

 Discussion 

 The 𝛾 vertex is wherever 𝐺 is and the 𝛼 vertex is on the same side of 𝑂𝐺⃡⃗⃗⃗  ⃗ as 𝐽.          ∎ 

 

Intersecting Secant and Tangent Similarity Theorem 

If 𝑃 is the intersection of 𝐺𝐹⃗⃗⃗⃗  ⃗ and the tangent to the circumcircle of 𝐸𝐹𝐺 at 𝐸, then 𝑃𝐸𝐹~𝑃𝐺𝐸. 

 

 Proof 

Switch 𝐹 and 𝐺 if needed.  By the tangent and chord theorem, ∠𝑃𝐸𝐹 = ∠𝑃𝐺𝐸.  𝑃𝐸𝐹 and 

𝑃𝐺𝐸 both contain ∠𝑃, which is two equal angles; thus, 𝑃𝐸𝐹~𝑃𝐺𝐸 by AA similarity.         ∎ 
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Intersecting Secants Similarity Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic, assume 𝑃:= 𝐹𝐸⃗⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃗⃗⃗⃗⃗⃗  exists; then, (1) 𝑃𝐹𝐻~𝑃𝐺𝐸, and (2) 𝑃𝐹𝐺~𝑃𝐻𝐸. 

 

Proof 

1. ∠𝑃𝐹𝐻 = ∠𝑃𝐺𝐸 by the inscribed angle theorem; with ∠𝑃, 𝑃𝐹𝐻~𝑃𝐺𝐸 by AA similarity. 

2. By the angle sum theorem in 𝐸𝐹𝐺, ∠𝐸𝐹𝐺 + ∠𝐹𝐺𝐸 + ∠𝐺𝐸𝐹 = 𝜎; by supplementarity, 

∠𝑃𝐻𝐸 + ∠𝐹𝐻𝐸 + ∠𝐺𝐻𝐹 = 𝜎 or ∠𝑃𝐻𝐸 + ∠𝐹𝐺𝐸 + ∠𝐺𝐸𝐹 = 𝜎 by the inscribed 

angle theorem.  Thus, ∠𝑃𝐻𝐸 = ∠𝑃𝐹𝐺.  With ∠𝑃, 𝑃𝐹𝐺~𝑃𝐻𝐸 by AA similarity.         ∎ 
 

Intersecting Chords Similarity Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝑇 its bi-medial, then (1) 𝐸𝐹𝑇~𝐻𝐺𝑇, and (2) 𝐹𝐺𝑇~𝐸𝐻𝑇.  
 

 Proof 

1. Let 𝐸𝐹𝐺𝐻 be cyclic and 𝑇 be its bi-medial.  ∠𝐸𝑇𝐹 = ∠𝐺𝑇𝐻 by the vertical angles 

theorem.  ∠𝐺𝐸𝐹 = ∠𝐺𝐻𝐹 and ∠𝐸𝐺𝐻 = ∠𝐸𝐹𝐻 by the inscribed angle theorem.  

Thus, 𝐸𝐹𝑇~𝐻𝐺𝑇.   

2. Analogously, 𝐹𝐺𝑇~𝐸𝐻𝑇.                 ∎ 
 

The next two theorems lend themselves to the computerized exams promoted by Bill Gates. 
 

Intersecting Chords Angle Theorem 

The angle made by intersecting chords is the semisum of the two arcs they cut off. 
 

 Proof 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝑇 its bi-medial, let angle 𝛼 be subtended at the center by 𝐸𝐹 and 

angle 𝛽 be subtended at the center by 𝐺𝐻 and 𝛾 = ∠𝐸𝑇𝐹 = ∠𝐺𝑇𝐻, which are equal by 

the vertical angles theorem.  By the external angle theorem, 𝛾 = ∠𝐹𝐻𝐸 + ∠𝐺𝐸𝐻.  By the 

inscribed angle theorem, ∠𝐹𝐻𝐸 =
𝛼

2
 and ∠𝐺𝐸𝐻 =

𝛽

2
 and so 𝛾 =

𝛼

2
+

𝛽

2
=

𝛼 + 𝛽

2
.           ∎  

 

Intersecting Secants Angle Theorem 

The angle made by intersecting secants is the semidifference of the far and near arc. 
 

 Proof 

Given 𝐸𝐹𝐺𝐻 cyclic, assume 𝑃:= 𝐺𝐹⃗⃗⃗⃗  ⃗ ∩ 𝐻𝐸⃗⃗⃗⃗⃗⃗  exists (reorder the vertices if it does not).  Let 

𝛼 be the angle subtended at the center by 𝐸𝐹 and 𝛽 be the angle subtended at the center 

by 𝐺𝐻 and 𝛾 = ∠𝐸𝑃𝐹.  By the exterior angle theorem, 𝛾 = ∠𝐺𝐹𝐻 − ∠𝐸𝐻𝐹.  ∠𝐺𝐹𝐻 =
𝛽

2
 

and ∠𝐸𝐻𝐹 =
𝛼

2
 by the inscribed angle theorem, so 𝛾 =

𝛽

2
−

𝛼

2
=

𝛽− 𝛼

2
.           ∎ 
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Cyclic Quadrilateral Theorem     (Euclid, Book III, Prop. 22) 

If a quadrilateral is cyclic, then its opposite angles are supplementary. 

  

 Proof 

Let 𝐸𝐹𝐺𝐻 be a cyclic quadrilateral.  By the inscribed angle theorem, ∠𝐸𝐺𝐻 = ∠𝐸𝐹𝐻 and  

∠𝐸𝐺𝐹 = ∠𝐸𝐻𝐹.  By substitution, ∠𝐹𝐺𝐻 = ∠𝐸𝐺𝐻 + ∠𝐸𝐺𝐹 = ∠𝐸𝐹𝐻 + ∠𝐸𝐻𝐹.  By the 

angle sum theorem, ∠𝐸𝐹𝐻 + ∠𝐸𝐻𝐹 + ∠𝐻𝐸𝐹 = 𝜎.  Thus, ∠𝐹𝐺𝐻 + ∠𝐻𝐸𝐹 = 𝜎.          ∎      

 

Cyclic Quadrilateral Theorem Corollary 

Given 𝐸𝐹𝐺, the circumcircles of exterior triangles 𝐸′′𝐹𝐺, 𝐸𝐹′′𝐺, 𝐸𝐹𝐺′′ are concurrent if and only 

if ∠𝐸′′ + ∠𝐹′′ + ∠𝐺′′ = 𝜎. 

 

Cyclic Quadrilateral Theorem Converse 

If a quadrilateral has two opposite angles that are supplementary, then it is cyclic. 

 

 Proof 

Given 𝐸𝐹𝐺𝐻 with ∠𝐻 + ∠𝐹 = 𝜎, 𝐻 is either inside, on or outside the 𝐸𝐹𝐺 circumcircle, 

𝜔.  If 𝐻 is outside 𝜔, let 𝐽: = 𝐸𝐻 ∩ 𝜔 (switch 𝐸 and 𝐺 if 𝐸𝐻 does not cut 𝜔) so 𝐸𝐹𝐺𝐽 is 

cyclic and, by the cyclic quadrilateral theorem, ∠𝐺𝐽𝐸 is supplementary to ∠𝐹 and thus 

equal to ∠𝐻, which was given to be supplementary to ∠𝐹.  This contradicts the exterior 

angle theorem.  Analogously, 𝐻 inside 𝜔 is also contradictory; thus, 𝐻 must be on 𝜔.    ∎ 

 

Right Cyclic Theorem           (formerly quadrilateral angle sum theorem corollary #1) 

If opposite quadrilateral angles are right, then the other two angles are supplementary. 

 

Construction 4.17         (Euclid, Book IV, Prop. 3) 

Given a circle and a triangle, circumscribe a similar triangle around the circle. 

 

 Solution 

Let 𝛼, 𝛽, 𝛾 be the angles of the given triangle and 𝜔𝐼 be the circle.  By C. 3.1, locate the 

circle center if it is not already known; call it 𝐼 because it will be the new triangle’s 

incenter.  Choose a point 𝐼𝐺  on 𝜔𝐼 for the touching point between the 𝛼 and 𝛽 vertices 

and, by C. 1.3, draw a line at 𝐼𝐺  perpendicular to 𝐼𝐼𝐺⃡⃗⃗⃗  ⃗.  By C. 1.5, find 𝐼𝐸 on 𝜔𝐼 on the same 

side of 𝐼𝐼𝐺⃡⃗⃗⃗  ⃗ as where you want the 𝛽 vertex so ∠𝐼𝐸𝐼𝐼𝐺  is the supplement of 𝛽.  Analogously, 

find 𝐼𝐹 on 𝜔𝐼 on the other side of 𝐼𝐼𝐺⃡⃗⃗⃗  ⃗ so ∠𝐼𝐹𝐼𝐼𝐺  is the supplement of 𝛼.  By the right cyclic 

theorem, the lines tangent at 𝐼𝐹 and 𝐼𝐺  intersect at a point 𝐸 such that ∠𝐸 = 𝛼, and the 

lines tangent at 𝐼𝐸  and 𝐼𝐺  intersect at a point 𝐹 such that ∠𝐹 = 𝛽.  If 𝐺 is the intersection 

of the lines tangent at 𝐼𝐸 and 𝐼𝐹, then, by AA similarity, 𝐸𝐹𝐺 is the desired triangle.       ∎ 



Geometry without Multiplication  Victor Aguilar 

188 
 

Napoleon Theorem 

The centers of equilateral triangles external to triangle sides form an equilateral triangle. 

 

 Circumcenter Proof 

Given 𝐸𝐹𝐺, let 𝐺′′, 𝐸′′, 𝐹′′ be the apexes of equilateral triangles built on the exteriors of 

𝐸𝐹, 𝐹𝐺, 𝐺𝐸, respectively.  Let 𝑂𝐸 , 𝑂𝐹, 𝑂𝐺 be the circumcenters of 𝐸′′𝐹𝐺, 𝐸𝐹′′𝐺, 𝐸𝐹𝐺′′, 

respectively.  By the cyclic quadrilateral theorem corollary, they are concurrent at a point, 

𝑃.  By the common chord theorem, their common chords mediate their lines of centers.  

If ∠𝑂𝐸 , ∠𝑂𝐹 and ∠𝑂𝐺  are the interior angles of 𝑂𝐸𝑂𝐹𝑂𝐺, then ∠𝑂𝐸 + ∠𝐹𝑃𝐺 = 𝜎 and 

∠𝑂𝐹 + ∠𝐺𝑃𝐸 = 𝜎 and ∠𝑂𝐺 + ∠𝐸𝑃𝐹 = 𝜎 by the right cyclic theorem.  ∠𝐸′′ + ∠𝐹𝑃𝐺 = 𝜎 

and ∠𝐹′′ + ∠𝐺𝑃𝐸 = 𝜎 and ∠𝐺′′ + ∠𝐸𝑃𝐹 = 𝜎 by the cyclic quadrilateral theorem.  Thus, 

∠𝑂𝐸 = ∠𝐸′′ and ∠𝑂𝐹 = ∠𝐹′′ and ∠𝑂𝐺 = ∠𝐺′′, so 𝑂𝐸𝑂𝐹𝑂𝐺 is equilateral.           ∎ 

 

Application of the cyclic quadrilateral theorem corollary is easy because all equilateral triangles 

are similar, no matter how the vertices are ordered.  But any three similar triangles built on the 

sides of a triangle satisfy this requirement if their apexes differ; that is, 𝐸′′𝐹𝐺~𝐸𝐹′′𝐺~𝐸𝐹𝐺′′. 

 

Red belts will learn of the Miquel theorem:  Given 𝐸𝐹𝐺 and arbitrary points 𝐽, 𝐾, 𝐿 on 𝐸𝐹, 𝐹𝐺, 𝐺𝐸, 

respectively, the circumcircles of 𝐸𝐽𝐿, 𝐹𝐾𝐽 and 𝐺𝐿𝐾 are concurrent.  𝐸, 𝐹, 𝐺 are on the sides of 

the triangle of excenters, 𝑋𝑌𝑍; thus, the Miquel concurrency is a way to make 𝐸𝐹𝑋~𝐸𝑌𝐺~𝑍𝐹𝐺. 

 

Lemma 4.3 

If 𝐸𝐹𝐺~𝐽𝐾𝐿 then 𝐸𝑀𝐸𝐹𝐺~𝐽𝑀𝐽𝐾𝐿. 

 

Butterfly Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic with circumcenter 𝑂 and bi-medial 𝑇, 𝑇 is the midpoint of a chord 

perpendicular to 𝑂𝑇⃡⃗⃗⃗  ⃗; let it intersect 𝐸𝐹 at 𝐽 and 𝐺𝐻 at 𝐾.  Then, 𝑇𝐽 = 𝑇𝐾. 
 

In the classic figure that looks like a butterfly, 𝑀𝐸𝐹 , 𝑀𝐺𝐻 and 𝑂 are all on the same side of 𝐽𝐾⃡⃗⃗⃗ ; we 

will prove the theorem for this case.  The other cases are analogous and will be left as exercises. 

 

Green Belt Proof 

𝐸𝐹𝑇~𝐻𝐺𝑇 by the intersecting chords similarity theorem.  𝐸𝑀𝐸𝐹𝑇~𝐻𝑀𝐺𝐻𝑇 by lemma 4.3 

and so ∠𝐸𝑀𝐸𝐹𝑇 = ∠𝐻𝑀𝐺𝐻𝑇.  ∠𝐸𝑀𝐸𝐹𝑂 = 𝜌 = ∠𝐻𝑀𝐺𝐻𝑂 by the diameter and chord 

theorem.  Thus, 𝐽𝑀𝐸𝐹𝑂𝑇 and 𝐾𝑀𝐺𝐻𝑂𝑇 are cyclic by the cyclic quadrilateral theorem 

converse.  ∠𝐽𝑀𝐸𝐹𝑇 = ∠𝐽𝑂𝑇 and ∠𝐾𝑀𝐺𝐻𝑇 = ∠𝐾𝑂𝑇 by the inscribed angle theorem; so, 

by transitivity, ∠𝐽𝑂𝑇 = ∠𝐾𝑂𝑇.  By ASA, 𝑂𝑇𝐽 ≅ 𝑂𝑇𝐾, so 𝑇𝐽 = 𝑇𝐾.   • 
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Triangle Frustum Theorem III 

Given 𝐸𝐹𝐺𝐻 and its bi-medial 𝑇, 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ if and only if the circumcircles of 𝐸𝐹𝑇 and 𝐺𝐻𝑇 touch. 

 

 Proof 

Assume that 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗.  𝑂1 and 𝑂2 are the circumcenters of 𝐸𝐹𝑇 and 𝐺𝐻𝑇, respectively.  

∠𝐸𝐹𝐻 = ∠𝐹𝐻𝐺 = 𝛼 by the transversal theorem; thus, ∠𝐸𝑂1𝑇 = ∠𝐺𝑂2𝑇 = 2𝛼 by the 

inscribed angle theorem.  By the isosceles angle theorem,  ∠𝐸𝑇𝑂1 = ∠𝐺𝑇𝑂2 = 𝜌 − 𝛼.  By 

the vertical angles theorem,  𝑇 is collinear with 𝑂1 and 𝑂2.  By the common point theorem, 

the circumcircles of 𝐸𝐹𝑇 and 𝐺𝐻𝑇 touch.      • 

 

Proof of the converse is left as an exercise.  Note that the vertical angles theorem is biconditional; 

most textbooks assume collinearity and prove the angles equal, but they neglect the converse. 
 

Next, in spiral similarity, we assume that 𝑆 and 𝐻 are on opposite sides of 𝐸𝐺⃡⃗⃗⃗  ⃗.  Proof for 𝑆 and 𝐻 

on the same side of 𝐸𝐺⃡⃗⃗⃗  ⃗ is analogous and is left as an exercise.  
 

Spiral Similarity Theorem 

Given 𝐸𝐹𝐺𝐻 with bi-medial 𝑇 and 𝐸𝐹⃡⃗⃗⃗  ⃗ ∦ 𝐺𝐻⃡⃗⃗⃗  ⃗, if 𝑆 is the other intersection of the circumcircles of 

𝐸𝐹𝑇 and 𝐺𝐻𝑇, then 𝐸𝐹𝑆~𝐺𝐻𝑆. 
 

 Proof 

By triangle frustum theorem III, the circumcircles of 𝐸𝐹𝑇 and 𝐺𝐻𝑇 intersect at two points, 

𝑆 and 𝑇.  ∠𝐸𝑆𝐹 = ∠𝐸𝑇𝐹 = ∠𝐻𝑇𝐺 = ∠𝐻𝑆𝐺 by the inscribed angle and vertical angles 

theorems.  By supplementarity, ∠𝑆𝑇𝐺 + ∠𝐺𝑇𝐻 = 𝜎 − ∠𝐹𝑇𝑆.  By the cyclic quadrilateral 

theorem, ∠𝑆𝑇𝐺 + ∠𝐺𝑇𝐻 = 𝜎 − ∠𝑆𝐺𝐻.  Thus, ∠𝐹𝑇𝑆 = ∠𝑆𝐺𝐻.  By the inscribed angle 

theorem, ∠𝐹𝐸𝑆 = ∠𝑆𝐺𝐻.  With ∠𝐸𝑆𝐹 = ∠𝐻𝑆𝐺, by AA similarity, 𝐸𝐹𝑆~𝐺𝐻𝑆.          ∎ 
 

Spiral Similarity Theorem Converse 

Given 𝐸𝐹𝐺𝐻 and 𝑆 such that 𝐸𝐹𝑆~𝐺𝐻𝑆, if 𝑇 is another intersection of the circumcircles of 𝐸𝐹𝑆 

and 𝐺𝐻𝑆, then 𝐸𝐹⃡⃗⃗⃗  ⃗ ∦ 𝐺𝐻⃡⃗⃗⃗  ⃗ and 𝑇 is the bi-medial of 𝐸𝐹𝐺𝐻. 

 

 Proof 

By similarity, ∠𝐹𝐸𝑆 = ∠𝐻𝐺𝑆.  By the inscribed angle theorem, ∠𝐹𝐸𝑆 = ∠𝐹𝑇𝑆.  Thus, 

∠𝐻𝐺𝑆 = ∠𝐹𝑇𝑆.  By the cyclic quadrilateral theorem, ∠𝑆𝑇𝐺 + ∠𝐺𝑇𝐻 = 𝜎 − ∠𝐻𝐺𝑆, so 

∠𝑆𝑇𝐺 + ∠𝐺𝑇𝐻 + ∠𝐹𝑇𝑆 = 𝜎 and 𝐹, 𝑇, 𝐻 are collinear.  By similarity, ∠𝐸𝑆𝐹 = ∠𝐺𝑆𝐻.  By 

the inscribed angle theorem, ∠𝐸𝑆𝐹 = ∠𝐸𝑇𝐹 and ∠𝐺𝑆𝐻 = ∠𝐺𝑇𝐻, so ∠𝐸𝑇𝐹 = ∠𝐺𝑇𝐻.  By 

the vertical angles theorem, 𝐸, 𝑇, 𝐺 are collinear.  Thus, by both collinearities, 𝑇 is the bi-

medial of 𝐸𝐹𝐺𝐻.  𝑆 and 𝑇 are distinct; so, by triangle frustum theorem III, 𝐸𝐹⃡⃗⃗⃗  ⃗ ∦ 𝐺𝐻⃡⃗⃗⃗  ⃗.    ∎ 
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We will call the difference of the base angles of a triangle its skew angle. 

 

Construction 4.18 

Construct a triangle given its circumradius, the sum of its legs and its skew angle. 

 

 Solution 

If the skew angle is zero, then the triangle is isosceles.  The legs are half the sum of sides; 

draw a circle of the given radius and inscribe the triangle in it.  The problem is solved. 

 

If the skew angle is not zero, estimate where to cut the sum of sides with 𝐺𝐸 < 𝐹𝐺 and 

inscribe 𝐸𝐹𝐺 in a circle of the given radius so 𝐹𝐺 + 𝐺𝐸 is the sum of legs.  Find 𝐽 on the 

circle so 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐽⃡⃗  ⃗.  By the parallels and circle theorem, 𝐸𝐺 = 𝐹𝐽, so 𝐸𝐹𝐽𝐺 is either a 

rectangle or an isosceles triangle frustum.  By the rectangle or isosceles triangle frustum 

theorem, 𝐸𝐽 = 𝐹𝐺.  Thus, the sum of the legs of 𝐽𝐺𝐸 equals the given sum of 𝐸𝐹𝐺 legs. 

 

∠𝐺𝐸𝐽 = ∠𝐺𝐸𝐹 − ∠𝐽𝐸𝐹    Addition 

             = ∠𝐺𝐸𝐹 − ∠𝐸𝐽𝐺    Transversal theorem 

             = ∠𝐺𝐸𝐹 − ∠𝐸𝐹𝐺    Inscribed angle theorem 

 

∠𝐺𝐸𝐽 is the given skew angle.  By the inscribed angle theorem, inscribing ∠𝐺𝐸𝐽 in the 

circle of given radius fully defines 𝐺𝐽, so we have the base, apex angle and sum of legs of 

𝐽𝐺𝐸.  Construct it by C. 4.2.  By C. 3.3, find 𝐹 on the circle to get 𝐸𝐹𝐺.           ∎ 

 

The hypothesis is that C. 4.2 is relevant.  If given a triangle construction problem on an open-

book exam, it is always a good idea to review those that are in the book.  You might find it!  If all 

that is being asked of you is to open your textbook to the correct page and copy the solution onto 

your exam paper, it would be lame to miss the question.  In this case, C. 4.2 is the only solved 

triangle construction that requires the sum of legs.  It also requires the base and the apex angle. 

Since you are given the circumradius, the next hypothesis is that the inscribed angle theorem is 

relevant.  Easy!  But the reality is that most students just sit and stare with no idea what to do.  

The discussion is that there are two solutions, one with 𝐺𝐸 < 𝐹𝐺 and one with 𝐹𝐺 < 𝐺𝐸. 

 

Construction 4.19 

Construct a triangle given its circumradius, the sum of its legs and the sum of its base angles. 

 

Being given the sum of the base angles makes it easy.  Being given the difference is interesting 

because this angle can be constructed elsewhere, and it has practical applications in engineering. 
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Skew is a term that is used in many disciplines with various meanings but – generally speaking – 

it refers to things that are not symmetrical around a vertical line.  In geometry, the only triangle 

with zero skew is the isosceles triangle, which is symmetrical around its center line.  Bridge 

trusses are usually isosceles triangles except when one riverbank is higher than the other; bridges 

that tilt are called skew bridges.  Having more weight on one end than the other is complicated. 

 

The triangle area theorem could be restated to say that, if the base and the height remain 

unchanged, skewing a triangle does not affect its area.  This result is preliminary to the design of 

skew bridges, but they are considered advanced problems in structural engineering and are 

beyond the scope of this book.  We will construct triangles given the skew angle and other data.  

Recall the notation 𝐺∗: = 𝐺𝐼⃗⃗⃗⃗ ∩ 𝐸𝐹, the intersection of the apex angle bisector with the base. 

 

Skew Angle Theorem 

The angle between the altitude from the apex and the circumdiameter through the apex is equal 

to the skew angle.  It is bisected by the apex angle bisector and the difference of the angles that 

this bisector makes with the base is also the skew angle. 

 

 Proof 

Given 𝐸𝐹𝐺 acute with 𝐺′ the foot of the apex altitude and 𝐺′′ diametrically opposed to 𝐺, 

assume that 𝐺′ is on 𝐸𝑀𝐸𝐹; if it is not, switch 𝐸 and 𝐹.  By the inscribed angle theorem, 

∠𝐸 = ∠𝐺𝐺′′𝐹.  By Thales’ diameter theorem and complementarity, ∠𝐸𝐺𝐺′ = ∠𝐹𝐺𝐺′′. 

 ∠𝐺′𝐺𝐺′′ = ∠𝐺 − 2(𝜌 − ∠𝐸)   Addition of angles at the apex 

                   = ∠𝐺 + 2∠𝐸 − 𝜎   Expand 

                   = ∠𝐺 + 2∠𝐸 − ∠𝐸 − ∠𝐹 − ∠𝐺 Angle sum theorem 

                   = ∠𝐸 − ∠𝐹    Simplify 

 By subtracting ∠𝐸𝐺𝐺′ and ∠𝐹𝐺𝐺′′ from ∠𝐺, its bisector also bisects ∠𝐺′𝐺𝐺′′. 

 

 ∠𝐹𝐺∗𝐺 = 𝜎 − ∠𝐹 − ∠𝐹𝐺𝐺∗    Angle sum theorem 

 ∠𝐸𝐺∗𝐺 = 𝜎 − ∠𝐸 − ∠𝐸𝐺𝐺∗    Angle sum theorem 

 ∠𝐹𝐺∗𝐺 − ∠𝐸𝐺∗𝐺 = ∠𝐸 − ∠𝐹 + ∠𝐸𝐺𝐺∗ − ∠𝐹𝐺𝐺∗ Subtraction 

                               = ∠𝐸 − ∠𝐹    Definition of angle bisector  

 Proof of this for 𝐸𝐹𝐺 obtuse is analogous.               ∎ 

 

Structural engineers call ∠𝐺′𝐺𝐺′′ the skew angle while we call ∠𝐸 − ∠𝐹 this; it is the same thing.  

In these constructions, we will assume that ∠𝐹 < ∠𝐸, but can always re-label 𝐸 and 𝐹 if needed. 

 

Construction 4.20 

Construct a triangle given the apex angle bisector, the altitude, and the median to the base. 
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 Solution 

By HL, construct 𝐺∗𝐺𝐺′ and 𝑀𝐸𝐹𝐺𝐺′.  By C. 1.5, replicate ∠𝐺∗𝐺𝐺′ on the other side of 

𝐺𝐺∗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ .  By the skew angle theorem, this ray goes through the circumcenter.  By the 

circumcenter theorem, the mediator of 𝐸𝐹 also goes through the circumcenter, which 

locates it.  Draw a circle around it through 𝐺.  𝐺′𝑀𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  intersects the circle at 𝐸 and 𝐹.         ∎ 

 

The next construction is easy, so I will just outline the three solutions. 

 

Construction 4.21 

Construct a triangle given its circumradius, its skew angle and (1) the median to the base, (2) the 

apex altitude, or (3) the apex angle bisector. 

 

 Solution 

1. Draw the circumcircle around 𝑂 with radius 𝑅.  Choose 𝐺 and draw a ray the skew 

angle off 𝐺𝑂⃗⃗⃗⃗  ⃗.  Draw a parallel to it through 𝑂.  Find 𝑀𝐸𝐹 on it the given length from 𝐺. 

2. By the skew angle theorem and ASA, construct 𝐺′𝐺𝐺′′ with 𝐺′′ the intersection of 𝐺𝑂⃗⃗⃗⃗  ⃗ 

and 𝐸𝐹⃡⃗⃗⃗  ⃗.  From 𝐺, lay off 𝑅 to 𝑂; draw the circumcircle, 𝜔.  𝐺′𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ cuts 𝜔 at 𝐸 and 𝐹. 

3. The same as (2) but using AAS and half the skew angle to construct 𝐺′𝐺𝐺∗.          ∎ 

 

Construction 4.22 

Construct a triangle given the apex angle bisector, the apex altitude and the base. 

 

 Solution 

By HL, construct 𝐺∗𝐺𝐺′.  Guess at 𝐸 and 𝐹 on 𝐺′𝐺∗⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗   so 𝐺𝐸 < 𝐹𝐺.  Let 𝐸𝐺𝐺′  be the reflection 

of 𝐸 around 𝐺𝐺′⃡⃗ ⃗⃗⃗⃗ .  Thus, 𝐸𝐺𝐸𝐺𝐺′  is isosceles and, by the isosceles triangle theorem, 

∠𝐺′𝐸𝐺𝐺′𝐺 = ∠𝐸.  ∠𝐸𝐺𝐺′𝐺𝐹 = ∠𝐺′𝐸𝐺𝐺′𝐺 − ∠𝐹 = ∠𝐸 − ∠𝐹 by the exterior angle 

theorem.  By the skew angle theorem, ∠𝐸𝐺𝐺′𝐺𝐹 = 2∠𝐺∗𝐺𝐺′, which is known from the 

construction of 𝐺∗𝐺𝐺′.  Raise a perpendicular to 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐸 towards 𝐺 and extend 𝐸𝐺𝐺′𝐺⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ; 

call their intersection 𝐽.  By mid-segment theorem #2 and HL, 𝐽𝐸𝐺𝐺′𝐸 can be constructed 

because 𝐺′ is the midpoint of 𝐸𝐺𝐺′𝐸 and 𝐺′𝐺⃡⃗⃗⃗⃗⃗ ∥ 𝐸𝐽⃡⃗  ⃗, so 𝐸𝐽 = 2𝐺𝐺′ and 𝐺𝐺′ is given. 

 

We are given 𝐸𝐹; so, by SAS, construct the right triangle 𝐸𝐹𝐽.  We must locate 𝐺 and for 

this we have two loci:  It is on the mediator of 𝐸𝐽 and 𝐹𝐽 subtends 𝜎 − ∠𝐸𝐺𝐺′𝐺𝐹, which 

we found to be 𝜎 − 2∠𝐺∗𝐺𝐺′.  Construct this locus by P. 4.5.            ∎ 

 

The discussion is that there are two solutions, one with 𝐺𝐸 < 𝐹𝐺 and one with 𝐹𝐺 < 𝐺𝐸. 
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Mediator and Angle Bisector Theorem 

The mediator of a chord and the bisector of an angle subtended by it meet on the circumcircle. 

 

 Proof 

Given 𝐸𝐹𝐺 with circumcenter 𝑂, let 𝐿 be the intersection of a diameter through 𝑀𝐸𝐹 with 

the circumcircle, 𝜔, on the other side of 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐺.  By the diameter and chord theorem, 

∠𝐸𝑀𝐸𝐹𝐿 = ∠𝐹𝑀𝐸𝐹𝐿 = 𝜌, so 𝐸𝑀𝐸𝐹𝐿 ≅ 𝐹𝑀𝐸𝐹𝐿 by SAS.  Thus, 𝐸𝐿 = 𝐹𝐿.  By the subtend-

at-center theorem, ∠𝐸𝑂𝐿 = ∠𝐹𝑂𝐿, and, by the inscribed angle theorem, ∠𝐸𝐺𝐿 = ∠𝐹𝐺𝐿.  

So, 𝐿 is where the bisector of ∠𝐸𝐺𝐹 intersects 𝜔; that is, 𝐿 ≡ 𝐿𝐺 .  Thus, 𝐿𝐺  is both where 

the bisector of ∠𝐺 and the mediator of 𝐸𝐹 intersect 𝜔.             ∎ 

 

Angle Bisectors and Circumdiameter Theorem 

The interior and exterior bisectors of a triangle’s apex angle cut its circumcircle at the ends of a 

diameter that mediates its base. 

 

 Proof 

Given 𝐸𝐹𝐺, by the circumcenter theorem, the mediator of 𝐸𝐹 is a diameter and, by the 

mediator and angle bisector theorem, the interior bisector of ∠𝐺 intersects it at endpoint 

𝐿.  By the interior and exterior angles theorem, the interior and exterior bisectors of ∠𝐺 

are perpendicular; so, by Thales’ diameter theorem, the exterior bisector of ∠𝐺 cuts the 

circumcircle at a point diametrically opposed to 𝐿.              ∎ 

 

Half the Skew Angle Theorem 

The exterior bisector of a triangle’s apex angle makes an angle with the extension of the base that 

is half the skew angle. 

 

 Proof 

By the interior and exterior angles theorem, the exterior bisector of the apex angle is 

perpendicular to its interior bisector.  By the pairwise perpendiculars theorem, the 

exterior bisector of a triangle’s apex angle makes an angle with the extension of the base 

that is equal to the angle between the altitude from the apex and the apex angle bisector.  

By the skew angle theorem, this is half the skew angle.             ∎ 

 

Tangent and Exterior Bisector Theorem 

Given 𝐸𝐹𝐺, if the exterior bisector of ∠𝐺 cuts 𝐸𝐹⃡⃗⃗⃗  ⃗ at 𝑆 and the tangent to the circumcircle at 𝐺 

cuts 𝐸𝐹⃡⃗⃗⃗  ⃗ at 𝑇, then 𝑇 is the center of the circle through 𝑆, 𝐺 and 𝐺∗. 

 

Construct a triangle with right vertex 𝐺 that is rotated around 𝐺 by half the skew angle from 𝐺𝑂⃗⃗⃗⃗  ⃗. 
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Do you know how the Tang–Soo–Do seon-saeng [teacher] wants you to keep your feet shoulder 

width apart?  Bruce Lee was the founder of Jeet–Kune–Do, but he said the same thing: 

 

Many traditional classical stances assumed by martial artists are quite a sight.  

They range from exotic ballet-like stances to postures of squatting down in wide 

stances and grimacing as though laying an egg.  –  Bruce Lee 

 

Green belts of Geometry–Do have it easy compared to green belts of Tang–Soo–Do; not only is 

nobody trying to knock us unconscious, but, as the following theorem proves, for points on the 

circumcircle of a rectangle, the distance between the feet of the perpendiculars dropped on the 

diagonals is constant.  We will call this distance between feet a rectangle’s shoulder width. 

 

Shoulder Width Stance Theorem 

For any point on the circumcircle of a rectangle, the distance between the feet of the 

perpendiculars dropped on the diagonals is the altitude of the rectangle’s definitional triangle. 

 

 Proof 

By the rectangle theorem, perpendiculars dropped on diagonals from the vertices are 

equal; so, for 𝐸𝐹𝐺𝐻, medial point 𝑇, we need only consider points 𝑃 on the arc from 𝐸 

to 𝐹.  Let 𝑃′, 𝑃′′, 𝐸′ be the feet of perpendiculars dropped onto 𝐹𝐻, 𝐸𝐺, 𝐹𝐻, respectively. 

 

Case One:  𝐸𝐹𝐺𝐻 is a square. 

By the Lambert theorem, 𝑃𝑃′𝑇𝑃′′ is a rectangle.  By the rectangle theorem, its diagonals, 

𝑇𝑃 = 𝑃′𝑃′′, are equal.  𝑇𝑃 = 𝑇𝐸 are both radii.  By transitivity, 𝑇𝐸 = 𝑃′𝑃′′. • 

 

Case Two:  𝐸𝐹𝐺𝐻 is not a square and 𝑃𝑃′𝑇𝑃′′ is a quadrilateral, with vertices in this order. 

𝑃𝑃′𝑇𝑃′′ is cyclic by the cyclic quadrilateral theorem converse.  Draw a ray 𝑇𝑆⃗⃗ ⃗⃗   such that 

∠𝐸𝑇𝐸′ = ∠𝑃𝑇𝑆 = 𝛼 and 𝑆 is the foot of the perpendicular dropped from 𝑃 onto 𝑇𝑆⃗⃗ ⃗⃗  .  By 

Thales’ diameter theorem, 𝑆 is on the 𝑃𝑃′𝑇𝑃′′ circle.  By the inscribed angle theorem, 

∠𝑃′𝑃′′𝑃 = ∠𝑃′𝑇𝑃 = 𝛽 and ∠𝑃′′𝑆𝑃 = ∠𝑃′′𝑃′𝑃.  By AAS, 𝑇𝐸′𝐸 ≅ 𝑇𝑆𝑃, so 𝐸′𝐸 = 𝑆𝑃. 

∠𝑆𝑃𝑃′′ = 𝜎 − ∠𝑆𝑇𝑃′′   Cyclic quadrilateral theorem 

               = 𝜎 − ∠𝑃𝑇𝑃′′ − 𝛼   Addition and substitute 𝛼 = ∠𝑃𝑇𝑆 

               = 𝜎 − (𝜎 − 𝛼 − 𝛽) − 𝛼  𝛼, 𝛽 and ∠𝑃𝑇𝑃′′ are on a side of 𝐹𝐻⃡⃗⃗⃗  ⃗ 

               = ∠𝑃′𝑃′′𝑃    Simplify and substitute 𝛽 = ∠𝑃′𝑃′′𝑃 

By AAS, 𝑆𝑃𝑃′′ ≅ 𝑃′𝑃′′𝑃, so 𝑆𝑃 = 𝑃′𝑃′′.  By transitivity, 𝐸′𝐸 = 𝑃′𝑃′′.  • 

 

If 𝐹𝐺 < 𝐸𝐹 and 𝑃 is near 𝐸 or 𝐹, 𝑃𝑃′𝑇𝑃′′ may not be a quadrilateral.  This is left as an exercise. 
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Inscribed Angle Theorem Converse 

If two equal angles with vertices on the same side of a segment are subtended by it, their vertices 

and the endpoints of the segment are corners of a cyclic quadrilateral. 

 

Problem 4.11  Given 𝐸𝐹𝐺𝐻 cyclic, its center 𝑂, and its bi-medial 𝑇, assume 𝑃:= 𝐸𝐹⃗⃗⃗⃗  ⃗ ∩ 𝐻𝐺⃗⃗⃗⃗⃗⃗  exists.  

Prove that the bisectors of ∠𝑃 = ∠𝐸𝑃𝐻 and ∠𝑇 = ∠𝐸𝑇𝐹 are perpendicular. 

 

 Solution 

If 𝑇 is on the bisector of ∠𝑃, the solution is easy.  Assume that it is on the same side as 𝐺; 

if it is not, switch the 𝐹 and 𝐺 labels, and switch the 𝐸 and 𝐻 labels.  Let 𝑀 be the 

intersection of the bisectors of ∠𝑃 and ∠𝑇.  Let 𝐽 and 𝐾 be the intersections of the bisector 

of ∠𝑃 with 𝐺𝐸 and 𝐹𝐻, respectively, so ∠𝐽 = ∠𝑇𝐽𝐾 and ∠𝐾 = ∠𝑇𝐾𝐽. 

 ∠𝑃 =
1

2
(∠𝐸𝑂𝐻 − ∠𝐹𝑂𝐺)   Intersecting secants angle theorem 

        = ∠𝐸𝐹𝐻 − ∠𝐹𝐻𝐺   Inscribed angle theorem 

 ∠𝐾 = ∠𝐸𝐹𝐻 −
1

2
∠𝑃    Exterior angle theorem and rearrange 

        = ∠𝐸𝐹𝐻 −
1

2
(∠𝐸𝐹𝐻 − ∠𝐹𝐻𝐺)  Substitution 

        =
1

2
(∠𝐸𝐹𝐻 + ∠𝐹𝐻𝐺)   Simplify 

 ∠𝑇 = 𝜎 − ∠𝐸𝐹𝐻 − ∠𝐹𝐸𝐺   Angle sum theorem and extension 

        = 𝜎 − ∠𝐸𝐹𝐻 − ∠𝐹𝐻𝐺   Inscribed angle theorem 

 ∠𝐽 = 𝜎 − ∠𝑇 − ∠𝐾    Angle sum theorem and rearrange 

        = 𝜎 − (𝜎 − ∠𝐸𝐹𝐻 − ∠𝐹𝐻𝐺) −
1

2
(∠𝐸𝐹𝐻 + ∠𝐹𝐻𝐺)  Substitution 

        =
1

2
(∠𝐸𝐹𝐻 + ∠𝐹𝐻𝐺)   Simplify 

Thus, ∠𝐽 = ∠𝐾.  By the isosceles triangle theorem converse, 𝐽𝑇𝐾 is isosceles and, by the 

center line theorem, ∠𝑀 is right.                ∎ 

 

Cyclic Quadrilateral Mediators Theorem 

A quadrilateral is cyclic if and only if the mediators of any three of its sides are concurrent. 

 

 Proof 

Assume that  𝐸𝐹𝐺𝐻 is cyclic, so 𝐸𝑂 = 𝐹𝑂 = 𝐺𝑂 = 𝐻𝑂.  Thus, by the mediator theorem, 

the center, 𝑂, lies on all four of the mediators. 

 

Given quadrilateral 𝐸𝐹𝐺𝐻, assume that the mediators of 𝐸𝐹, 𝐹𝐺 and 𝐺𝐻 are concurrent 

at 𝑂.  By SAS, 𝑀𝐸𝐹𝐸𝑂 ≅ 𝑀𝐸𝐹𝐹𝑂 and 𝑀𝐹𝐺𝐹𝑂 ≅ 𝑀𝐹𝐺𝐺𝑂 and 𝑀𝐺𝐻𝐺𝑂 ≅ 𝑀𝐺𝐻𝐻𝑂, which 

holds the equalities, 𝐸𝑂 = 𝐹𝑂 = 𝐺𝑂 = 𝐻𝑂.  Thus, 𝐸𝐹𝐺𝐻 is cyclic.            ∎ 
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Like the Lambert theorem, this seems inconsequential until you realize that you can rarely prove 

all four mediators concurrent, but you often have three of them concurrent, and that is sufficient.   

 

In general, a sum of segments can only be compared to a longer segment if you can get their 

lengths laid off on the longer segment.  In the following problem, 𝐸𝐹 and 𝐻𝐺 each share an 

endpoint with 𝐹𝐺, so 𝐹𝐺 = 𝐸𝐹 + 𝐻𝐺 only if there is 𝐽 on 𝐹𝐺 such that 𝐸𝐹𝐽 and 𝐻𝐺𝐽 are isosceles. 
 

Problem 4.12  𝐸𝐹𝐺𝐻 is cyclic.  There is also a circle that has its center, 𝑂1, on 𝐹𝐺 and touches 

𝐸𝐹⃗⃗⃗⃗  ⃗, 𝐻𝐺⃗⃗⃗⃗⃗⃗  and 𝐸𝐻.  Prove that 𝐹𝐺 = 𝐸𝐹 + 𝐻𝐺. 

 

 Solution 

By the two tangents theorem, 𝑂1 is on the bisectors of ∠𝐸 and ∠𝐻.  Let 𝐽 be on 𝐹𝐺 such 

that 𝐽𝐺 = 𝐻𝐺.  We will do case one, 𝐽 is inside 𝑂1𝐺, and leave the other cases as exercises.   
 

By the isosceles angle theorem, ∠𝐺𝐽𝐻 = 𝜌 −
1

2
∠𝐺.  By the cyclic quadrilateral theorem, 

∠𝐸 + ∠𝐺 = 𝜎; thus, 
1

2
∠𝐺 = 𝜌 −

1

2
∠𝐸.  By substitution, ∠𝐺𝐽𝐻 =

1

2
∠𝐸 = ∠𝑂1𝐸𝐻.  But 

∠𝐺𝐽𝐻 + ∠𝑂1𝐽𝐻 = 𝜎, so ∠𝑂1𝐸𝐻 + ∠𝑂1𝐽𝐻 = 𝜎 and, by the cyclic quadrilateral theorem 

converse, 𝐸𝑂1𝐽𝐻 is cyclic.  By the inscribed angle theorem, ∠𝑂1𝐻𝐸 = ∠𝑂1𝐽𝐸, which is 

∠𝑂1𝐻𝐸 = ∠𝐹𝐽𝐸 by extension.  But ∠𝐹 + ∠𝐻 = 𝜎 by the cyclic quadrilateral theorem, 

which implies 
1

2
∠𝐻 = 𝜌 −

1

2
∠𝐹.  By substitution, ∠𝐹𝐽𝐸 = 𝜌 −

1

2
∠𝐹 and, by the angle sum 

theorem, ∠𝐽𝐸𝐹 = 𝜌 −
1

2
∠𝐹.  By the isosceles triangle theorem converse, 𝐸𝐽𝐹 is isosceles 

with 𝐹𝐽 = 𝐸𝐹.  Thus, 𝐹𝐺 = 𝐹𝐽 + 𝐽𝐺 = 𝐸𝐹 + 𝐻𝐺.     • 
 

Orthocenter and Circumcircle Theorem   

𝐻 is the orthocenter of 𝐸𝐹𝐺 if and only if its reflections around the sides are on the circumcircle. 
 

 Proof 

Let 𝐻𝐸 , 𝐻𝐹 , 𝐻𝐺  be the pedal points of 𝐻 in 𝐸𝐹𝐺 and 𝐻𝐹𝐺  be the reflection of 𝐻 around 𝐹𝐺⃡⃗⃗⃗  ⃗.  

By SAS, 𝐻𝐻𝐸𝐺 ≅ 𝐻𝐹𝐺𝐻𝐸𝐺, so ∠𝐻𝐸𝐻𝐺 = ∠𝐻𝐸𝐻𝐹𝐺𝐺.  By the right cyclic theorem and 

supplementarity, ∠𝐻𝐸𝐻𝐺 = ∠𝐻𝐺𝐹𝐻𝐸.  Thus, ∠𝐸𝐻𝐹𝐺𝐺 = ∠𝐸𝐹𝐺.  By the inscribed angle 

theorem converse, 𝐸𝐹𝐻𝐹𝐺𝐺 is cyclic.  Analogously for 𝐸𝐹𝐺𝐻𝐺𝐸 and 𝐸𝐻𝐸𝐹𝐹𝐺. • 
 

Proof of the converse is left as an exercise; 𝐻𝐸𝐹 , 𝐻𝐹𝐺 , 𝐻𝐺𝐸  will be called orthic reflections. 
 

Orthocenter and Circumcenter Theorem 

Given 𝐸𝐹𝐺 with 𝐸𝐺 ≠ 𝐹𝐺, orthocenter 𝐻, and 𝐺′′ diametrically opposed to 𝐺 in the circumcircle, 

then 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐸𝐹𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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The orthocenter is 𝐻:= 𝐸𝐸′⃡⃗ ⃗⃗⃗⃗ ∩ 𝐹𝐹′⃡⃗⃗⃗⃗⃗ ∩ 𝐺𝐺′⃡⃗ ⃗⃗⃗⃗  in 𝐸𝐹𝐺.  For 𝐸𝐹𝐺 not right, if ∠𝐺 < 𝜌, then 𝐸𝐺′𝐻𝐹′, 

𝐹𝐸′𝐻𝐺′ and 𝐸𝐹𝐸′𝐹′ are cyclic; if ∠𝐺 > 𝜌, then 𝐸𝐺′𝐺𝐸′, 𝐹𝐹′𝐺𝐺′ and 𝐸𝐹𝐹′𝐸′ are cyclic.  The 

reasoning is analogous, but the order of the vertices is different depending on whether 𝐻 is inside 

or outside 𝐸𝐹𝐺.  When working with orthocenters, failure to test your proof on acute, right, and 

obtuse triangles is a pitfall.  Incenter and medial point theorems are less treacherous!   

 

Problem 4.13  Given 𝐸𝐹𝐺 and its orthocenter 𝐻, prove the following: 

1. Any one of 𝐸, 𝐹, 𝐺, 𝐻 is the orthocenter of the triangle whose vertices are the other three. 

2. The four triangles whose vertices are any three of 𝐸, 𝐹, 𝐺, 𝐻 all have equal circumcircles. 

3. If four equal circles intersect in four points, 𝐸, 𝐹, 𝐺, 𝐻, then 𝐻 is the orthocenter of 𝐸𝐹𝐺. 

4. 𝐸𝐹𝐺 ≅ 𝑂1𝑂2𝑂3 with 𝑂1, 𝑂2, 𝑂3 the circumcenters of 𝐹𝐻𝐺, 𝐺𝐻𝐸, 𝐸𝐻𝐹, respectively.  Also, 

if you swap 𝐻 with 𝐸, 𝐹 or 𝐺 and the circumcenter of 𝐸𝐹𝐺 with 𝑂1, 𝑂2 or 𝑂3, respectively. 

 

Problem 4.14  Given 𝐸𝐹𝐺𝐻 cyclic and 𝐼𝐸 , 𝐼𝐹 , 𝐼𝐺 , 𝐼𝐻 the incenters of 𝐸𝐹𝐻, 𝐹𝐺𝐸, 𝐺𝐻𝐹,𝐻𝐸𝐺, 

respectively, prove that 𝐼𝐸𝐼𝐹𝐼𝐺𝐼𝐻 is a rectangle. 

 

Prove that 𝐸𝐹𝐼𝐹𝐼𝐸  and 𝐹𝐺𝐼𝐺𝐼𝐹 are cyclic, find ∠𝐹𝐼𝐹𝐼𝐸 + ∠𝐹𝐼𝐹𝐼𝐺 in terms of ∠𝐸 and ∠𝐺, which 

are supplementary, so ∠𝐹𝐼𝐹𝐼𝐸 + ∠𝐹𝐼𝐹𝐼𝐺 = 2𝜎 − 𝜌 and ∠𝐼𝐸𝐼𝐹𝐼𝐺 = 𝜌 by closing the horizon. 

 

Quadrilateral Angle Bisectors Theorem 

The bisectors of the external angles of a quadrilateral form a cyclic quadrilateral. 

 

Proof 

Given quadrilateral 𝐸𝐹𝐺𝐻, let 𝑃𝐸𝐹 , 𝑃𝐹𝐺 , 𝑃𝐺𝐻 , 𝑃𝐻𝐸 be the intersections of the external angle 

bisectors such that 𝐸𝐹𝑃𝐸𝐹 , 𝐹𝐺𝑃𝐹𝐺 , 𝐺𝐻𝑃𝐺𝐻 , 𝐻𝐸𝑃𝐻𝐸  are triangles built on the sides of 

𝐸𝐹𝐺𝐻 and exterior to it.  𝑃𝐸𝐹 , 𝑃𝐹𝐺 , 𝑃𝐺𝐻, 𝑃𝐻𝐸  are outside 𝐸𝐹𝐺𝐻 because, in Geometry–Do, 

all quadrilaterals are convex.  In this theorem, 𝑃𝐸𝐹 is not the reflection of 𝑃 around 𝐸𝐹⃡⃗⃗⃗  ⃗, 

so our notation defies our convention, but subscripts seemed the clearest way to say this. 

 

 ∠𝐸𝑃𝐸𝐹𝐹 = 𝜎 −
1

2
(𝜎 − ∠𝐸) −

1

2
(𝜎 − ∠𝐹)     Angle sum theorem 

 ∠𝐸𝑃𝐺𝐻𝐹 = 𝜎 −
1

2
(𝜎 − ∠𝐺) −

1

2
(𝜎 − ∠𝐻)     Angle sum theorem 

 ∠𝐸𝑃𝐸𝐹𝐹 + ∠𝐸𝑃𝐺𝐻𝐹 = 2𝜎 −
1

2
(4𝜎 − (∠𝐸 + ∠𝐹 + ∠𝐺 + ∠𝐻)) Addition 

 ∠𝐸𝑃𝐸𝐹𝐹 + ∠𝐸𝑃𝐺𝐻𝐹 = 2𝜎 −
1

2
(4𝜎 − 2𝜎)  Quadrilateral angle sum theorem 

 ∠𝐸𝑃𝐸𝐹𝐹 + ∠𝐸𝑃𝐺𝐻𝐹 = 𝜎    Subtraction 

 𝑃𝐸𝐹𝑃𝐹𝐺𝑃𝐺𝐻𝑃𝐻𝐸 is cyclic by the cyclic quadrilateral theorem converse.           ∎ 
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It is sometimes true that the bisectors of the internal angles of a quadrilateral form a cyclic 

quadrilateral, but stating this as a theorem would require caveats, like for squares and kites.  I 

will just leave the student with a reminder to consider this if given a problem that mentions all 

four internal angle bisectors.  The proof is analogous, but with use of the vertical angles theorem. 

 

Finally, let us conclude this chapter with something fun; how to be a malvoisine, or a bad 

neighbor.  Imagine that this is the Middle Ages and you are laying siege to a walled city, your only 

projectile weapon being the trebuchet.  The city walls are square, with the citadel in the center.  

The trebuchet is a large device that cannot traverse once emplaced.  The beaten zone is the area 

where most of the stones fall, and this can be moved forwards or backwards by launching 

different sized stones.  A sextant can be used to precisely measure the angle between two 

objects, but there is no means of measuring distances while under fire.  You must attack at a slant 

because the defenders have trebuchets prepositioned to fire down the mediator of each wall. 

 

Problem 4.15  Using only a sextant, position a trebuchet so it fires directly at the citadel in the 

center of a square walled city; you cannot see over the wall and have no distance measurements. 
 

Solution 

Push the trebuchet forward until you find a spot where the wall subtends a right angle.  

By the cyclic quadrilateral theorem converse, you, the corners of the wall and the citadel 

are concyclic.  By the mediator and angle bisector theorem, the bisector of your right 

angle with the corners is a straight shot at the citadel.  Thus, you want the angles between 

your trebuchet’s aiming point and each corner of the wall to be half of a right angle.     ∎ 

 

If you know that you will always be attacking square forts, a sextant is unnecessary.  Mount 

boards on the front of the trebuchet aiming 
1

2
𝜌 to each side.  Mount them so the gunner can sit 

behind the ballast and straddling the projectile chute to look down each board like a gunsight. 

 

Problem 4.16 

You are sneaking up on the Pentagon with a trebuchet in what must be the most ill-conceived act 

of terrorism ever.  How do you use a sextant to aim for the facility’s center? 

 

By construction 3.19, you can construct a regular pentagon for use in solving this problem. 
 

Problem 4.17 

The enemy has three antiaircraft guns in an equilateral triangle with a munitions dump at the 

center.  Afraid to attack from the air, you are sneaking up on it with a self-propelled mortar.  But 

you are afraid to reveal your position with a laser rangefinder, so you plan to aim over the 

munitions dump and then walk your shells back until you hear a secondary explosion.  How? 
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Green Belt Exit Exam   

 

1. 𝐸𝐹𝐺𝐻 is cyclic and orthodiagonal; 𝐺′′ is diametrically opposite 𝐺.  Prove that 𝐻𝐺′′ = 𝐸𝐹. 

 

2. Given 𝐸𝐹𝐺 with orthocenter 𝐻, prove that the circumradii of 𝐸𝐹𝐻, 𝐹𝐺𝐻 and 𝐺𝐸𝐻 equal 

that of 𝐸𝐹𝐺. 

 

3. Given 𝐸𝐹𝐺 and 𝐽, 𝐾, 𝐿, construct 𝐸′′𝐹′′𝐺′′ ≅ 𝐸𝐹𝐺 such that 𝐽 is on 𝐸′′𝐹′′, 𝐾 is on 𝐹′′𝐺′′ 

and 𝐿 is on 𝐺′′𝐸′′.  𝐽 on 𝐸′′𝐹′′ can also be written using set theory notation, 𝐽 ∈ 𝐸′′𝐹′′. 

 

4. Given 𝐸𝐹𝐺𝐻 cyclic but not a kite with 𝐻𝐸𝐹𝐺  and 𝐻𝐸𝐺𝐻 the orthocenters of 𝐸𝐹𝐺 and 𝐸𝐺𝐻, 

respectively, prove that 𝐻𝐸𝐺𝐻𝐻𝐸𝐹𝐺𝐹𝐻 is a parallelogram. 

 

5. Given 𝐸𝐹𝐺 with orthocenter 𝐻, find 𝑃 on the circumcircle such that ∠𝐸𝐹𝑃 = 𝜌.  Prove 

that 𝐺𝐻 = 𝐹𝑃. 

 

6. Prove that the centers of equilateral triangles internal to triangle sides form an equilateral 

triangle. 

 

7. Construct a triangle 𝐸𝐹𝐺 given its base 𝐸𝐹and its base vertices’ altitude feet, 𝐸′ and 𝐹′. 

 

8. Johnson Theorem  

If three equal circles are concurrent, then their other three intersections define a circle of 

the same radius. 

 

9. Japanese Theorem  

When Roger Johnson visited Japan, he found, drawn on a temple wall, two figures of the 

same cyclic polygon, but partitioned into triangles differently.  In both cases, the inradii of 

the triangles had the same sum!  Prove this for a cyclic quadrilateral cut by either diagonal. 

 

10. You are the captain of a ship out of Dublin and bound for London.  As you approach the 

Cornwall peninsula counterclockwise (See the map on the next page; the range of each 

lighthouse is printed beside it.), you become disoriented in heavy fog.  The lookout reports 

that he can see three lighthouses, one dead ahead.  With a sextant, he measures the angle 

between the port and bow lighthouses as 34°, and the angle between the starboard and 

bow lighthouses as 98°.  He does not know which lighthouses he is seeing; indeed, there 

may be others in the vicinity that he does not see.  Plot a course around the peninsula. 
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Practice Problems 

 

4.18 Construct a triangle given the following information: 

1. The apex angle, apex altitude, and apex angle bisector 

2. The base, the difference of the sides, and the altitude to a side 

3. The base, the apex angle, and the sum of the altitudes to the sides 

4. A base angle, the base, and the sum of the legs 

5. A base angle, the apex altitude, and the perimeter 

6. The apex angle, the apex altitude, and the perimeter 

7. A base angle, the altitude to one leg, and the sum of the legs 

8. The apex angle and the medians to the legs 

 

4.19 Construct a parallelogram given the following information: 

1. An angle and the lengths of both altitudes 

2. The lengths of both altitudes and a diagonal 

3. The lengths of an altitude and both diagonals 

4. The lengths of one of its constituent triangles 

5. A side and a diagonal; also, the angle between them 

 

4.20 Construct a quadrilateral, 𝐸𝐹𝐺𝐻, given the following information: 

1. ∠𝐸, ∠𝐹, ∠𝐺 and the lengths of 𝐸𝐹 and 𝐸𝐻. 

2. ∠𝐹, ∠𝐺 and the lengths of 𝐸𝐹, 𝐹𝐺 and 𝐺𝐻. 

3. ∠𝐸, ∠𝐹, ∠𝐺 and the lengths of 𝐸𝐻 and 𝐺𝐻. 

 

4.21 Find the point that minimizes the sum of the distances to the vertices of a quadrilateral. 

 

4.22 Prove that parallelism is an equivalence relation.  (Euclid, Book I, Prop. 30) 

 

4.23 Given 𝐸𝐹𝐺𝐻, 𝐸, 𝐽, 𝐾, 𝐹 collinear, ∠𝐽𝐻𝐸 = ∠𝐹𝐺𝐾 and ∠𝐾𝐻𝐽 = ∠𝐾𝐺𝐽; prove that   

∠𝐽𝐺𝐸 = ∠𝐹𝐻𝐾. 

 

4.24 Prove that the sum of the legs of a right triangle equals the sum of the indiameter and the 

circumdiameter. 

 

4.25 Prove that, if a circle cuts equal segments from the sides of a quadrilateral, then the

 quadrilateral is tangential. 

 

4.26 Given 𝐸𝐹𝐺 with circumcircle 𝜔, let 𝐺′′: = 𝐻𝑀𝐸𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔.  Prove 𝑀𝐸𝐹 is the midpoint of 𝐻𝐺′′. 
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4.27 Prove that the altitude and the diameter of the circumcircle from the apex cut a chord 

from the circumcircle that is parallel to the base. 

 

4.28 Given 𝐸𝐹𝐺, draw a circle, 𝜔, around 𝐻 through 𝐺.  Let 𝑃:= 𝐺𝐸⃗⃗⃗⃗  ⃗ ∩ 𝜔 and 𝑄:= 𝐺𝐹⃗⃗⃗⃗  ⃗ ∩ 𝜔.  

Prove that 𝐸, 𝑃, 𝐻, 𝑄, 𝐹 are concyclic. 

 

4.29 Given a circle, 𝜔, and a point, 𝐻, inside it, construct a triangle 𝐸𝐹𝐺 such that 𝜔 is its 

circumcircle and 𝐻 is its orthocenter.  Is 𝐸𝐹𝐺 fully defined? 

 

4.30 Given 𝐸𝐹𝐺 with ∠𝐺 = 𝜑, prove that 𝐻𝐼 = 𝑂𝐼. 

 

4.31 Given 𝐸𝐹𝐺 acute, raise a perpendicular to 𝑂𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ through 𝑀𝐺𝐻.  Let 𝑃 and 𝑄 be its 

intersections with 𝐺𝐸 and 𝐹𝐺, respectively.  Prove that 𝑀𝑃𝑄 ≡ 𝑀𝐺𝐻. 

 

4.32 Given 𝐸𝐹𝐺 isosceles with base 𝐸𝐹, if 𝐺′′ is the foot of the perpendicular dropped on the 

line tangent to the circumcircle at 𝐹, prove that 𝐺𝐺′ = 𝐺𝐺′′. 

 

4.33 Given overlapping circles 𝜔1 and 𝜔2 with common chord 𝐸𝐹 and a line tangent to 𝜔1 and 

𝜔2 at 𝑇1 and 𝑇2, respectively, prove that ∠𝑇1𝐸𝑇2 + ∠𝑇1𝐹𝑇2 = 𝜎. 

 

4.34 Given overlapping circles 𝜔1 and 𝜔2 with an intersection at 𝑃, draw an arbitrary line 

through 𝑃 that intersects 𝜔1 and 𝜔2 at 𝑇1 and 𝑇2, respectively.  Prove that the tangents 

to 𝜔1 at 𝑇1 and to 𝜔2 at 𝑇2 make an angle that is constant for any line drawn through 𝑃. 

 

4.35 Given 𝐸𝐹𝐺 with ∠𝐹 < ∠𝐺 and 𝐿𝐸
′′  diametrically opposed to 𝐿𝐸, prove that              

∠𝐿𝐸
′′𝐿𝐸𝐸 =

1

2
(∠𝐺 − ∠𝐹). 

 

4.36 Given 𝐸𝐹𝐺 with 𝑃 any point on 𝐸𝐹, draw a circle through 𝐸 and 𝑃 that is tangent to 𝐸𝐺⃡⃗⃗⃗  ⃗ 

at 𝐸, and another circle through 𝐹 and 𝑃 that is tangent to 𝐹𝐺⃡⃗⃗⃗  ⃗ at 𝐹.  Prove that these two 

circles and the circumcircle of 𝐸𝐹𝐺 are concurrent. 

 

4.37 Given 𝐸𝐹𝐺𝐻 cyclic and 𝑃:= 𝐸𝐹⃡⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃡⃗⃗⃗  ⃗ and 𝑄:= 𝐹𝐺⃡⃗⃗⃗  ⃗ ∩ 𝐻𝐸⃡⃗⃗⃗  ⃗ and 𝑀 the other intersection 

besides 𝐹 of the circles through 𝐹, 𝐺, 𝑃 and through 𝐸, 𝐹, 𝑄, prove 𝑃,𝑀, 𝑄 to be collinear. 

 

4.38 Given 𝐸𝐹𝐺, prove that the circumcircles of 𝑀𝐺𝐸𝐸𝑀𝐸𝐹  and 𝑀𝐸𝐹𝐹𝑀𝐹𝐺  and 𝑀𝐹𝐺𝐺𝑀𝐺𝐸  are 

concurrent at the circumcenter of 𝐸𝐹𝐺.  This is a special case of the Miquel theorem. 
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Rules and Tactics for a Trebuchet and Paintball Battle  

 

At this point in a young mathematician’s career, it is traditional for the mathletes to challenge 

the JROTC to a paintball battle.  Each team is armed with paintball guns and two trebuchets that 

throw five-pound bags of flour or clusters of one-pound bags for anti-personnel use.  Use 25# 

weightlifter’s plates for ballast; for safety’s sake, agree to an upper limit on the number of plates. 

 

Facing each other and about twice as far apart as the maximum range of a trebuchet, construct 

two 16’ square forts out of plywood with gates in their forward walls.  Each fort has a 4’x4’ sheet 

of plastic on the ground in the exact center.  To win you must drop a 5# bag of flour on the 

enemy’s plastic sheet, either by firing it from a treb or by overrunning the fort and hand-dropping 

a bag of flour on the plastic.  The students may use chalk lines of any length, but only a single 16’ 

tape measure.  When complete, their forts are tested for squareness with a 25’ tape measuring 

the diagonals, which should be 22’ 7.5”.  If a team’s fort is not perfectly square, then they are 

penalized by taking some of their ammunition away from them before the battle begins.   

 

Show the JROTC sergeant the above paragraphs, but do not show him the following hints.  He 

should already know tactics, but math teachers may not have this background, so they get hints. 

 

1. Your forward treb should have plywood armor on one side and tow ropes on the other.  

By pulling sideways and keeping the armor facing backwards, your rear treb can fire 

clusters of one-pound bags of flour directly at the forward treb to clear away enemy that 

approach it.  (In Vietnam, two vehicles would fire flechettes at each other when overrun.) 

 

2. Do not pull the forward treb directly towards the enemy fort because that is probably 

what they will do, and you want to flank them.  Have the rear treb to one side of your fort 

so it is aimed at the forward treb as you pull it forwards at an angle to the enemy fort. 

 

3. Use problem 4.15 for emplacing the trebuchet 

to aim directly towards the center of the 

enemy fort.  The pivot should be about at the 

quartile point; the ballast must be on a cable 

to prevent rocking back and forth.  The angle 

of elevation can be adjusted by changing the 

angle of the pin, 𝛿, that releases the sling.  

Have a chute for the pouch to slide in.  

 

 
Gunner’s Trigger 

 

 
Release Trigger 

 

This is a good reference except that they have the ballast hinged on the beam and wheels for the 

rocking motion.  www.real-world-physics-problems.com/trebuchet-physics.html  

http://www.real-world-physics-problems.com/trebuchet-physics.html
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Machine Gun Emplacement as an Application of Geometry 

 

Top traverse is an angle, the lateral limit of a gun’s ability to traverse.  A gun’s field of fire are all 

the points inside this angle; this is equivalent to the more geometric term visible under the angle.  

If this angle is interior to a triangle, the kill chord is the opposite side.  If bunkers are to be built 

to cover a bottle neck, defined by the kill chord, then they must be positioned on an arc whose 

center is on the mediator of the kill chord such that the angle subtended at the center by the kill 

chord is twice that of the gunners’ top traverse as defined by the slits in their identical bunkers.   
 

Recall problem 4.5:  Find the locus of vertices for a given angle subtended by a given chord. 

 

We assumed that the top traverses of each gun are fixed and equal, but the guns’ positions are 

variable.  This is realistic as bunker construction is standardized and, since the locus is a long arc, 

we can choose positions on it that have non-geometric assets, like rock outcroppings.  But now 

we will assume that the positions are fixed, like the only two rock outcroppings in the vicinity, 

and we will define their kill circle88 to instruct the gunners on how much they should traverse. 

 

If two guns have the same top traverse and the angle bisectors of these angles intersect at a point 

equally distant from both guns, that point is the center of the incircle of the quadrilateral over 

which their fields of fire overlap.  (Verify.)  We will call this the kill circle of the two guns, for it is 

the circle of largest radius in which every interior point is within the field of fire of both guns.89  

But, if the positions of the guns are chosen due to non-geometric assets, like rock outcropping, 

then they will not be equally distant from the center of their kill circle.  To make the quadrilateral 

over which their fields of fire overlap tangential, the far gunner must be instructed to traverse 

over an angle less than his top traverse, which concentrates their fire on a circle.  By defining the 

gunners’ kill circle, geometry clearly defines their mission; they are not just spraying. 

 

The near gunner defines the kill circle.  Draw a ray from his position through the kill circle center 

and then draw rays on either side to define his top traverse.  Drop perpendiculars from the kill 

circle center to these rays to find the touching points and then draw in the kill circle. 

 

The far gunner must reduce his traverse.  Draw a ray from his position through the kill circle 

center, bisect it and then draw an arc around its midpoint through the kill circle center.  Where 

it intersects the kill circle are the touching points of rays that define his new top traverse. 

 
88 I replace kill zone with two new terms:  kill chord and kill circle.  The kill chord is not inside the kill circle. 
89 The kill circle is not what beaten zone meant during WWI.  This term is from the distant past when heavy machine 

guns were used like low-caliber artillery and fired at a high angle of elevation, so the bullets came down at a steep 

angle of descent.  We are doing direct fire on armored vehicles at close range.  Some third-world armies buy auto-

cannons to shoot at first-world warplanes but, when they fight each other, they use them WWI-style against cities. 
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Scenario #1:  The enemy comes in two BTR-80 armored personnel carriers, each armed with a 

14.5 mm auto-cannon and coaxial 7.62 mm machine gun.  They hope to secure the 100-meter 

bridge and seize the 10,000 liters of diesel at the store.  You stand in their path with four M2 

machine guns (top traverse:  22.5°) and two dozen LAW rockets (effective range:  200 meters). 

 

The kill chord of MG1 and MG2 is the bridge.  Recalling that plumbers use a 5 ∶ 12 ∶ 13 triangle 

to install 22.5° elbows, you construct one on half of the bridge, so the full bridge subtends a 22.5°  

angle at any point on the circle that contains this kill chord centered at the apex of the triangle, 

𝑂1.  These gunners’ greatest fear is a BTR-80 on hill #1, so grenadiers are positioned along the 

riverbank aiming for this hill.  MG3 can join this fight if the enemy delays rushing the bridge. 

 

The kill circle of MG3 and MG4 is the bridge exit.  MG3 is at the side of the store and aimed for 

point 𝑂2; its field of fire is centered on the ray to 𝑂2.  Drop a perpendicular from 𝑂2 to one ray of 

this angle and then draw the kill circle.  MG4 is given to the best marksman and concealed behind 

hill #3 where it fires on the kill circle of MG3.  Bisect the segment from it to point 𝑂2 and then 

draw an arc centered at this midpoint and passing through 𝑂2 to find the points tangent to the 

kill circle.  Draw rays to these touching points to determine how much MG4 is to traverse.  The 

grenadiers near the bridge are below the MG1 and MG4 fire grazing the bridge; also, they are 

below the -4° minimum elevation angle of the BTR-80 cannon.  They are fighting Apache style!90 

 
90 Victorio’s ambush at Cooke’s Canyon on 29 May 1880 in New Mexico, USA is described by Watt (2012, p. 38). 
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The BTR-80 suspension was not designed by Lotus; speed bumps can really mess up their return 

fire!  Concrete takes weeks to cure enough to stop 14.5 mm fire; speed bumps need only days.  

If the enemy comes in days, not weeks, do not make bunkers; install speed bumps on the bridge. 

 

In this scenario, we took the top traverse to be 22.5°  because, conveniently, this is an angle that 

I have already provided plumbers with instruction on how to construct.  Protractors are forbidden 

in this textbook because real numbers have not been defined.  But, since soldiers will typically 

read of the top traverse in their weapon’s manual rather than be shown it, we will here allow the 

use of protractors for replicating and adding angles, just not multiplying them.  If you subtract 

the top traverse from 90° and lay this angle off the endpoint of the kill chord with a protractor, 

the ray intersects the mediator at the center of the circle that contains the kill chord. 

 

Scenario #2:  We have four machine guns and wish to set an ambush from defilade, leading a 

BMP-2 that will drive across a 50-meter opening where vision is obscured on either side.  Knowing 

that the 12.7 mm M2 machine gun is marginal against vehicles heavier than the BTR-80, the 

armorer has mounted them in coaxial pairs, so the bullets converge at a range of 100 meters.   

 

Thus, there are two criteria for the emplacement of our two dual guns.  We wish them to sweep 

the given kill chord within their given top traverse and we also wish their nearly coaxial fire to 

converge at the midpoint of the kill chord so the bullets striking the same spot at the given 

distance might penetrate armor plate that the 12.7 mm is not actually rated for.  We are 

constructing a pair of triangles given the base, the apex angle, and the median to the base.   
 

 
 

Scenario #3:  Here we are fighting either in the past or in a modern country too poor to have any 

armored vehicles nor many machine guns.  The border is defined by a river.  At the confluence of 

it and another river that comes from your enemy’s land, you, with only one machine gun, are 
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tasked with defending against enemy marines who might come in small boats and attempt to 

cross the river under fire.  On your bank of the river, you have much concertina wire.  If you can 

kill half the enemy with your gun, your infantry can fight off the other half at the wire.  However, 

during peacetime you trade with these people, and so there must be a 50-meter-wide break in 

the wire for a dock.  To protect your gun from mortars, you will build a bunker with a 40° slit. 

 

The soldiers wish the dock were narrower and the traders wish it were wider, so it must be exactly 

50 meters to satisfy both interests.  But it can be built anywhere on the chord defined by where 

your riverbank passes through the circle defined by the kill chord, which is defined by the width 

of the enemy river and by the 40° top traverse of the gun.  The objective is to position it so the 

army’s only machine gun can perform double duty:  It must cover the kill chord across the enemy 

river, and it must also cover the dock that they hope to storm. 

 

 
 

𝐾1𝐾2 is the kill chord and 𝑂1 is the center of the circle defined by the intersection of the kill chord 

mediator and a 40° angle laid against the kill chord.  To avoid clutter, this triangle is not shown.  

𝐵1 and 𝐵2 are the points on the riverbank between which your gun must be positioned on the 𝑂1 

arc to cover the kill chord.  From 𝐾1 draw a line parallel to 𝐵1𝐵2
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  Towards 𝐾2, lay off a segment 

50 meters long to 𝐾3.  This is one side of a parallelogram with the dock on the other side, but we 

still do not know any of the parallelogram’s angles and so it cannot yet be drawn.  By the 

transversal theorem, the two angles shown are equal and so 𝐾2𝐾3 also subtends a 40° angle.  

Find 𝑂2 the same way 𝑂1 was found and draw this circle.  Where it intersects 𝐵1𝐵2
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the 𝐾2 side 

of the dock.  Circles typically intersect lines twice, as this one does, so the dock could have been 

positioned with its endpoint at the other intersection, but we chose to enfilade the enemy river. 
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Scenario #4:  A straight fence defines the border between two countries, and, on the enemy side, 

geographic features define a bottleneck.  Given a top traverse of 30°, the kill chord drawn across 

the bottleneck defines an arc that your gun must be positioned on.  There is a point on the fence, 

𝑀, that one infantry platoon is tasked with defending to the left of and another platoon to the 

right of.  To avoid the appearance of favoring one platoon over the other, you wish to position 

your gun so its field of fire covers equal segments of fence to the left and to the right of this point. 
 

 
 

𝐾1𝐾2 is the kill chord and 𝑂1 is the center of the circle defined by the intersection of the kill chord 

mediator and a 30° angle laid against the kill chord.  To avoid clutter, this triangle is not shown.  

𝐵1 and 𝐵2 are the points on the border fence between which your gun must be positioned on the 

𝑂1 arc to cover the kill chord.  Guess where the gun, 𝐺, is to be positioned and draw in its field of 

fire.  Position 𝑀 on the fence midway between the edges of the field of fire.  We will draw a figure 

and then learn from it so we can draw it again starting with 𝑀 at its given position and then 

finding 𝐺, rather than starting with 𝐺 and then finding 𝑀, which we did for the first drawing. 

 

If 𝑀 is the bi-medial point of a parallelogram, 𝐸𝐹𝐺𝐾2, then, by the parallelogram centroid 

theorem, it bisects any segment from one side to the other, including the segment of fence in 

the gun’s field of fire, 𝑀1𝑀2, and the diagonal, 𝐹𝐾2.  Extend 𝐾2𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   an equal distance to find 𝐹 and 

then draw in the rest of 𝐸𝐹𝐺𝐾2.  By the transversal theorem, ∠𝐸𝑀1𝐾1 is 30° and its supplement, 

∠𝐹𝑀1𝐾1 is 150°.  Thus, 𝐹𝐾1 could be the kill chord for a second gun with the same top traverse 

of 30° positioned on an arc centered at 𝑂2.  Now let us redraw our figure with 𝑀 in its given 

position.  Extend 𝐾2𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   an equal distance to find 𝐹; we cannot draw 𝐸𝐹𝐺𝐾2 because we have only 

the diagonal.  Connect 𝐹𝐾1, find 𝑂2 and then draw in the part of the 𝑂2 circle on the other side 

of 𝐹𝐾1
⃡⃗ ⃗⃗⃗⃗  ⃗.  Where it intersects 𝐵1𝐵2 is 𝑀1.  Extend 𝐾1𝑀1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   to find 𝐺 on the 𝑂1 circle.  Connect 𝐺𝐾2. 
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Surveying Techniques to Measure a Line Through an Obstacle 

 

In Surveying Techniques to Measure or Lay Off Lengths, I describe how to extend a line by 

constructing a rectangle around a house, and to do so without a transit to measure angles.  

Transits are expensive and it takes a lot of time to level a tripod four times.  In Basic Terminology 

Used in Surveying, I describe how a mortar gunner can locate a target on the other side of an 

office building that is providing concealment from the enemy’s automatic cannon.  This requires 

measuring angles with a sextant, not a transit, the use of which would be impractical in combat. 

 

Problem 3.60 

From your mortar, 𝑀, you extend a line 170 meters with an azimuth angle of 107° to 𝐹.  Backsight 

and extend 170 meters to 𝐸.  If 𝐺 is an enemy gun to the north, ∠𝐸𝐹𝐺 = 67° and ∠𝐹𝐸𝐺 = 76°, 

at what azimuth angle and range should the mortar gunner be instructed to fire his weapon?  (It 

is best if maps are scaled so 1 cm is 10 m.  Here, 5 mm equals 10 m fits on U.S. letter-size paper.) 

 

In this section, I present a method for going around obstacles larger than buildings; but it is not 

for gunnery, because it requires already having collinear lines on both sides of the obstacle. 

 

Suppose that two collinear lines approach the Fire Swamp, which you estimate is a little less than 

400 m across.  You consider using P. 3.60 to triangulate a point on the other line, but the Cliffs 

of Insanity prevent you from extending a line perpendicular to your path very far in either 

direction; there is just barely enough room to go around the swamp on either side.  So, you call 

for a volunteer to act as your rod man and begin measuring your line directly through the swamp. 

 

You are not 100 m into the Fire Swamp when your rod man is set upon by ROUS91 and devoured.  

You may never get the sound of his anguished screams out of your head.  It’s horrible. 

 

“Okay!” you announce, “I need another volunteer!” 

 

“No!  Never!  We’re not going to do it!  You can’t make us!” your mutinous work crew shouts as 

they close in on you, brandishing their pickaxes and shovels. 

 

Afraid for your life, you fire your revolver in the air and shout, “Everybody calm down!  I know 

exactly what to do.  I have a plan.  Nobody will have to enter the Fire Swamp.” 

 

You withdraw to your pickup, where your 14-year-old daughter is sitting in the cab listening to 

Hip Hop music while thumbing through her Geometry–Do textbook, reviewing theorems. 

 
91 Rodents of Unusual Size. 
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“I have absolutely no idea what to do,” you confess, “No plan.  Have you learned anything in that 

geometry class of yours that might help me out of this jam?” 

 

“Oh sure,” she replies, popping her bubble gum, “It’s easy.” 
 

You order two men to set flags exactly 400 m from your transit on the left and on the right of the 

Fire Swamp.  This requires walking within centimeters of the Cliffs of Insanity, so it would be 

impossible to get a transit out there to measure an angle – just the flags.  From your transit at 

the end of the surveyed line, you measure the angle between the two 400-meter flags at 104°. 

 

You radio the survey party on the other side of the Fire Swamp and tell them to move their transit 

back and forth along their line until they measure the angle between the two flags at 128°.  Your 

daughter assures you that the distance between the two transits is now exactly 400 m.  Why? 

 

“Because the distances to the flags are equal, they are on a circle of radius 400 m, centered at 

your transit,” she explains, “The conjugate angle of 104° is 360° − 104° = 256° and, by the 

inscribed angle theorem, at any point on the arc between the two flags, the angle between them 

is half this: 128°.  You want the intersection of the two loci:  The other surveyed line and the arc.” 
 

Admittedly, this story is a bit unrealistic.  The unrealistic part is not the ROUS – a fearsome 

creature once found in swamps throughout the world, and which persist today in New York City 

– it is unrealistic that you cannot set up a transit at either point to the sides of the Fire Swamp.  

If you can do that, then measure the distance to stations on either surveyed line, and the angle 

between them.  By SAS, you have fully defined the triangle whose other side is the desired length. 
 

The Law of Cosines is the trigonometric version of our SAS theorem:  𝑔2 = 𝑒2 + 𝑓2 − 2𝑒𝑓 cos 𝛾 
 

This is how most surveyors would solve the problem of going around a swamp.  There is nothing 

wrong with trigonometry; it is an interesting subject that can be quite challenging – thirty years 

after high school I still have nightmares about proving tan 2𝜃 =
sin𝜃 + sin3𝜃

cos𝜃 + cos3𝜃
.  However, this is a 

book about geometry, so I here present a problem with a geometric solution. 

 

If you are plagued with trigonometers who believe that their science is useful in engineering while 

yours is just playing with axioms to no practical purpose, then sketch – not too accurately to 

prevent measuring it – 𝐸𝐹𝐺𝐻 with |𝐸𝐹| = |𝐹𝐺| = 400 m and ∠𝐹 = 104° and ∠𝐻 = 128°.  Then 

ask Mr. Smart-Aleck Trigonometer to find the length of 𝐹𝐻.  That should shut him up! 
 

On the subject of conjugate angles, this was once an SAT problem!  Given 𝐸, 𝐹, 𝐺 on an 𝑂-circle 

with 𝑂 inside ∠𝐸𝐺𝐹, prove that ∠𝐸𝑂𝐹 = 2(∠𝑂𝐸𝐺 + ∠𝑂𝐹𝐺).  What if 𝑂 is not inside ∠𝐸𝐺𝐹? 
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The Green Belt’s Guide to Trigonometry 

 

In Elementary Quadrature Theory, I noted that trigonometry has been eliminated and Geometry 

has been turned into a review of Algebra I with three teachers, of Algebra I, II and Geometry, 

being told to toss some trigonometry in with their usual studies.  Common Core is rudderless!  

However, to do my part, I proved the first and second laws of sines and of cosines, though these 

really belong in the blue-belt chapter; they are about ratios, and the law of sines cites the 

inscribed angle theorem, which is green belt.  Recognizing that there are many students here, at 

the end of green belt, that I will never see again – they will accept their C grades and make a run 

for it – I feel that it is my responsibility to fill green-belt students in on some more trigonometry. 

 

sin 𝛼 ± sin 𝛽 = 2 sin (
𝛼±𝛽

2
) cos (

𝛼∓𝛽

2
)  High-school students are usually not expected to prove 

this identity.  Combined with the second law of sines, 
𝑒−𝑓

𝑒+𝑓
=

sin𝛼−sin𝛽

sin𝛼+sin𝛽
, we get these laws: 

 

First Law of Tangents   
𝑒−𝑓

𝑒+𝑓
=

tan(
𝛼−𝛽

2
)

tan(
𝛼+𝛽

2
)
 

 

Second Law of Tangents  
𝑒

𝑓
=

1+𝑇

1−𝑇
   with  𝑇 =

tan(
𝛼−𝛽

2
)

tan(
𝛼+𝛽

2
)
 

 

To solve a triangle means to be given three magnitudes and to find the other three.  Yellow belts 

learn that this is possible if we are given SAS, SSS, ASA, or AAS; if given ASS, there are two possible 

triangles, a point often missed by algebra students who rely too heavily on their scientific 

calculator, because its asin( ) button outputs only the acute angle.  Many teachers have noted 

that these problems can always be solved with the laws of sines and of cosines, so the law of 

tangents seems unneeded.  We will now use the law of tangents solve two real-life problems. 

 

The church steeple is crooked!  Even worse, it is leaning at an angle perpendicular to the view 

from the touristy part of town.  The priest is getting really tired of tourists knocking on his door 

to tell him that his steeple is crooked, so he has decided to fix it.  But, before renovations can 

begin, he must determine the exact skew angle, so it can be tilted to the vertical.  The internal 

braces make it impossible to get inside the steeple to measure its base, or either base angle.  But, 

on the outside, it is possible to measure the sides at 30.0 m and 30.1 m; the apex angle is 2°. 

 

By the angle sum theorem, 𝛼 + 𝛽 = 180° − 2° = 178° 

 

By the first law of tangents, 𝛼 − 𝛽 = 2atan (
30.1−30.0

30.1+30.0
tan

178

2

°) ≈ 10.89° 
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Adding these together gives us 𝛼 = 94.445° and 𝛽 = 83.555°, and the law of sines gives us the 

base, 1.054 m, though only 𝛼 − 𝛽 was asked for.  The advantages over the law of cosines are: 

 

1. Subtracting the nearly equal 1804.90 from 1806.01 loses three digits of accuracy, which 

goes unnoticed on a 12-digit calculator, but it is a problem in QBasic with its 7 digits. 

 

2. Evaluating the square root of 1.11 is easy today, but before calculators and computers, it 

was done iteratively.  Guess at 𝑦0 = 1.  𝑦1 =
𝑦0+

1.11

𝑦0

2
≈ 1.055, 𝑦2 =

𝑦1+
1.11

𝑦1

2
≈ 1.0535664, 

𝑦3 =
𝑦2+

1.11

𝑦2

2
≈ 1.0535654.  One iteration is sufficient for carpentry, but it still takes time. 

 

3. By ASS, 𝛼 = asin (
30.1

√1.11
sin 2°) ≈ 85.610°  or 180° − 85.610° ≈ 94.390°.  Calculators 

output the acute angle; if you are not paying attention, you may not realize that you want 

the obtuse angle.  Also, 94.445° is more accurate than 94.390°. 

 

In the middle of a severe winter, there is concern that the roof of the high-school gymnasium will 

collapse under the snow load.  The roof is asymmetrical, with the southern side longer to support 

solar panels.  It would be difficult to remove snow without damaging the solar panels, so the 

principal has hired a structural engineer to assess the strength of the roof to decide if snow 

removal is necessary.  He replies that he can do this for a symmetrical roof and, if given the ratio 

of the long side to the short side, he can estimate how much weaker the asymmetrical design is. 

  

Unfortunately, the blueprints for the building are lost.  Also, while people can get under the roof 

near its apex, the edges are too narrow to crawl into, so it is impossible to measure the base or 

either leg of the triangle, nor to measure the base angles.  Unsure of how to proceed, the principal 

asks the geometry teacher if he and his students can find this ratio, working only near the apex. 

 

The students measure the apex angle, 𝛾 = 166°.  By the angle sum theorem, 𝛼 + 𝛽 = 14°.  With 

a carpenter’s square held against the north rafter and another against the south rafter, the 

students locate a point on the ceiling joist that is equidistant from each rafter; that is, the two 

carpenter’s squares measure the same perpendicular distance to that point.  By the angle 

bisector theorem, this point is 𝐺∗, the intersection of the apex angle bisector with the base.  The 

students then suspend a plumb bob from the apex and observe that it is 2 meters long and 35 

mm from 𝐺∗; so, atan
2.00

.035
≈ 89°.  Thus, by the skew angle theorem, 𝛼 − 𝛽 ≈ 91° − 89° ≈ 2°.   

 

Let 𝑇 =
tan(

𝛼−𝛽

2
)

tan(
𝛼+𝛽

2
)
=

tan(1°)

tan(7°)
≈ 0.142.  By the second law of tangents, 

𝑒

𝑓
=

1+𝑇

1−𝑇
≈

1.142

0.858
≈ 1.331.   
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Tangential Quadrilaterals Revisited 

 

I put tangential quadrilaterals in yellow belt because the Pitot theorem and, thanks to Fetisov’s 

criticism of Glagolev, its converse too, are neutral geometry.  But textbooks that do not make a 

distinction between neutral and Euclidean geometry wait until the inscribed angle and cyclic 

quadrilateral theorems have been proven so problems like the following can be solved. 

 

Red belts of Geometry–Do will not be working with tangential quadrilaterals, so this material 

would have interrupted the green belt’s preparation for red belt, which proves some of the classic 

results of geometry that all intermediate geometers are expected to know.  Thus, to avoid having 

the students go off on a tangent (no pun intended), I put these problems in an optional green-

belt appendix.  We will start with the easy ones! 

 

Problem 4.39   

Let 𝐸𝐹𝐺𝐻 be tangential but not a square with 𝐼 its incenter, 𝐼𝐸𝐹 , 𝐼𝐹𝐺 , 𝐼𝐺𝐻, 𝐼𝐻𝐸 the incircle’s 

touching points and 𝑃 the intersection of 𝐼𝐸𝐹𝐼𝐺𝐻 and 𝐼𝐹𝐺𝐼𝐻𝐸.  Draw a line through 𝑃 perpendicular 

to 𝐼𝑃 and label its intersections with 𝐻𝐸 and 𝐹𝐺 as 𝐽 and 𝐾, respectively.  Prove 𝐼𝐻𝐸𝐽 = 𝐼𝐹𝐺𝐾. 

 

 Solution 

𝐼𝐻𝐸𝐼 = 𝐼𝐹𝐺𝐼 and, by the tangent theorem, ∠𝐽𝐼𝐻𝐸𝐼 = ∠𝐾𝐼𝐹𝐺𝐼.  By the cyclic quadrilateral 

theorem converse, 𝐼𝑃𝐽𝐼𝐻𝐸 is cyclic; by the inscribed angle theorem, ∠𝐼𝐻𝐸𝐼𝐽 = ∠𝐼𝐻𝐸𝑃𝐽.  By 

the inscribed angle theorem converse, 𝐼𝑃𝐼𝐹𝐺𝐾 is cyclic; by the inscribed angle theorem, 

∠𝐼𝐹𝐺𝑃𝐾 = ∠𝐼𝐹𝐺𝐼𝐾.  By the vertical angles theorem and transitivity, ∠𝐼𝐻𝐸𝐼𝐽 = ∠𝐼𝐹𝐺𝐼𝐾.  By 

ASA, 𝐼𝐻𝐸𝐼𝐽 ≅ 𝐼𝐹𝐺𝐼𝐾, which holds the equality 𝐼𝐻𝐸𝐽 = 𝐼𝐹𝐺𝐾.             ∎ 

 

Problem 4.40 

Let 𝐸𝐹𝐺𝐻 be tangential with 𝐼 its incenter.  Draw lines through 𝐸, 𝐹, 𝐺, 𝐻 perpendicular to 

𝐼𝐸, 𝐼𝐹, 𝐼𝐺, 𝐼𝐻, respectively.  Let 𝐽, 𝐾, 𝐿,𝑀 be the intersections of these lines that are long of 

∠𝐸𝐼𝐹, ∠𝐹𝐼𝐺, ∠𝐺𝐼𝐻, ∠𝐻𝐼𝐸, respectively.  Prove that 𝐼 is the bi-medial of 𝐽𝐾𝐿𝑀. 

 

 Solution 

 By the cyclic quadrilateral theorem converse, 𝐼𝐸𝐽𝐹, 𝐼𝐹𝐾𝐺, 𝐼𝐺𝐿𝐻, 𝐼𝐻𝑀𝐸 are all cyclic.  

 ∠𝐾𝐽𝑀 + ∠𝐽𝐾𝐼 + ∠𝐽𝑀𝐼 = ∠𝐾𝐽𝐼 + ∠𝑀𝐽𝐼 + ∠𝐽𝐾𝐼 + ∠𝐽𝑀𝐼   angle addition 

       = ∠𝐹𝐸𝐼 + ∠𝐸𝐹𝐼 + ∠𝐹𝐺𝐼 + ∠𝐸𝐻𝐼  inscribed angle th. 

      =
1

2
(∠𝐸 + ∠𝐹 + ∠𝐺 + ∠𝐻)   definition of incenter 

      = 𝜎     quadrilateral angle sum th. 

 Thus, 𝐾, 𝐼,𝑀 are collinear.  Analogously, 𝐽, 𝐼, 𝐿 are collinear.            ∎ 
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These problems used only the definition of tangential quadrilaterals.  Now let us see if you 

remember the theorems that we proved about them when you were a yellow belt. 

 

Problem 4.41 

Given cyclic quadrilateral 𝐸𝐹𝐺𝐻 such that ∠𝐸 ≠ ∠𝐺, let 𝐼 and 𝐽 be the incenters of 𝐸𝐺𝐻 and 

𝐸𝐹𝐺, respectively.  Prove that 𝐸𝐹𝐺𝐻 is tangential if and only if 𝐼𝐽𝐹𝐻 is cyclic. 

 

 Solution 

Assume 𝐸𝐹𝐺𝐻 is tangential.  By tangential quadrilateral theorem II, the incircles of 𝐸𝐺𝐻 

and 𝐸𝐹𝐺 are tangent; let their touching point be 𝑃.  Let 𝐽′ be the foot of the perpendicular 

dropped from 𝐽 to 𝐹𝐺.  Let 𝐾 be a point on 𝐼𝐽⃗⃗⃗   that is past 𝐽.  By the cyclic quadrilateral 

theorem converse, 𝐽𝐽′𝐺𝑃 is cyclic; thus, ∠𝐹𝐺𝑃 = 𝜎 − ∠𝑃𝐽𝐽′ = 𝜎 − (𝜎 − ∠𝐹𝐽𝐽′ ± ∠𝐾𝐽𝐹). 

Thus, ∠𝐾𝐽𝐹 = [a series of equalities] = ∠𝐼𝐻𝐹.  By the cyclic quadrilateral theorem 

converse, 𝐼𝐽𝐹𝐻 is cyclic.            • 

 

The series of equalities leading to ∠𝐾𝐽𝐹 = ∠𝐼𝐻𝐹 is left as an exercise.  Also, proof that 𝐼𝐽𝐹𝐻 

being cyclic implies that 𝐸𝐹𝐺𝐻 is tangential is left as an exercise; just walk the proof backwards. 

 

If 𝐸𝐹𝐺𝐻 is a right kite with ∠𝐸 = ∠𝐺 = 𝜌, then 𝐸𝐹𝐺𝐻 is tangential but 𝐼𝐽𝐹𝐻 cannot be cyclic 

because 𝐼, 𝐽, 𝐹, 𝐻 are collinear and collinear points do not define a circle.  There is no such thing 

as a circle of infinite radius because infinity is not a point and circles have their centers at points. 

 

If 𝐸𝐹𝐺𝐻 is bi-centric but differs only slightly from a right kite with ∠𝐸 ≈ ∠𝐺 ≈ 𝜌, then 𝐼𝐽𝐹𝐻 will 

be such a skinny quadrilateral that the center of its circumcircle is not just off the edge of the 

paper but into the next county.92  A computerized check of whether the mediators concur 

(diameter and chord corollary #4) finds that they do not; it is unclear if this is due to numerical 

error or to 𝐼𝐽𝐹𝐻 not being cyclic.  But, with the certainty that only deductive logic guarantees, a 

geometer can say, “If 𝐸𝐹𝐺𝐻 is bi-centric, then 𝐼𝐽𝐹𝐻 is cyclic.  Always – no ‘ifs,’ ‘ands’ or ‘buts.’” 

 

Suppose you began geometry with a classmate who was/is a computer programmer.  He got as 

far as the tangent theorem before he dropped out, loudly announcing that he despises logical 

arguments and, except for the theorems he learned so far, he will trust only in numerical results.  

Now he scoffs at your red-belt logic.  Ask him if 𝐼𝐽𝐹𝐻 is cyclic when 𝐸 ≡ (−
28561

40
,
28561

30
),            

𝐹 ≡ (
2975

4
, 750) , 𝐺 ≡ (

114244

119
, −

85683

119
) and 𝐻 ≡ (−1000,−

2975

3
).  That should shut him up! 

 
92 Province, oblast; whatever you call the interior regions in your country. 
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The Way Forward 

 

In the Note to Teachers section at the beginning of this book, I write: 

 

Red belt is needed for black belt, but not for blue belt.  If you have no plans for a 

third year, you may consider skipping the red-belt chapter and studying blue-

belt quadrature in the fourth semester. 

 

If this is the case, I would still recommend that students read the biographical sketches at the 

beginning of red belt and – especially for aspiring military officers – the elementary work of 

Auguste Miquel.  After Miquel is the long circle theorem.  In some textbooks, this is the crowning 

achievement of what they call elementary geometry; roughly, our green belt.  So, read it too. 

 

Orthogonal Circles Theorem 

Given two overlapping circles, they are orthogonal if and only if any of these conditions hold: 

1. Radii of the two circles to an intersection point are perpendicular. 

2. A radius of one circle to an intersection point is tangent to the other circle. 

3. The circle whose diameter is from center to center passes through their intersections. 
 

 
Parts (1) and (2) are neutral geometry while (3) cites Thales’ diameter theorem.  Construction 

4.23 is also neutral geometry, as is P. 4.42 for circles outside each other.  Thus, orthogonal circles 

could have been defined for yellow belts, and some textbooks do define them this early.  But 

most of the interesting problems cite the power of the point (blue belt), harmonic division (Cho–

Dan) or circle inversion (Yi–Dan), which few yellow belts will get to.  What is annoying about 

Common Core is its practice of defining terms and then never using them; so, to avoid being like 

that and because yellow belts already have a lot on their plate, I waited to define orthogonal.   

 

Construction 4.23  Given a circle and a point, construct an orthogonal circle through the point. 
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Problem 4.42  Given three circles with three touching points, prove that the circle through the 

three touching points is orthogonal to all three given circles. 

 

Problem 4.43  Given two orthogonal circles, prove that the two lines from their two intersections 

to a point on one circle meet the other circle at diametrically opposite points. 

 

Problem 4.44  Given 𝐸𝐹𝐺𝐻 cyclic with 𝐸𝐹 a diameter and 𝑇 the bi-medial point, prove that a 

circle with common chord 𝐺𝐻 is orthogonal if and only if it passes through 𝑇. 

 

Problem 4.45  Given 𝐸𝐹, a diameter of 𝜔, and 𝐺 any point on 𝜔, prove that the circles through 

𝐸,𝑀𝐸𝐹 , 𝐺 and through 𝐹,𝑀𝐸𝐹 , 𝐺 are orthogonal. 

 

The next two problems cite the long circle theorem, which is red belt; but, the corollary can be 

proven independently, without any mention of the excenter. 

 

Long Circle Theorem Corollary 

Given 𝐸𝐹𝐺 with circumcircle 𝜔, then 𝐸, 𝐹 and 𝐼 are equidistant from the long center, 𝐿𝐺 . 

 

Problem 4.46  Tangents to a circle at 𝐸, 𝐹 meet at 𝐺; prove that the 𝐸𝐹𝐺 incenter is on the circle. 

 

Problem 4.47  Given 𝐸𝐹𝐺 with incenter 𝐼 and excenters 𝑋, 𝑌, 𝑍, prove that the circles with 

diameters 𝐼𝑋 and 𝑌𝑍 are orthogonal. 

 

The Euler circle is definitely advanced triangle geometry – I am not aware of any elementary 

textbook that discusses it – but it is not very advanced, usually appearing in Chapter One.  This is 

true of The Geometry of Remarkable Elements by Constantin Mihalescu, who devotes his first 

chapter to the subject, an incredible 119 pages!  Red belts learn of it, but not quite that deeply.  

Problem 4.48 is a trick question because it does not say “Euler circle.”  It is hard but doable now.   

 

Problem 4.48  Given 𝐸𝐹𝐺 with orthocenter 𝐻, prove that the circles with diameters 𝐸𝐻 and 𝐹𝐺 

are orthogonal. 

 

The orthogonal lens area theorem is trigonometry; Mathematical Olympians should know it. 

 

Orthogonal Lens Area Theorem          216 

The overlap of orthogonal circles with radii 𝑅 and 𝑟 has area 𝐴 = (𝑅2 − 𝑟2) atan
𝑟

𝑅
+

𝜋

2
𝑟2 − 𝑅𝑟 

or 𝑟2 (
𝜋

2
− 1) if 𝑅 = 𝑟.  For general but equal circles, 𝐴 = 𝑟2(𝜃 − sin 𝜃) for 𝜃 not necessarily 

𝜋

2
. 
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Red Belt Instruction:  Famous Theorems 

 

This chapter is about geometry theorems difficult enough that they went unsolved for decades 

and are now named after famous mathematicians.  Let us learn a little about these men! 

 

Auguste Miquel (France, 1816 – 1851) was doing original research in geometry at a time when 

he should have been studying for the Grandes Ecoles, which is roughly equivalent to modern 

America’s Graduate Record Exam (GRE).  Doing well is required to get into graduate school.  

Miquel failed the exam and became a régent, which qualified him to teach in high school; he 

never became an agrégé, which is needed to teach in college.  At twenty, he had already 

published in the journal Le Géomètre and, undaunted by his failure to become an agrégé, he 

published a series of articles in the prestigious Journal de Mathématiques Pures et Appliquées.   

 

Miquel’s story should be inspiring to students who know that their family cannot afford to send 

them to college even for a B.S., much less a Ph.D.  Geometry is the one field where it is possible 

for people with little formal education to make a name for themselves.  Geometry–Do does not 

even assume a knowledge of multiplication, much less of calculus.  There is no other science that 

does not prerequisite multi-variable calculus and, as a practical matter, one cannot get far in 

engineering without a working knowledge of differential equations.  While it is not impossible for 

an autodidact to learn calculus, geometry is the one field where a man with no formal education 

can suddenly appear on the world stage with a theorem that has everybody on their feet. 

 

Miquel’s story should also be inspiring to Americans with a B.S. in mathematics who discover, to 

their chagrin, that it is a worthless degree.  High schools require a B.S. in education, universities 

require a M.S. in mathematics and tech companies require a B.S. in engineering.  Exactly nobody 

accepts job applicants with a B.S. in mathematics.  What actually becomes of them is that they 

are hired as substitute teachers, the same job that is normally given to housewives, except that 

they do it as a part-time job, not just in rare cases when a teacher gets sick, like the housewives. 

 

Sadi Carnot (France, 1796 – 1832) was a retired army officer when France was in disarray after 

the fall of Napoleon.  Steam power was used in France, but only inefficiently and for primitive 

tasks such as draining mines or grinding grain.  Carnot was impressed that British steam power 

had become much more advanced, and mostly through the insights of a few engineers who had 

no formal training.  Their work was empirical; that is, while they took careful measurements of 

operational steam engines, their data was interpreted mostly with the aid of intuition.  Carnot 

was convinced that the inadequacy of France in this regard was a large part of its downfall and 

that, if only the rigor of geometry could be applied to this practical science, efficient use of steam 

power could propel France once again to greatness.  Instead of studying the minutia of real steam 
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engines, as the British did, Carnot devised a set of postulates to describe what is meant by an 

abstract steam engine, just as Euclid devised a set of postulates to describe geometry.  His work, 

published under the title Reflections on the Motive Power of Fire, today earns him the exalted 

title of being the Father of Thermodynamics.  We owe to Carnot the realization that, while careful 

measurements are important, they must be guided by deductive logic, not just the vague hope 

that intuition will somehow see the path to an improved steam engine in all that data. 

 

William Wallace (Scotland, 1768 – 1843) was named after the famous Scottish general, but lived 

500 years later and, while he would become a professor at the Royal Military College, he was not 

a military man.  The son of a leather worker, he had no formal education after the age of eleven.  

While earning his living as a book seller and as a private math tutor, he came under the wing of 

John Playfair, whose version of Euclid’s parallel postulate we employ in Geometry–Do.  With 

Playfair’s endorsement, Wallace became a professor at the Royal Military College.  In 1819, he 

achieved the chairmanship at Edinburgh, the most exalted position for a Scottish mathematician. 

 

Wallace’s story should be inspiring to people whose path is blocked by those who would get 

ahead by currying favor with powerful but uninformed politicians.  Wallace had the support of 

respected mathematicians such as Playfair, while his rival had the support of powerful politicians, 

but it was Wallace who was elevated to the mathematical chair of Edinburgh.  This is a remarkable 

achievement for someone who dropped out of school at the age of eleven.  He held this chair for 

twenty years and is remembered for taking the winning (Continental) side in the dispute over 

who invented the calculus and whose notation would be used.  He also invented the pantograph. 

 

Evangelista Torricelli (Italy, 1608 – 1647) was invited to Florence to serve as Galileo’s assistant in 

the last three months of Galileo’s life; he then succeeded him as professor of mathematics at the 

Florentine Academy.  Galileo is famous and his contributions to science – indeed he founded 

what science means to us today – are voluminous.  Whole books can and have been written 

about him, so we will pause here only to note that it was a lecture on geometry that turned 

Galileo away from the study of medicine, which his father had encouraged because doctors make 

more money than mathematicians.  But, despite Galileo’s fame, the torch he lit could have easily 

flickered out had it not been for a series of brilliant Italian geometers who followed in his path.93 

 

Galileo was an astronomer who supported – and got in trouble for doing so – heliocentrism, the 

belief that the Earth rotates around the sun, not the sun around the Earth.  Also, he famously 

dropped two spheres of different masses from the leaning tower of Pisa to demonstrate that 

they strike the ground simultaneously.  But he was aware that this experiment does not exactly 

 
93 Those mentioned in this book are Torricelli, Viviani, Ceva, Saccheri and Fagnano, in this order; there were others. 
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work.  We now know that the ballistic coefficient of a sphere – how well it slips through the air – 

is proportional to its mass and inversely proportional to the square of its diameter.  The volume 

of a sphere is 𝑉 =
4

3
𝜋𝑟3, so its ballistic coefficient is 𝑐

𝑟3

𝑟2 = 𝑐𝑟, with 𝑐 a constant determined by 

the surface roughness.  Thus, the bigger ball hit first, though the difference is negligible in the 

short fall from the Tower of Pisa.  The effect is more noticeable for balls fired at an angle; Galileo’s 

theory predicts a parabolic path, yet cannon balls fall far short of this.  Galileo knew that this is 

due to air resistance, but he had no theory of what air is; he did not know that it has weight. 

 

It was Galileo’s student Torricelli who famously inverted a 1.2 m test tube of mercury in a dish of 

mercury, measured the height of the liquid and concluded that it was the weight of the air in the 

atmosphere pressing down on the mercury that prevented the tube from draining completely so 

the mercury inside it and the mercury outside it would be level.  Air is like a very thin liquid!  Thus, 

Torricelli invented the barometer and is today known as the Father of Hydrodynamics. 

 

Leonhard Euler (Switzerland, 1707 – 1783) was every bit as prolific as Galileo; I cannot begin to 

here list his many accomplishments.  I will note only that his contribution to ballistics was 

analogous to that of Carnot’s contribution to thermodynamics.  Artillerists of the time were wont 

to take very careful measurements of the range of guns; but, because extant guns were never 

elevated above 5° due to nobody understanding ballistics well enough to attempt higher angles 

of fire, the ball skimmed just above the ground.  Slight variations in the powder charge or gradual 

slopes caused the ball to strike many meters before or after its expected impact.  The result was 

that all those careful measurements were only sowing confusion among the gunners. 

 

Euler understood that, if ballistics was to be a real science, it must employ the methodology used 

by Euclid in geometry; that is, Euler had to devise a set of postulates to describe an abstract gun.   

 

1. Constant atmospheric density from the ground to the apogee. 

2. Drag is everywhere proportional to the square of the speed. 

3. Gravity is everywhere pointed downwards; i.e. the Earth is flat. 

 

This results in an unsolvable differential equation, though it can be approximated with the Runga-

Kutta method.  Euler was aware that Torricelli had taken his barometer up mountains and found 

that the air pressure varies inversely with altitude, but he deemed this immaterial because guns 

of his day were not powerful enough to fire shells this high.  And, of course, he knew that the 

Earth is round, but he deemed this immaterial because guns of his day were not powerful enough 

to fire shells over the horizon.  Euler’s second postulate is only true up to 240 m/s, which Euler 

was probably not aware of because guns of his day did not have even half this muzzle velocity.  

Thus, in point of fact, none of Euler’s three postulates paint a complete picture of the situation. 
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The important lesson that modern geometers can take from Euler’s work is that they must ignore 

the naysayers who criticize their postulates as too abstract.  Euler understood that his postulates 

describe a simple case that does not quite exist in reality; but he also understood that, once he 

had figured out ballistics for this simple case, it would be easy to extend it to guns that fire high 

enough to reach thin air and far enough to hit ships off the coast for whom only the tips of their 

masts are visible.  Smokeless powder was not invented in his lifetime; but, when it was, artillerists 

easily extended Euler’s theory to projectiles over 240 m/s; drag is proportional to the cube of 

velocity.  Any modern artillerist, steeped in the blizzard of differential equations that ballistics 

has become, still recognizes Euler’s three postulates as the foundation of all that he studies. 

 

Sadly, the siren song of “data” is not easy to ignore.  Those who make a fetish out of measuring 

things scorned Euler and, as late as the U.S. Civil War, were still firing their guns in increments of 

0°, 1°, 2°, 3°, 4° and 5°, walking out in the dirt to look for scrapes where the ball first touched 

down, and then assembling a jumble of statistics that served only to confuse gunners.  It is not 

an exaggeration to say that, despite Tredegar Iron Works being their only foundry, had the Rebels 

heeded Euler from a hundred years in their past, they might have won that war.  It is absurd that 

they went to war with nothing for fire control beyond a jumble of incoherent statistics that could 

not even be used to interpolate between 0° to 5°, much less to raise the barrel to higher angles. 

 

Whataboutists have a hundred objections to any axiomatic theory:  What about air getting 

thinner at high altitude?  What about the curvature of the Earth?  What about humidity?  What 

about the gravitational tug of Mars?  They have no answers to these questions; they ask them 

only to throw hedgehogs at the feet of the axiomatist.  Then they go back to the compiling of 

statistics, which is all that they know.  Even without answering such obstructionist questions, use 

of Euler’s theory from three klicks away would have sure had those Yanks jumping and stepping! 

 

At the end of white belt, there is a section titled Defense Positioning and Geometry, which is 

based on the first chapter of Raj Gupta’s book of the same title (2003).  Raj Gupta is a quantitative 

analyst – as is Xing Zhou, the author of a problem book mentioned in the references – but Gupta 

is also the coauthor of a book, Controlling the Greenhouse Effect: Five Global Regimes Compared.  

So, Mr. Gupta knows a thing or two about weather prediction. 

 

In sharp contrast, Mark Buchanan is an “economist” who knows nothing about quantitative 

analysis and even less about weather forecasting, which makes it awfully nervy of him to title his 

2013 economics book, Forecast.  I wrote a short four-page review94, which is well within the 

abilities of high-school geometers to read.  I highly recommend that they do!  I posted this paper 

at Research Gate in 2013 and today, 2020, it has only gotten 217 reads.  This is probably because 

 
94 www.researchgate.net/publication/270821186_Review_of_Mark_Buchanan's_Book_Forecast 

https://www.researchgate.net/publication/270821186_Review_of_Mark_Buchanan's_Book_Forecast
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debunking mountebanks is seen as fruitless – like throwing pies at a clown; most of them miss 

and the ones that do hit just invoke giggles from the clown – but geometers are logicians and, as 

such, they must understand how and why the enemies of logic always manage to bounce back. 

 

Because this four-page paper is so easy to read, I will not quote from it here.  Suffice it to say that 

Mark Buchanan is left with my footprint on his chest and high-school students – especially those 

who read the fifth page that summarizes Lewis Fry Richardson’s 1922 book Weather Prediction 

by Numerical Process – will be left with a summary knowledge of the axiomatic foundation of 

weather prediction.  This fifth page should make it clear that Richardson bases his seven axioms 

on an even older axiomatic system, Daniel Bernoulli’s 1738 Hydrodynamica.  Like Leonhard Euler, 

whose axiomatic theory of ballistics lay dormant until WWI, when the invention of smokeless 

powder finally made it imperative that artillerists stop it with the stupid gathering of data and 

learn some real theory, Bernoulli was also ahead of his time.  It would be 165 years before the 

Wright Flyer took wing at Kitty Hawk, but it was Bernoulli that the Wright Brothers were reading.  

 

I will here quote at length from Raj Gupta’s Defense Positioning and Geometry to make it clear 

that Mr. Gupta too understands that all real scientific advances begin with the axiomatic method. 

 

The flow of fluids in the Earth’s atmosphere is extremely complicated.  In the 

language of physics, it is turbulent, rotational, compressible and viscous.  No 

foreseeable advance in theory or computational ability will ever enable us to model 

or predict all the complexities of fluid flow in the real atmosphere.  Yet, despite this 

seemingly insurmountable obstacle, weather prediction has evolved into a very 

reliable and precise science over the last few decades.  One way to attack the 

problem of weather prediction is to start with a very simplified and streamlined 

conceptual model of a fluid in motion and examine how such a fluid should behave.  

This was the approach adopted by Daniel Bernoulli (1700–82) in formulating his 

basic equation describing the pressure, velocity, and density of an idealized 

incompressible and nonviscous fluid in steady motion.  Bernoulli’s Law, which is one 

of the basic principles of fluid dynamics, was first presented in Bernoulli’s 

Hydrodynamica in 1738. 

 

Starting with a “very simplified and streamline conceptual model” is exactly the opposite of Jean-

Philippe Bouchard’s “statistical regularities should emerge,” as cited by Mark Buchanan: 

 

The goal [of economics] is to describe the behavior of large populations, for which 
statistical regularities should emerge, just as the law of ideal gasses emerge from 
the incredibly chaotic motion of individual molecules. 
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Bouchaud is absurd: a statistical result requires a datum for every individual element.  Yet we do 

not have data on every individual molecule, or even on one of them.  They are too small to see.  

But let us be positive and quote some more from Raj Gupta, Defense Positioning and Geometry. 

 

This book is about the geometry and density of conventional forces especially at low 

force levels.  It attempts to do for conventional defense and conventional warfare 

what the equations of fluid flow did for weather prediction.  In other words, this 

book lays out the laws of force positioning and concentration that all defending 

force structures must abide by to field an effective defense.  This book uncovers 

certain special relationships that contribute to a successful defense and shows how 

they can be exploited to construct stable military balances and to reduce forces to 

minimum levels.  Of course, predicting the precise outcome of a war between two 

existing power blocs is akin to predicting the day-to-day weather in New York City 

or the likelihood of tornadoes in Oklahoma.  The level of discussion in this book is far 

more basic – closer to the equations of fluid dynamics than to the weather prediction 

models that are founded on these equations.  Thus, in terms of weather prediction, 

the first step must be to understand how an idealized fluid in motion behaves and 

what factors determine its properties…  In terms of military defense, this means 

without first understanding how a model defense should be structured, there is little 

hope of confidently ascertaining whether a real-world defense is optimal…  To derive 

the fundamental rules of force positioning one has no choice but to abstract from 

the tremendous complexities of real battlefields and war situations (p. 1-3).   

 

This is how real science works.  When someone says, “statistical regularities should emerge,” you 

know they are a clueless idiot engaged in blind guesswork; their statistics are a record of failure. 

 

Miquel Theorem 

Given 𝐸𝐹𝐺 and arbitrary points 𝐽, 𝐾, 𝐿 on 𝐸𝐹, 𝐹𝐺, 𝐺𝐸, respectively, the circumcircles of 𝐸𝐽𝐿, 𝐹𝐾𝐽 

and 𝐺𝐿𝐾 are concurrent.  The Miquel circles are 𝜔𝐸 , 𝜔𝐹, 𝜔𝐺  with centers 𝑂𝐸 , 𝑂𝐹 , 𝑂𝐺, respectively. 

 

 Proof 

The Miquel point, 𝑀, is the intersection of 𝜔𝐸 and 𝜔𝐹 that is not 𝐽.  Assume 𝑀 is inside 

the triangle.  𝐸𝐽𝑀𝐿 and 𝐹𝐾𝑀𝐽 are cyclic.  By the cyclic quadrilateral theorem, ∠𝐸𝐽𝑀 and 

∠𝑀𝐿𝐸 are supplementary, as are ∠𝑀𝐽𝐹 and ∠𝐹𝐾𝑀.  ∠𝐸𝐽𝑀 and ∠𝑀𝐽𝐹 are supplements, 

so ∠𝑀𝐿𝐸 and ∠𝐹𝐾𝑀 are also.  Thus, their supplements are supplementary, ∠𝐺𝐿𝑀 and 

∠𝑀𝐾𝐺, respectively.  By the cyclic quadrilateral theorem converse, 𝐺𝐿𝑀𝐾 is cyclic. •  

 

𝑀 outside the triangle is left as an exercise.  This theorem is also true for 𝐽, 𝐾, 𝐿 on 𝐸𝐹⃡⃗⃗⃗  ⃗, 𝐹𝐺⃡⃗⃗⃗  ⃗, 𝐺𝐸⃡⃗⃗⃗  ⃗. 
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We will use the notation established in the Miquel theorem without further explanation.  We will 

here assume that 𝑀 is inside the triangle.  When we learn of the Wallace line, the point on the 

circumcircle is the Miquel point.  There are other theorems, but red belts will treat Miquel lightly.   

 

Miquel Equal Angle Theorem 

Lines from the Miquel point to the Miquel circle intersections make equal angles with the sides. 

 

 Proof 

∠𝑀𝐽𝐸 and ∠𝑀𝐽𝐹 are supplementary because they are on one side of 𝐸𝐹⃡⃗⃗⃗  ⃗.  ∠𝑀𝐽𝐹 and 

∠𝑀𝐾𝐹 are supplementary by the cyclic quadrilateral theorem.  Thus, ∠𝑀𝐽𝐸 = ∠𝑀𝐾𝐹.  

Analogously, ∠𝑀𝐽𝐸 = ∠𝑀𝐾𝐹 = ∠𝑀𝐿𝐺.               ∎ 

 

Reverse Miquel Construction 

Given 𝑀 inside 𝐸𝐹𝐺, find 𝐽, 𝐾, 𝐿 on 𝐸𝐹, 𝐹𝐺, 𝐺𝐸, respectively, such that 𝑀 is the Miquel point. 

 

 Solution 

Choose 𝐽 on 𝐸𝐹 arbitrarily.  By C. 3.4, find 𝐾 and 𝐿 such that ∠𝑀𝐽𝐸 = ∠𝑀𝐾𝐹 = ∠𝑀𝐿𝐺.  

Since 𝐽 is arbitrary, there are an infinity of solutions; the construction is under defined.∎ 

 

Problem 5.1  If three circles overlap in pairs, prove that their common chords are concurrent. 

 

Farmers cut fields out of wilderness in the shape of rectangles because it is easiest to drive their 

tractors back and forth across a rectangle than any other polygon.  But soldiers cut bases out of 

enemy territory in the shape of triangles because they are only given three automatic cannons 

to defend them with.  Four would be nice, but cannons are not cheap, so they usually have three.  

Suppose that some impertinent enemy captain has built such a base in your land, and you wish 

to put an end to this nonsense.  There are three requirements that the initial bombing must have:  

 

1. Every part of the triangle must be struck by shrapnel from at least one bomb. 

2. An important point inside the triangle must be struck by shrapnel from every bomb. 

3. The bombs are of the same type and thus they have equal-size circles of shrapnel. 

 

First, we hit the important point with a bunker-buster bomb; but this has little effect on nearby 

troops.  If a target can be destroyed with three bombs, then it is the Marine Corp way to destroy 

it with ten!  However, if Marines are poised to overrun the base after the enemy is stunned by 

your bombing, then you do not want to overdo it lest you harm friendly units or civilians nearby.   

 

What is the minimal amount of ordnance needed to accomplish the three requirements? 
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The reverse Miquel construction satisfies the first two requirements.  Since 𝐽 is chosen arbitrarily, 

it might be hoped that a choice exists that satisfies the third requirement.  No; it depends on 𝑀. 

 

Equal Miquel Circles Theorem 

The Miquel circles are equal if and only if the Miquel point is at the circumcenter of the triangle. 

 

 Proof 

Assume that the Miquel circles are equal.  By the Miquel equal angle and the inscribed 

angle theorems, ∠𝐸𝑂𝐸𝑀 = ∠𝐹𝑂𝐹𝑀 = ∠𝐺𝑂𝐺𝑀.  By SAS, 𝐸𝑂𝐸𝑀 ≅ 𝐹𝑂𝐹𝑀 ≅ 𝐺𝑂𝐺𝑀 , 

which holds the equality 𝐸𝑀 = 𝐹𝑀 = 𝐺𝑀 .      • 

 

The reverse implication is left as an exercise.  This proves that satisfying the third condition is in 

the hands of the enemy, since they are the ones who drew 𝐸𝐹𝐺 and located 𝑀 inside it.  But the 

incenter and circumcenter theorem shows that an equilateral triangle with an important point at 

the center (e.g., a munitions dump) is the best defense against both enemy aircraft and enemy 

troops if you have only three anti-aircraft guns.  This motivated the Dakota defense problem. 

 

Dakota Attack Problem 

Bomb an equilateral triangle with three equal-size bombs so every part is struck by shrapnel from 

at least one bomb and the incenter/circumcenter is struck by shrapnel from every bomb. 

 

 Solution 

Use the reverse Miquel construction with the Miquel point at the circumcenter.  𝐽 on 𝐸𝐹 

such that ∠𝑀𝐽𝐸 = 𝜌 is the obvious choice, but any angle will work and angling it towards 

the troops poised to overrun the enemy base puts them between two bombs.          ∎ 

 

The solution to the Dakota attack problem gives the minimal amount of ordnance needed to 

accomplish the three requirements when bombing an equilateral triangle, but you will probably 

want to choose the next larger size of bomb – they come in discrete sizes – to overlap the vertices 

and the important point a little.  If the enemy has drawn a sloppy equilateral triangle, but your 

bombs overlap the circumcenter enough to reach the important point, then you are good. 

 

Miquel Similarity Theorem 

The centers of the Miquel circles are vertices of a triangle similar to the given triangle. 

 

The points where the bisectors of the interior angles of a triangle, 𝐸𝐹𝐺, intersect the circumcircle, 

𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺 , are called long centers because, by the following theorem, they center the long circles, 

𝜔𝐸 , 𝜔𝐹, 𝜔𝐺.  They are vertices of the long triangle, 𝐿𝐸𝐿𝐹𝐿𝐺; it has the same circumcircle as 𝐸𝐹𝐺. 
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Long Circle Theorem 

Given 𝐸𝐹𝐺 with circumcircle 𝜔, then 𝐼, 𝐸, 𝑋, 𝐹 are concyclic and their center is 𝐿𝐺 . 
 

 Proof 

By the interior and exterior angles theorem, ∠𝐼𝐸𝑋 and ∠𝐼𝐹𝑋 are right.  By the cyclic 

quadrilateral theorem converse, 𝐼, 𝐸, 𝑋, 𝐹 are concyclic and their center is the midpoint 

of 𝐼𝑋.  We will call this circle 𝜔𝑀𝐼𝑋
 with center 𝑀𝐼𝑋.  𝐼 and 𝑋 are both on the bisector of 

∠𝐺, so ∠𝐺𝑀𝐼𝑋𝐹 = ∠𝐼𝑀𝐼𝑋𝐹.  By the inscribed angle theorem in 𝜔𝑀𝐼𝑋
, ∠𝐼𝑀𝐼𝑋𝐹 = 2∠𝐼𝐸𝐹.  

But, by the incenter theorem, 2∠𝐼𝐸𝐹 = ∠𝐺𝐸𝐹.  Thus, ∠𝐺𝑀𝐼𝑋𝐹 = ∠𝐺𝐸𝐹 and, by the 

inscribed angle theorem converse, 𝑀𝐼𝑋 is on 𝜔.  By the mediator and angle bisector 

theorem, 𝐺𝐼⃡⃗  ⃗ intersects 𝜔 only at 𝐺 and 𝐿𝐺 .  𝑀𝐼𝑋 is not 𝐺, so it must be 𝐿𝐺 .          ∎  
 

The long circles, 𝜔𝐸 , 𝜔𝐹 , 𝜔𝐺, are Miquel circles and the incenter, 𝐼, is the Miquel point of the 

double-long triangle, 𝑋𝑌𝑍, with 𝐸, 𝐹, 𝐺 each on a different side.  𝑋𝑌𝑍~𝐿𝐸𝐿𝐹𝐿𝐺 , by the Miquel 

similarity theorem, as is any 𝑋′′𝑌′′𝑍′′ with 𝑋′′, 𝑌′′, 𝑍′′ on the long circles and 𝐸, 𝐹, 𝐺 each on a 

different side.  𝑋𝑌𝑍~𝑋′′𝑌′′𝑍′′ have the same Miquel point, 𝐼, but are of different size and tilt. 
 

Largest Reverse Miquel Triangle Theorem 

For 𝐽, 𝐾, 𝐿 and Miquel point 𝑀, the largest 𝐸𝐹𝐺 such that 𝐽 ∈ 𝐸𝐹, 𝐾 ∈ 𝐹𝐺 and 𝐿 ∈ 𝐺𝐸 is the one 

for which 𝐸𝐹 ⊥ 𝑀𝐽, 𝐹𝐺 ⊥ 𝑀𝐾 and 𝐺𝐸 ⊥ 𝑀𝐿. 
 

Long Triangle Theorem 

The incenter of a triangle is the orthocenter of its long triangle. 

 

 Proof 

Given 𝐸𝐹𝐺 with incenter 𝐼 and circumcenter 𝑂 and its long triangle 𝐿𝐸𝐿𝐹𝐿𝐺, let                 

𝑃:= 𝐿𝐸𝐿𝐺 ∩ 𝐹𝐿𝐹.  By the intersecting chords angle theorem,  

∠𝐹𝑃𝐿𝐺 =
1

2
(∠𝐹𝑂𝐿𝐺 + ∠𝐿𝐸𝑂𝐿𝐹) =

1

2
(∠𝐹𝑂𝐿𝐺 + ∠𝐿𝐸𝑂𝐺 + ∠𝐺𝑂𝐿𝐹)  

∠𝐹𝑃𝐿𝐸 =
1

2
(∠𝐹𝑂𝐿𝐸 + ∠𝐿𝐹𝑂𝐿𝐺) =

1

2
(∠𝐹𝑂𝐿𝐸 + ∠𝐿𝐹𝑂𝐸 + ∠𝐸𝑂𝐿𝐺)  

∠𝐹𝑂𝐿𝐸 = ∠𝐿𝐸𝑂𝐺 and ∠𝐿𝐹𝑂𝐸 = ∠𝐺𝑂𝐿𝐹 and ∠𝐸𝑂𝐿𝐺 = ∠𝐹𝑂𝐿𝐺  by the inscribed angle 

theorem, so ∠𝐹𝑃𝐿𝐺 = ∠𝐹𝑃𝐿𝐸.  These are supplements, so ∠𝑃 is right; that is, 𝐿𝐹𝑃 is an 

altitude of 𝐿𝐸𝐿𝐹𝐿𝐺 and, because 𝐹𝐿𝐹
⃗⃗ ⃗⃗ ⃗⃗  ⃗ bisects ∠𝐹, it passes through 𝐼.  Analogously, all the 

altitudes of 𝐿𝐸𝐿𝐹𝐿𝐺 pass through 𝐼, so it is the orthocenter of 𝐿𝐸𝐿𝐹𝐿𝐺.           ∎ 
 

Carnot Theorem 

The sum of the perpendiculars dropped from the circumcenter onto the three sides of a not obtuse 

triangle is equal to the circumradius plus the inradius. 
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 Proof 

For right triangles, this is the right triangle incircle theorem.  Given 𝐸𝐹𝐺 acute, construct 

a right triangle with hypotenuse 𝐼𝑋 and legs parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ and to 𝑂𝐿𝐺
⃡⃗ ⃗⃗ ⃗⃗  ⃗.  The latter leg is 

𝑟𝑋 + 𝑟 long.  By the long circle theorem corollary, 𝑀𝐸𝐹 is on 𝑂𝐿𝐺
⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝐿𝐺

⃡⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and hence 

parallel to this latter leg.  Let 𝑀 be the intersection of 𝑂𝐿𝐺
⃡⃗ ⃗⃗ ⃗⃗  ⃗ with the other leg.  By the long 

circle theorem, 𝐿𝐺  is the midpoint of 𝐼𝑋.  By mid-segment theorem #2, 𝑀 is a midpoint.  

By mid-segment theorem #1, 𝑀𝐿𝐺 =
1

2
(𝑟𝑋 + 𝑟 ). 𝑀𝐸𝐹𝐿𝐺 = 𝑀𝐿𝐺 − 𝑟 =

1

2
(𝑟𝑋 − 𝑟 ).  

𝑂𝐿𝐺 = 𝑅, the circumradius, so 𝑂𝑀𝐸𝐹 = 𝑅 − 𝑀𝐸𝐹𝐿𝐺 = 𝑅 −
1

2
(𝑟𝑋 − 𝑟 ).  Thus, 

𝑂𝑀𝐸𝐹 = 𝑅 −
1

2
(𝑟𝑋 − 𝑟 )  

𝑂𝑀𝐺𝐸 = 𝑅 −
1

2
(𝑟𝑌 − 𝑟 )    Analogously for 𝐿𝐹  

𝑂𝑀𝐹𝐺 = 𝑅 −
1

2
(𝑟𝑍 − 𝑟 )       Analogously for 𝐿𝐸  

  𝑠𝑢𝑚 = 3𝑅 −
1

2
(𝑟𝑋 + 𝑟𝑌 + 𝑟𝑍) +

3

2
𝑟   Addition 

  𝑠𝑢𝑚 = 3𝑅 −
1

2
(𝑟 + 4𝑅) +

3

2
𝑟   Excircle theorem corollary #1 

  𝑠𝑢𝑚 = 𝑅 + 𝑟     Simplify            ∎ 

 

By the mediator and angle bisector theorem, if 𝐿𝐸𝐹 is the intersection of the mediator of side 𝐸𝐹 

of cyclic 𝐸𝐹𝐺𝐻 with the near arc of its circumcircle, then 𝐿𝐸𝐹 is on the angle bisector of both far 

vertices of 𝐸𝐹𝐺 and 𝐸𝐹𝐻; 𝐿𝐸𝐹 bisects ∠𝐸𝐺𝐹 and ∠𝐸𝐻𝐹.  Analogously for 𝐿𝐹𝐺 , 𝐿𝐺𝐻 and 𝐿𝐻𝐸 . 

 

Long Quadrilateral Theorem 

Given 𝐸𝐹𝐺𝐻 cyclic, the long quadrilateral, 𝐿𝐸𝐹𝐿𝐹𝐺𝐿𝐺𝐻𝐿𝐻𝐸 , is orthodiagonal.  

 

 Proof 

Let 𝑂 be the circumcenter of 𝐸𝐹𝐺𝐻 and 𝑇 be the bi-medial of 𝐿𝐸𝐹𝐿𝐹𝐺𝐿𝐺𝐻𝐿𝐻𝐸.  By the 

inscribed angle theorem, ∠𝐿𝐻𝐸𝐿𝐸𝐹𝐻 = ∠𝐿𝐻𝐸𝐿𝐹𝐺𝐻 and ∠𝐿𝐸𝐹𝐿𝐻𝐸𝐹 = ∠𝐿𝐸𝐹𝐿𝐺𝐻𝐹. 

∠𝐿𝐻𝐸𝐿𝐸𝐹𝐿𝐺𝐻 = ∠𝐿𝐻𝐸𝐿𝐸𝐹𝐻 + ∠𝐿𝐺𝐻𝐿𝐸𝐹𝐻   Addition 

            = ∠𝐿𝐻𝐸𝐿𝐹𝐺𝐻 + ∠𝐿𝐺𝐻𝐿𝐸𝐹𝐻   Substitution 

            =
1

2
∠𝐸𝐿𝐹𝐺𝐻 +

1

2
∠𝐺𝐿𝐸𝐹𝐻   Definition of 𝐿𝐻𝐸  and 𝐿𝐺𝐻 

∠𝐿𝐸𝐹𝐿𝐻𝐸𝐿𝐹𝐺 = ∠𝐿𝐸𝐹𝐿𝐻𝐸𝐹 + ∠𝐿𝐹𝐺𝐿𝐻𝐸𝐹   Addition 

            = ∠𝐿𝐸𝐹𝐿𝐺𝐻𝐹 + ∠𝐿𝐹𝐺𝐿𝐻𝐸𝐹   Substitution 

            =
1

2
∠𝐸𝐿𝐺𝐻𝐹 +

1

2
∠𝐺𝐿𝐻𝐸𝐹   Definition of 𝐿𝐸𝐹 and 𝐿𝐹𝐺  

∠𝐿𝐻𝐸𝑇𝐿𝐸𝐹 = 𝜎 − (∠𝐿𝐻𝐸𝐿𝐸𝐹𝐿𝐺𝐻 + ∠𝐿𝐸𝐹𝐿𝐻𝐸𝐿𝐹𝐺)    Angle sum theorem 

                     = 𝜎 −
1

2
(∠𝐸𝐿𝐹𝐺𝐻 + ∠𝐺𝐿𝐸𝐹𝐻 + ∠𝐸𝐿𝐺𝐻𝐹 + ∠𝐺𝐿𝐻𝐸𝐹)  Substitution 

                     = 𝜎 −
1

2
𝜎 = 𝜌     Inscribed angle theorem          ∎ 
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Long Rhombus Theorem 

Given 𝐸𝐹𝐺 with incenter 𝐼 and long centers 𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺 , let 𝐽: = 𝐿𝐸𝐿𝐹 ∩ 𝐺𝐸  and 𝐾:= 𝐿𝐸𝐿𝐹 ∩ 𝐺𝐹.  

Then, 𝐺𝐽𝐼𝐾 is a rhombus. 

  

Proof 

By the long triangle theorem, 𝐽𝐼𝐾𝐺 is orthodiagonal; call its bi-medial 𝑇.  𝐽𝑇𝐺 ≅ 𝐾𝑇𝐺 by 

ASA, so 𝑇 is the midpoint of 𝐽𝐾.  By the long circle theorem, 𝐼 and 𝐺 are on the long circle, 

so radii 𝐿𝐹𝐼 = 𝐿𝐹𝐺.  By the mediator theorem, 𝑇 is the midpoint of 𝐼𝐺.  By lemma 3.2.2, 

𝐺𝐽𝐼𝐾 is a rhombus.                  ∎ 

 

Cyclic/Tangential Pairs Theorem 

A quadrilateral is cyclic if and only if the pedal quadrilateral of its bi-medial point is tangential. 

 

 Proof 

Assume that 𝐸𝐹𝐺𝐻 is cyclic, 𝑇 is its bi-medial and 𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 is its pedal quadrilateral.  

By the cyclic quadrilateral theorem converse, 𝑇𝐸𝐹𝐹𝑇𝐹𝐺𝑇 and 𝑇𝐺𝐻𝐺𝑇𝐹𝐺𝑇 are cyclic.  By the 

inscribed angle theorem, ∠𝑇𝐸𝐹𝐹𝑇 = ∠𝑇𝐸𝐹𝑇𝐹𝐺𝑇 and ∠𝑇𝐺𝐻𝐺𝑇 = ∠𝑇𝐺𝐻𝑇𝐹𝐺𝑇.  But, in the 

circumcircle of 𝐸𝐹𝐺𝐻, ∠𝑇𝐸𝐹𝐹𝑇 = ∠𝑇𝐺𝐻𝐺𝑇, by the inscribed angle theorem.  Thus, 

∠𝑇𝐸𝐹𝑇𝐹𝐺𝑇 = ∠𝑇𝐺𝐻𝑇𝐹𝐺𝑇, so 𝑇 is on the angle bisector of ∠𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻.  Analogously, for 

∠𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 and ∠𝑇𝐺𝐻𝑇𝐻𝐸𝑇𝐸𝐹 and ∠𝑇𝐻𝐸𝑇𝐸𝐹𝑇𝐹𝐺 .  Thus, by tangential quadrilateral 

theorem I, 𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 is tangential and 𝑇, the bi-medial of 𝐸𝐹𝐺𝐻 is its incenter.  We 

do not call this incenter 𝐼 because 𝐼 is the incenter of 𝐸𝐹𝐺𝐻.   • 

 

Proof of the converse is left as an exercise. 

 

Thus, cyclic and tangential quadrilaterals come in pairs; for every cyclic quadrilateral, the pedal 

quadrilateral of its bi-medial point is tangential.  Might these pedal quadrilaterals also be cyclic?  

Yes, but only if the cyclic quadrilaterals that they are associated with are orthodiagonal; that is, 

their diagonals are perpendicular.  We must have ∠𝑇 = 𝜌, where 𝑇 is the bi-medial of 𝐸𝐹𝐺𝐻. 

 

Lemma 5.1 

The medial (Varignon) parallelogram of an orthodiagonal quadrilateral is a rectangle. 

 

 Proof 

By mid-segment theorem #1, each medial parallelogram side is parallel to a diagonal.  By 

the Lambert theorem corollary, the medial parallelogram is a right rectangle.          ∎ 
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Cyclic and Orthodiagonal Theorem 

A cyclic quadrilateral is orthodiagonal iff the pedal quadrilateral of its bi-medial point is cyclic. 

 

 Proof 

Assume that 𝐸𝐹𝐺𝐻 is cyclic and orthodiagonal; ∠𝑇 = 𝜌.  By Lemma 5.1, 𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐻𝑀𝐻𝐸 

is a rectangle and 𝑀𝐹𝐺𝑀𝐻𝐸  is a diameter with its midpoint, 𝑀, the center of 𝜔, its 

circumcircle.  By Brahmagupta’s bi-medial theorem, 𝑀𝐹𝐺𝑇𝐹𝐺𝑀𝐻𝐸  and 𝑀𝐹𝐺𝑇𝐻𝐸𝑀𝐻𝐸 are 

right triangles; by Thales’ diameter theorem, 𝑇𝐹𝐺  and 𝑇𝐻𝐸 are on 𝜔.  Analogously, 𝑇𝐸𝐹 and 

𝑇𝐺𝐻 are on 𝜔.  Thus, 𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 is cyclic, in the same circle as 𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐻𝑀𝐻𝐸 . 

 

Assume that 𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 is cyclic.  By the cyclic quadrilateral theorem converse, 

𝑇𝐹𝐺𝐺𝑇𝐺𝐻𝑇 and 𝑇𝐸𝐹𝐹𝑇𝐹𝐺𝑇 and  𝑇𝐻𝐸𝐸𝑇𝐸𝐹𝑇 and 𝑇𝐺𝐻𝐻𝑇𝐻𝐸𝑇 are cyclic: opposite right angles.  

Each of these circles are cited by the inscribed angle theorem in line four, below. 

 

𝜎 = ∠𝑇𝐻𝐸𝑇𝐸𝐹𝑇𝐹𝐺 + ∠𝑇𝐻𝐸𝑇𝐺𝐻𝑇𝐹𝐺       Cyclic quadrilateral th. 

    = (∠𝑇𝐹𝐺𝑇𝐸𝐹𝑇 + ∠𝑇𝑇𝐸𝐹𝑇𝐻𝐸) + (∠𝑇𝐹𝐺𝑇𝐺𝐻𝑇 + ∠𝑇𝑇𝐺𝐻𝑇𝐻𝐸)  Addition  

    = (∠𝑇𝐹𝐺𝑇𝐺𝐻𝑇 + ∠𝑇𝐹𝐺𝑇𝐸𝐹𝑇) + (∠𝑇𝑇𝐸𝐹𝑇𝐻𝐸 + ∠𝑇𝑇𝐺𝐻𝑇𝐻𝐸)  Rearrange  

    = (∠𝑇𝐹𝐺𝐺𝑇 + ∠𝑇𝐹𝐺𝐹𝑇) + (∠𝑇𝐸𝑇𝐻𝐸 + ∠𝑇𝐻𝑇𝐻𝐸)   Inscribed angle th.   

    = ∠𝐸𝑇𝐹 + ∠𝐸𝑇𝐹       Exterior angle th. 

𝜌 = ∠𝐸𝑇𝐹        Halve both sides  

 

Thus, 𝐸𝐹𝐺𝐻 is orthodiagonal.                ∎ 

 

We now consider a different pedal point, 𝐼, the incenter of 𝐸𝐹𝐺𝐻.  𝐼𝐸𝐹𝐼𝐹𝐺𝐼𝐺𝐻𝐼𝐻𝐸  is the contact 

quadrilateral of the incircle.  𝑃 is its bi-medial, the intersection of its diagonals.   

 

Bi–Centric Quadrilateral Theorem 

A tangential quadrilateral is cyclic and thus bi-centric iff its contact quadrilateral is orthodiagonal. 

 

 Proof 

Assume that 𝐸𝐹𝐺𝐻 is cyclic and thus bi-centric.  𝐼𝐼𝐸𝐹 ⊥ 𝐸𝐹, 𝐼𝐼𝐹𝐺 ⊥ 𝐹𝐺, 𝐼𝐼𝐺𝐻 ⊥ 𝐺𝐻,

𝐼𝐼𝐻𝐸 ⊥ 𝐻𝐸 by the tangent theorem, where 𝐼 is the incenter of 𝐸𝐹𝐺𝐻.  Thus, 

∠𝐼𝐸𝐹𝑃𝐼𝐻𝐸 =
1

2
(∠𝐼𝐸𝐹𝐼𝐼𝐻𝐸 + ∠𝐼𝐹𝐺𝐼𝐼𝐺𝐻)   Intersecting chords angle theorem 

                   =
1

2
((𝜎 − ∠𝐸) + (𝜎 − ∠𝐺))   Right cyclic theorem 

                   = 𝜎 −
1

2
(∠𝐸 + ∠𝐺)    Simplify 

                   = 𝜎 −
1

2
𝜎 = 𝜌     Cyclic quadrilateral theorem  
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Assume that ∠𝑃 = 𝜌.  By the inscribed angle theorem, ∠𝐼𝐹𝐺𝐼𝐸𝐹𝐼𝐺𝐻 = ∠𝐼𝐹𝐺𝐼𝐻𝐸𝐼𝐺𝐻; call this 

𝛼.  By the tangent and chord theorem, 𝛼 = ∠𝐼𝐺𝐻𝐼𝐹𝐺𝐺 and 𝛼 = ∠𝐼𝐹𝐺𝐼𝐺𝐻𝐺.  Analogously, 

𝛽 = ∠𝐼𝐸𝐹𝐼𝐹𝐺𝐼𝐻𝐸 = ∠𝐼𝐸𝐹𝐼𝐺𝐻𝐼𝐻𝐸  and 𝛽 = ∠𝐼𝐻𝐸𝐼𝐸𝐹𝐸 = ∠𝐼𝐸𝐹𝐼𝐻𝐸𝐸.  By the isosceles triangle 

theorem converse, 𝐼𝐹𝐺𝐼𝐺𝐻𝐺 and 𝐼𝐸𝐹𝐼𝐻𝐸𝐸 are isosceles.  By the isosceles angle theorem, 

𝛼 = 𝜌 −
1

2
∠𝐺 and 𝛽 = 𝜌 −

1

2
∠𝐸; that is, ∠𝐺 = 2(𝜌 − 𝛼) and ∠𝐸 = 2(𝜌 − 𝛽).  Thus, 

∠𝐺 + ∠𝐸 = 2𝜎 − 2(𝛼 + 𝛽).  But ∠𝑃 = 𝜌, so, by the angle sum theorem, 𝛼 + 𝛽 = 𝜌, and 

∠𝐺 + ∠𝐸 = 𝜎.  By the cyclic quadrilateral theorem converse, 𝐸𝐹𝐺𝐻 is cyclic.          ∎ 

 

The following construction suggests that the bi-medials of a tangential quadrilateral and its 

contact quadrilateral coincide.  Verily, but Brianchon’s theorem is the work of blue belts. 

 

Construction 5.1  Given a circle, construct (1) a bi-centric quadrilateral that it is incircle to; and 

(2) the quadrilateral to which the bi-centric quadrilateral is the pedal quadrilateral of its bi-medial. 

 

 Solution 

1. Choose any interior point and draw perpendicular lines through it at any angle to the 

incenter.  Draw radii from the incenter to where these lines intersect the circle, then 

draw perpendiculars to the radii through these intersection points.  Cut off the tails. 

2. From the circumcenter of the given quadrilateral, draw radii to the vertices, then draw 

perpendiculars to the radii through these intersection points.  Cut off the tails.        ∎ 

 

Lemma 5.2 

Given 𝐸𝐹𝐺 and 𝑃 long of ∠𝐺, let 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  be the pedal vertices of 𝑃.   Then, 

1. ∠𝐺 and ∠𝑃𝐹𝑃𝑃𝐸 are supplementary. 

2. ∠𝐸𝑃𝑃𝐹 = ∠𝐸𝑃𝐺𝑃𝐹 and ∠𝐹𝑃𝑃𝐸 = ∠𝐹𝑃𝐺𝑃𝐸. 

 

Proof 

1. ∠𝐺 and ∠𝑃𝐹𝑃𝑃𝐸 are supplementary by the right cyclic theorem. 

2. ∠𝐸𝑃𝑃𝐹 = ∠𝐸𝑃𝐺𝑃𝐹 by the inscribed angle theorem in the circle that 𝐸𝑃 is a diameter to.  

Analogously, ∠𝐹𝑃𝑃𝐸 = ∠𝐹𝑃𝐺𝑃𝐸 in the circle that 𝐹𝑃 is a diameter to.           ∎ 

 

Wallace Theorem I 

A point is on the circumcircle of a triangle if and only if the feet of the perpendiculars dropped 

from it onto the sides or their extensions are collinear. 

 

The line through 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  (if it is a line) is called the Wallace line of 𝑃 relative to 𝐸𝐹𝐺.  William 

Wallace is due the credit for this theorem; for a long time, it was misattributed to Robert Simson.   
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 Proof 

Use the lemma 5.2 figure, but with 𝑃 on the circumcircle of 𝐸𝐹𝐺.  ∠𝐺 + ∠𝐸𝑃𝐹 = 𝜎  by 

the cyclic quadrilateral theorem and ∠𝐺 + ∠𝑃𝐹𝑃𝑃𝐸 = 𝜎 by lemma 5.2.1; by transitivity, 

∠𝐸𝑃𝐹 = ∠𝑃𝐹𝑃𝑃𝐸.  Of ∠𝐸𝑃𝑃𝐸 and ∠𝐹𝑃𝑃𝐹, one must be inside the other; either way, by 

subtracting the inside angle from equal angles, ∠𝐸𝑃𝑃𝐹 = ∠𝐹𝑃𝑃𝐸 .  ∠𝐸𝑃𝐺𝑃𝐹 = ∠𝐹𝑃𝐺𝑃𝐸 , 

by lemma 5.2.2 and transitivity.  By the vertical angles theorem, 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  are collinear. 

 

Use the lemma 5.2 figure, but with 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  collinear.  ∠𝐸𝑃𝐺𝑃𝐹 = ∠𝐹𝑃𝐺𝑃𝐸 , by the 

vertical angles theorem, and ∠𝐸𝑃𝑃𝐹 = ∠𝐹𝑃𝑃𝐸, by lemma 5.2.2 and transitivity.  Adding 

or subtracting equal angles to ∠𝐹𝑃𝑃𝐹  or ∠𝐸𝑃𝑃𝐸 yields ∠𝐸𝑃𝐹 = ∠𝑃𝐹𝑃𝑃𝐸.  By lemma 5.2.1,      

∠𝐺 + ∠𝑃𝐹𝑃𝑃𝐸 = 𝜎, so ∠𝐺 + ∠𝐸𝑃𝐹 = 𝜎.  Thus, 𝐸, 𝑃, 𝐹, 𝐺 are concyclic by the cyclic 

quadrilateral theorem converse; that is, 𝑃 is on the circumcircle of 𝐸𝐹𝐺.            ∎       

                    

𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  are vertices of the pedal triangle.  In textbooks that consider degenerate triangles to 

be triangles, the Wallace line is a special case of the pedal triangle; it is the degenerate case. 

 

2010 USAMO Problem 

Let 𝐸𝐹𝐺𝑃𝐻 be a pentagon inscribed in a semicircle with diameter 𝐸𝐹.  The feet of perpendiculars 

dropped on 𝐸𝐻⃡⃗⃗⃗  ⃗ and 𝐹𝐻⃡⃗⃗⃗  ⃗ from 𝑃 define a line, and the feet of perpendiculars dropped on 𝐸𝐺⃡⃗⃗⃗  ⃗ and 

𝐹𝐺⃡⃗⃗⃗  ⃗ from 𝑃 define a line.  Prove that these lines make an angle half that of ∠𝐺𝑂𝐻 with 𝑂 ≡ 𝑀𝐸𝐹. 

 

Solution 

The feet 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  define the Wallace line of 𝑃 relative to 𝐸𝐹𝐺.  The feet of perpendiculars 

dropped on 𝐸𝐻⃡⃗⃗⃗  ⃗ and 𝐹𝐻⃡⃗⃗⃗  ⃗ from 𝑃 define the Wallace line of 𝑃 relative to 𝐸𝐹𝐻.  We will call 

these feet 𝑃𝐸
′  and 𝑃𝐹

′ , respectively, to distinguish them from the feet associated with 𝐸𝐹𝐺.  

Since 𝐸𝐹 is common to both triangles, their Wallace lines cross at 𝑃𝐺 ≡ 𝑃𝐻
′ .  ∠𝐺𝑂𝐻 is the 

angle subtended at the center by 𝐺𝐻, so it is double any inscribed angle subtended by 

𝐺𝐻, such as ∠𝐺𝐸𝐻.  Let 𝜔 be the circle with diameter 𝐸𝑃.  By Thales’ diameter theorem, 

𝑃𝐺 , 𝑃𝐹 and 𝑃𝐸
′  all lie on this circle.  Within this circle, ∠𝑃𝐹𝐸𝑃𝐸

′ = ∠𝑃𝐹𝑃𝐺𝑃𝐸
′  by the inscribed 

angle theorem.  But ∠𝑃𝐹𝐸𝑃𝐸
′ ≡ ∠𝐺𝐸𝐻, so ∠𝑃𝐹𝑃𝐺𝑃𝐸

′ =
1

2
∠𝐺𝑂𝐻.            ∎ 

 

Orange Belt Exit Exam Problem #6 

Given a parallelogram 𝐸𝐹𝐺𝐻 that is not a rhombus, draw a ray from 𝐸 through 𝐺𝐻 at 𝐽 and 

through 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾.  Prove that (1) 𝐸𝐹𝐾~𝐽𝐻𝐸~𝐽𝐺𝐾; and (2) ∠𝐸 is bisected iff 𝐽𝐺 = 𝐾𝐺. 

 

Did everybody get this problem when you were orange belts?  You are going to need it! 



Victor Aguilar  Geometry without Multiplication 

231 
 

Isosceles Kite Problem 

Photocopy the image in the figure below.  Note that 𝐸𝐹𝐺𝐻 is a parallelogram; ∠𝐸 is bisected;      

𝑃 is the point on the circumcircle of 𝐹𝐺𝐻, 𝜔, such that 𝑃𝐺 ⊥ 𝐽𝐾;  𝑄 is diametrically opposed to 𝑃 

in 𝜔; and 𝑃𝐹𝑃𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the Wallace line of 𝑃 relative to 𝐹𝐺𝐻.  Prove the following: 

1. 𝐽𝐺𝐾𝑃 is an isosceles kite. 

2. 𝑄𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐽𝐾⃡⃗⃗⃗ ∥ 𝑃𝐹𝑃𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 

 
 

Isosceles Kite Problem 

 

Wallace Theorem II 

Given 𝐸𝐹𝐺, 𝑃 on the circumcircle, 𝜔, long of ∠𝐺, let 𝑄:= 𝑃𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔.  Then, 𝐸𝑄⃡⃗⃗⃗  ⃗ ∥ 𝑃𝐺𝑃𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

 

 Proof 

If 𝑄 = 𝑃𝑃𝐸
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔, ∠𝑃𝐹𝐸 = ∠𝑃𝑄𝐸 by the inscribed angle theorem.  ∠𝑃𝑃𝐺𝐹 = ∠𝑃𝑃𝐸𝐹 = 𝜌, 

so, by Thales’ diameter theorem, 𝑃𝐺  and 𝑃𝐸  are on the circle whose diameter is 𝑃𝐹.  By 

the inscribed angle theorem, ∠𝑃𝐹𝑃𝐺 = ∠𝑃𝑃𝐸𝑃𝐺 .  By transitivity, ∠𝑃𝑄𝐸 = ∠𝑃𝑃𝐸𝑃𝐺 .  By 

the vertical angles theorem and the transversal lemma, 𝐸𝑄⃡⃗⃗⃗  ⃗ ∥ 𝑃𝐺𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  • 

 

 If 𝑄 = 𝑃𝐸𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ ∩ 𝜔, show that ∠𝑃𝐹𝐸 = 𝜎 − ∠𝑃𝑄𝐸; the rest is left as an exercise. •          ∎ 
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Wallace Theorem III 

Given 𝐸𝐹𝐺 and 𝑃 on the circumcircle, 𝜔, long of ∠𝐺; then, 𝑃𝐸𝐹~𝑃𝑃𝐹𝑃𝐸 . 

 

 Proof 

∠𝑃𝑃𝐺𝐹 = ∠𝑃𝑃𝐸𝐹 = 𝜌, so, by Thales’ diameter theorem, 𝑃𝐺  and 𝑃𝐸  are on the circle 

whose diameter is 𝑃𝐹.  By the inscribed angle theorem, ∠𝑃𝐹𝑃𝐺 = ∠𝑃𝑃𝐸𝑃𝐺 .  Analogously, 

∠𝑃𝐸𝑃𝐺 = ∠𝑃𝑃𝐹𝑃𝐺 .  By AA similarity, 𝑃𝐸𝐹~𝑃𝑃𝐹𝑃𝐸 .                ∎ 

 

In the preceding two theorems, the only restriction on 𝑃 is that it be long of ∠𝐺.  In the next 

theorem, 𝑃 is not just long of ∠𝐺, but it is the orthic reflection around 𝐸𝐹.  𝐸𝐹𝐺 is acute to assure 

that ∠𝐸 and ∠𝐹 are acute; 𝑃 is not long of ∠𝐺 if ∠𝐸 or ∠𝐹 are obtuse.  ∠𝐺 need not be acute. 

 

Wallace Theorem IV 

Given 𝐸𝐹𝐺 acute with circumcircle 𝜔, let 𝑃:= 𝐺𝐺′⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝜔, so 𝑃𝐺  is 𝐺′, the foot of the altitude to 𝐸𝐹.  

The Wallace line determined by 𝑃 is parallel to the line tangent to 𝜔 at 𝐺. 

  

Proof 

Assume that 𝑃𝐸 is outside 𝜔.  ∠𝐹𝑃𝑃𝐺 = ∠𝐹𝐸𝐺 by the inscribed angle theorem.  ∠𝑃𝑃𝐺𝐹 

and ∠𝑃𝑃𝐸𝐹 are both right, so, by Thales’ diameter theorem, 𝑃𝐺  and 𝑃𝐸 are on the circle 

whose diameter is 𝑃𝐹.  By the inscribed angle theorem, ∠𝐹𝑃𝑃𝐺 = ∠𝐹𝑃𝐸𝑃𝐺 .  By 

transitivity, ∠𝐹𝐸𝐺 = ∠𝐹𝑃𝐸𝑃𝐺 .  Let 𝐺𝑇⃡⃗ ⃗⃗   be tangent to 𝜔 at 𝐺 and 𝑇 be on the same side   

of 𝐺𝑃⃡⃗⃗⃗  ⃗ as 𝐹.  By the tangent and chord theorem, ∠𝐹𝐸𝐺 = ∠𝐹𝐺𝑇.  By transitivity, 

∠𝐹𝑃𝐸𝑃𝐺 = ∠𝐹𝐺𝑇.  By the transversal lemma, 𝑃𝐺𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐺𝑇⃡⃗ ⃗⃗  .     • 

 

Case two is that 𝑃𝐸 is inside 𝜔 and case three is that 𝑃𝐸 is on 𝜔; these cases are left as exercises. 

 

Wallace Theorem V 

Given 𝐸𝐹𝐺 and 𝑃, 𝑄 on the circumcircle, 𝜔, both long of ∠𝐺, the angle between the Wallace lines 

determined by 𝑃 and 𝑄 is equal to the angle subtended by 𝑃𝑄. 

 

 Proof 

Let 𝑃′′: = 𝑃𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔 and 𝑄′′: = 𝑄𝑄𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∩ 𝜔.  𝐸𝑃′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑃𝐺𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐸𝑄′′⃡⃗⃗⃗⃗⃗⃗⃗ ∥ 𝑄𝐺𝑄𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by Wallace 

theorem II.  By the pairwise parallels theorem, ∠𝑃′′𝐸𝑄′′, the angle subtended by 𝑃′′𝑄′′, 

is equal to the angle between the Wallace lines.  By the transversal lemma, 𝑃𝑃′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑄𝑄′′⃡⃗ ⃗⃗ ⃗⃗⃗⃗ .  

By the parallels and circle theorem, and possibly also the isosceles triangle frustum 

theorem (diagonals are equal), 𝑃𝑄 = 𝑃′′𝑄′′.  Thus, the result.            ∎ 
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Lemma 5.3 

An interior angle of one equilateral triangle is equal to an interior angle of any equilateral triangle. 

 

Proof 

By the equilateral triangle theorem, all three angles are equal.  Choose any side as the 

base and, by SSS, construct a triangle congruent to the other triangle with collinear bases 

and sharing a base vertex.  By C. 3.3, construct a line through its apex parallel to the base.  

By T & V, the interior angles of this triangle are equal to the given triangle.          ∎ 

 

Lobachevski postulated that, given a line and a point not on it, there are at least two lines through 

that point parallel to the given line.  This means that: (1) There are no right rectangles – a Lambert 

quadrilateral’s fourth angle is acute; (2) The sum of a triangle’s interior angles is less than straight; 

and (3) No two triangles are similar unless they are also congruent.  Thus, in hyperbolic geometry, 

equilateral triangles are equiangular, but that angle depends on the size of the triangle. 

 

Thus, Torricelli’s problem (next) can be solved in Euclidean space.  But, if the vertices were Earth 

and two exoplanets, would we know where to construct a space port between them?  Maybe. 

 

It is possible that physical space is Euclidean on a small scale but becomes hyperbolic as distances 

become greater.  In hyperbolic geometry, the sum of the angles in a triangle decreases as size 

increases – which is why there are no similar triangles except those that are also congruent – but 

for very small triangles the angle sum is so close to straight that we may not be able to measure 

its defect with our instruments.  But what does “small” mean in the real world?  The width of my 

desk?  The width of Germany?  The width of the solar system?  Thanks to Carl Friedrich Gauss, 

we know that the triangle with vertices on the peaks of the mountains Hohenhagen, Inselberg 

and Brocken is small in this sense.  We wait for NASA to inform us if the triangle with vertices on 

Earth, Jupiter and Saturn is small.  Until this measurement is taken, we really do not know if the 

universe is Euclidean all the way out or just locally where we have line-of-sight with telescopes. 

 

Recall the notation established in lemma 3.6 that 𝜑 (phi) is the interior angle of an equilateral 

triangle.  It is a third of a straight angle in Euclidean geometry; in hyperbolic geometry, it is less. 

 

The next problem was posed by Pierre de Fermat, who is famous for his Last Theorem.  Decades 

later it was solved by Evangelista Torricelli, who is famous for inventing the barometer, and then 

solved using a different method by Napoleon Bonaparte, who is famous for conquering Europe.  

 

For not too obtuse triangles – the interior angles are all less than 2𝜑 – Torricelli segments are 

from the vertices to the apexes of equilateral triangles built on the exterior of the opposite sides.   
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Torricelli Lemma:  The Torricelli segments are concurrent; this point is called the Torricelli point. 

 

Torricelli Problem:  Given a triangle that is not too obtuse (interior angles all less than 2𝜑), prove 

that the Torricelli point minimizes the sum of the distances to the triangle’s vertices. 

 

 Solution 

Given a triangle 𝐸𝐹𝐺, guess where the desired center, 𝑈, is.  Build an equilateral triangle 

on 𝐸𝑈 with its apex, 𝑃, on the other side of 𝐸𝑈⃡⃗⃗⃗  ⃗ from 𝐹 so 𝐸𝑃 = 𝑈𝑃.  Build an equilateral 

triangle on 𝐸𝐺 so its apex, 𝐹′′, is outside the given triangle.  ∠𝑈𝐸𝐺 = ∠𝑃𝐸𝐹′′ because 

they are both ∠𝐺𝐸𝑃 less than (more than) 𝜑 if 𝑃 is outside (inside) 𝐸𝐹𝐺.  𝑈𝐸𝐺 ≅ 𝑃𝐸𝐹′′ 

by SAS and so 𝑈𝐺 = 𝑃𝐹′′; thus, 𝐹𝑈 + 𝐸𝑈 + 𝐺𝑈 = 𝐹𝑈 + 𝐸𝑃 + 𝑃𝐹′′ = 𝐹𝑈 + 𝑈𝑃 + 𝑃𝐹′′.  

This distance is shortest if 𝐹, 𝑈, 𝑃, 𝐹′′ are collinear; that is, 𝑈 is on the line from a vertex 

of the given triangle to the apex of an equilateral triangle built on the exterior of the 

opposite side.  Do the same with another vertex and its opposite side; where the lines 

cross is the point that minimizes the sum of the distances to the triangle’s vertices.       ∎  

 

For too obtuse triangles, it is easy to show that the solution is at the wide vertex.  In this case, 

the solution is not called the Torricelli point unless that interior angle is exactly 2𝜑. 

 

Torricelli Angles Theorem 

𝑈 is the Torricelli point of 𝐸𝐹𝐺 if and only if ∠𝐸𝑈𝐹 = ∠𝐹𝑈𝐺 = ∠𝐺𝑈𝐸 = 2𝜑. 

 

This is an easy corollary that uses the same figure as the Torricelli problem.  Since 𝐸𝑈𝑃 was 

constructed equilateral, ∠𝐸𝑈𝐹 is exterior to it.  Analogously, for ∠𝐹𝑈𝑃 and ∠𝐺𝑈𝑃.   

 

Define the Torricelli apexes 𝐸′′ and 𝐺′′ analogous to 𝐹′′, above.  What can we say about 𝐸′′𝐹′′𝐺′′? 

 

Torricelli Expansion Theorem 

𝐸𝐹𝐺 and 𝐸′′𝐹′′𝐺′′, with 𝐸′′, 𝐹′′, 𝐺′′ the Torricelli apexes of 𝐸𝐹𝐺, have the same Torricelli point. 

 

Torricelli Segments Theorem 

The Torricelli segments are of equal length. 

 

 Proof 

Given 𝐸𝐹𝐺 and the Torricelli apexes, 𝐸′′ and 𝐺′′, connect 𝐸𝐸′′ and 𝐺𝐺′′.  𝐸𝐹 = 𝐺′′𝐹 and 

𝐹𝐸′′ = 𝐹𝐺 by equilateralism and ∠𝐸𝐹𝐸′′ = ∠𝐺′′𝐹𝐺 because they are both ∠𝐸𝐹𝐺 + 𝜑.  

By SAS, 𝐸𝐹𝐸′′ ≅ 𝐺′′𝐹𝐺 and thus 𝐸′′𝐸 = 𝐺𝐺′′.              ∎ 
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 Torricelli Triangles Circumcircles Theorem 

The circumcircles of the three external equilateral triangles are concurrent at the Torricelli point. 

 

 Proof 

Consider the quadrilateral with three of its corners at the vertices of one of the external 

equilateral triangles and the fourth at the Torricelli point.  By the Torricelli angles 

theorem, the interior angle at this point and the angle opposite it are supplementary; by 

the cyclic quadrilateral theorem converse, this quadrilateral is cyclic.  Since circumcircles 

are unique, the triangle’s and the quadrilateral’s circumcircles are identical.          ∎ 

 

Tri–Segment Theorem 

A tri-segment of a triangle is parallel to the other side and a third of it, if it is the one close to the 

apex; or two-thirds of it, if it is the one close to the base. 

 

Tri–Segment Theorem Converse 

Two lines parallel to the base of a triangle that trisect one side also trisect the other side. 

 

Napoleon Theorem 

Centers of equilateral triangles external to a not too obtuse triangle are an equilateral triangle. 

 

 Medial Point Proof 

Given 𝐸𝐹𝐺 with medial point 𝐶, let 𝐺′′ be the apex of the equilateral triangle built on the 

exterior of 𝐸𝐹 and 𝐶𝐺 its medial point. Let 𝑀𝐸𝐹 be the midpoint of 𝐸𝐹 and draw the 

medians 𝑀𝐸𝐹𝐺 and 𝑀𝐸𝐹𝐺′′; also, connect 𝐶𝐶𝐺.  By the two-to-one medial point theorem, 

𝑀𝐸𝐹𝐶𝐺  is a third of 𝑀𝐸𝐹𝐺′′ and 𝑀𝐸𝐹𝐶 is a third of 𝑀𝐸𝐹𝐺.  By the SAS third-scale triangle 

theorem, 𝐶𝐶𝐺 is a third of 𝐺𝐺′′.  By analogy, 𝐶𝐶𝐸 is a third of 𝐸𝐸′′ and 𝐶𝐶𝐹 is a third of 

𝐹𝐹′′, where 𝐶𝐸 and 𝐶𝐹 are medial points of 𝐺𝐹𝐸′′ and 𝐸𝐺𝐹′′, respectively.  By the tri-

segment theorem, 𝐶𝐶𝐸
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐸′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐶𝐶𝐹

⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐹𝐹′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐶𝐶𝐺
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐺𝐺′′⃡⃗ ⃗⃗ ⃗⃗  ⃗.  By the Torricelli angles 

theorem, the angles around the Torricelli point are 2𝜑 and, by the pairwise parallel 

similarity theorem, the angles around 𝐶 are 2𝜑; thus, 𝐶𝐸𝐶𝐹𝐶𝐺 is equilateral.          ∎ 

 

The center of this equilateral triangle is the first Napoleon point.  This theorem is also true of the 

three internal equilateral triangles; the center of that equilateral triangle is the second Napoleon 

point.  Donald Coxeter’s circumcenter proof is green belt; it extends this to too obtuse triangles. 

 

Moss Problem 

Construct the largest equilateral triangle, 𝐸𝐹𝐺, with given points 𝐽, 𝐾, 𝐿, each on a different side. 
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Lemma 5.4 

Given 𝐸𝐹𝐺 equilateral with center 𝑂, then ∠𝐸𝑂𝐹 = ∠𝐹𝑂𝐺 = ∠𝐸𝑂𝐺 = 2𝜑 

 

Equilateral Sum Theorem 

Given 𝐸𝐹𝐺 equilateral and 𝑃 on its circumcircle long of ∠𝐺, then 𝐺𝑃 = 𝐹𝑃 + 𝐸𝑃. 

 

 Proof 

Assume that 𝑃 is closer to 𝐸 than to 𝐹; if not, then change the labels.  Drop perpendiculars 

from the circumcenter, 𝑂, to 𝐸𝑃, 𝐹𝑃, 𝐺𝑃 with feet 𝑁, 𝐽,𝑀.  By the diameter and chord 

theorem, these are midpoints.  Drop a perpendicular from 𝐸 to 𝑂𝐽 with foot 𝐾 and then 

from 𝑃 to 𝐸𝐾 with foot 𝐿.  By the Lambert theorem, 𝑃𝐽𝐾𝐿 is a right rectangle; 2𝐾𝐿 = 𝐹𝑃.  

By the cyclic quadrilateral theorem, ∠𝐸𝑃𝐹 = 2𝜑.  By lemma 3.6, 𝐸𝑃𝐿 is a half equilateral 

triangle, so 2𝐿𝐸 = 𝑃𝐸.  Thus, 2𝐾𝐸 = 2𝐾𝐿 + 2𝐿𝐸 = 𝐹𝑃 + 𝐸𝑃 by substitution.   

 

If 𝑀𝑃 = 𝐾𝐸, then 𝐺𝑃 = 2𝐾𝐸 and we are done! 

 

𝑂𝑁𝑃𝐽 is cyclic (opposite angles right) and we know that ∠𝑁𝑃𝐽 = 2𝜑; thus, ∠𝑁𝑂𝐽 = 𝜑. 

 ∠𝑀𝑂𝑃 =
1

2
∠𝑃𝑂𝐺   center line theorem  

   =
1

2
(∠𝑃𝑂𝐸 + ∠𝐸𝑂𝐺) addition 

 =
1

2
(2∠𝑁𝑂𝐸 + 2𝜑)   center line theorem and lemma 5.4 

 = ∠𝑁𝑂𝐸 + 𝜑   cancel half of double 

 = ∠𝑁𝑂𝐸 + ∠𝑁𝑂𝐽   substitution 

 = ∠𝐽𝑂𝐸 = ∠𝐾𝑂𝐸    addition and collinearity 

 By AAS, 𝑀𝑂𝑃 ≅ 𝐾𝑂𝐸, which holds the equality 𝑀𝑃 = 𝐾𝐸.             ∎ 

 

Reverse Torricelli Problem 

Given that 𝐸′′, 𝐹′′, 𝐺′′ are the Torricelli apexes of 𝐸𝐹𝐺, construct 𝐸𝐹𝐺. 

 

 Solution 

By the Torricelli expansion theorem, 𝐸𝐹𝐺 and 𝐸′′𝐹′′𝐺′′ have the same Torricelli point; find 

it and call it 𝑈.  By the equilateral sum theorem, 𝑈𝐸 + 𝑈𝐹 = 𝑈𝐺′′ and 𝑈𝐹 + 𝑈𝐺 = 𝑈𝐸′′ 

and 𝑈𝐺 + 𝑈𝐸 = 𝑈𝐹′′.  Add them together:  2(𝑈𝐸 + 𝑈𝐹 + 𝑈𝐺) = 𝑈𝐸′′ + 𝑈𝐹′′ + 𝑈𝐺′′.  

By substitution, 𝑈𝐸 =
1

2
(𝑈𝐹′′ + 𝑈𝐺′′ − 𝑈𝐸′′) and 𝑈𝐹 =

1

2
(𝑈𝐸′′ + 𝑈𝐺′′ − 𝑈𝐹′′) and 

𝑈𝐺 =
1

2
(𝑈𝐸′′ + 𝑈𝐹′′ − 𝑈𝐺′′).  Lay these lengths off on 𝐸′′𝑈⃗⃗⃗⃗ ⃗⃗ ⃗⃗   and 𝐹′′𝑈⃗⃗⃗⃗ ⃗⃗ ⃗⃗   and 𝐺′′𝑈⃗⃗⃗⃗ ⃗⃗ ⃗⃗   past 𝑈, 

respectively.  These are the vertices of 𝐸𝐹𝐺, respectively.             ∎ 
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Lemma 5.5 

Of isosceles triangles with equal apex angles, the one with the shortest legs has the shortest base. 

 

Fagnano Problem:  Inscribe a triangle in an acute triangle with the smallest possible perimeter. 

 

 Solution 

Given 𝐸𝐹𝐺, guess at the inscribed triangle’s vertex on 𝐸𝐹; call this 𝑃.  Let 𝑃𝐺𝐸  and 𝑃𝐹𝐺     

be reflections of 𝑃 around 𝐺𝐸⃡⃗⃗⃗  ⃗ and 𝐹𝐺⃡⃗⃗⃗  ⃗, respectively.  Let 𝐹′′: = 𝑃𝐺𝐸𝑃𝐹𝐺 ∩ 𝐺𝐸 and           

𝐸′′: = 𝑃𝐺𝐸𝑃𝐹𝐺 ∩ 𝐹𝐺.  The perimeter of 𝑃𝐸′′𝐹′′ equals 𝑃𝐺𝐸𝑃𝐹𝐺  by the mediator theorem 

and it is the minimal inscribed triangle with 𝑃 on 𝐸𝐹 by definition of segment.  But which 

point 𝑃 on 𝐸𝐹 has the shortest segment 𝑃𝐺𝐸𝑃𝐹𝐺  associated with it? 

 

For any 𝑃 on 𝐸𝐹; by SSS, 𝑃𝐺𝐹′′ ≅ 𝑃𝐺𝐸𝐺𝐹′′ and 𝑃𝐺𝐸′′ ≅ 𝑃𝐹𝐺𝐺𝐸′′, so ∠𝑃𝐺𝐹′′ = ∠𝑃𝐺𝐸𝐺𝐹′′ 

and ∠𝑃𝐺𝐸′′ = ∠𝑃𝐹𝐺𝐺𝐸′′.  ∠𝑃𝐺𝐸𝐺𝑃𝐹𝐺 = 2∠𝐸𝐺𝐹, a given angle.  𝑃𝐺𝐸𝐺 = 𝑃𝐹𝐺𝐺 = 𝑃𝐺, so 

𝑃𝐺𝐸𝑃𝐹𝐺𝐺 is isosceles with a given apex angle.  By the perpendicular length theorem, 𝑃𝐺 

is minimal if it is the perpendicular from 𝐺 to 𝐸𝐹; that is, 𝑃 ≡ 𝐺′.  By lemma 5.5, this 

minimizes 𝑃𝐺𝐸𝑃𝐹𝐺 .  If 𝐸′′ ≡ 𝐸′ and 𝐹′′ ≡ 𝐹′, then the solution is the orthic triangle. 

 

Let ∠𝐸 = 𝛼, ∠𝐹 = 𝛽, ∠𝐺 = 𝛾 and 𝛼′, 𝛽′, 𝛾′ be their complements.  ∠𝐺′𝐺𝐸𝐺𝐺′𝐹𝐺 = 2𝛾 

and, by the isosceles angle theorem, ∠𝐺𝐺′𝐺𝐸𝐹′′ = 𝛾′.  ∠𝐺′𝐺𝐸 = 𝛼′, so ∠𝐺′𝐺𝐸𝐺𝐹′′ = 𝛼′.  

By the exterior angle theorem, ∠𝐺′𝐹′′𝐸 = 𝛼′ + 𝛾′ = 𝛽.  ∠𝐺′𝐹′′𝐺 = 𝜎 − 𝛽, so, by the 

cyclic quadrilateral theorem converse, 𝐺′𝐹𝐺𝐹′′ is cyclic.  By Thales’ diameter theorem, 𝐹𝐺 

is a diameter, ∠𝐹𝐹′′𝐺 = 𝜌 and 𝐹′′ ≡ 𝐹′.  Analogously, 𝐸′′ ≡ 𝐸′.  It’s the orthic triangle! ∎ 

 

The first two paragraphs cite only yellow-belt theorems and, had we stopped there and said, “by 

analogy, we could have done this for 𝑃 on 𝐹𝐺 or 𝑃 on 𝐺𝐸 and found 𝐸′ and 𝐹′, respectively,” as 

other authors do, it would imply that this works in hyperbolic geometry.  But it does not! 

 

Orthic Triangle Lemma 

Two triangle vertices and the feet of the altitudes from them are concyclic. 

 

 Proof 

By Thales’ diameter theorem, 𝐸, 𝐹, 𝐸′, 𝐹′ are concyclic and centered at the midpoint of 

𝐸𝐹.  By analogy, 𝐹, 𝐺, 𝐹′, 𝐺′ and 𝐺, 𝐸, 𝐺′, 𝐸′ are concyclic.             ∎ 

 

Orthic Triangle Similarity Theorem 

The orthic triangle of an acute triangle cuts off three triangles from it that are similar to it. 
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 Proof 

By the orthic triangle lemma, 𝐸, 𝐹, 𝐸′, 𝐹′ are concyclic.  By the cyclic quadrilateral 

theorem, ∠𝐹′𝐸𝐹 and ∠𝐹𝐸′𝐹′ are supplementary.  ∠𝐹′𝐸′𝐺 and ∠𝐹𝐸′𝐹′ are supplementary 

by construction, so ∠𝐹′𝐸𝐹 = ∠𝐹′𝐸′𝐺.  Also, ∠𝐸′𝐹𝐸 = ∠𝐸′𝐹′𝐺.  By AA similarity, 

𝐸𝐹𝐺 ~ 𝐸′𝐹′𝐺.  Analogously, 𝐸𝐹𝐺 ~ 𝐸𝐹′𝐺′ ~ 𝐸′𝐹𝐺′ ~ 𝐸′𝐹′𝐺.            ∎ 

 

Orthic Circumradius Theorem 

The circumradii to a vertex and a side of the orthic triangle are perpendicular. 

 

 Proof 

Given 𝐸𝐹𝐺 with circumcenter 𝑂, orthocenter 𝐻 and orthic reflections 𝐻𝐹𝐺 , 𝐻𝐺𝐸 , 𝐻𝐸𝐹,  let     

𝑀:= 𝐺𝑂⃗⃗⃗⃗  ⃗ ∩ 𝐻𝐹𝐺𝐻𝐺𝐸.  By the orthic triangle lemma, 𝐸, 𝐹, 𝐸′, 𝐹′ are concyclic.  By the 

inscribed angle theorem, ∠𝐸′𝐸𝐹′ = ∠𝐸′𝐹𝐹′.  Their complements, ∠𝐸𝐺𝐸′ = ∠𝐹𝐻𝐸′, are 

equal.  ∠𝐸𝐺𝐹 = ∠𝐸𝐻𝐹𝐺𝐹 by the inscribed angle theorem.  ∠𝐹𝐻𝐸′ = ∠𝐹𝐻𝐹𝐺𝐸′ by 

transitivity.  By AAS, 𝐹𝐻𝐸′ ≅ 𝐹𝐻𝐹𝐺𝐸′; thus, 𝐻𝐸′ = 𝐻𝐹𝐺𝐸′.  Analogously,  𝐻𝐹′ = 𝐻𝐺𝐸𝐹′.  

By mid-segment theorem #1, 𝐸′𝐹′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐻𝐹𝐺𝐻𝐺𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

 

From above, ∠𝐸′𝐸𝐹′ = ∠𝐸′𝐹𝐹′.  The same equality is ∠𝐻𝐹𝐺𝐸𝐺 = ∠𝐺𝐹𝐻𝐺𝐸 .  By the 

inscribed angle theorem, ∠𝐻𝐹𝐺𝑂𝐺 = ∠𝐺𝑂𝐻𝐺𝐸 .  By the center line theorem, ∠𝑀 is right.  

By the transversal theorem corollary, the result.              ∎ 

 

We call the medial point 𝐶 and never use it nor 𝐴, 𝐵 and 𝐷 for arbitrary points.  It is weak that 

high-school math teachers overuse the letters at the beginning and end of the alphabet, which 

confuses students as they move from one math class to another and keep seeing the same letters 

used with different meanings.  The Pythagorean theorem and the quadratic formula are to 

tradesmen what the one-two punch is to pugilists.  Yet most cannot solve these common math 

problems, largely because their geometry teacher used 𝑎, 𝑏, 𝑐 for the sides of right triangles and 

their algebra teacher used 𝑎, 𝑏, 𝑐 for the coefficients of quadratic equations, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.95  

Labeling the circumcenter 𝐶 is also confusing because that is a vertex.  It will soon be proven that 

the circumcenter of a triangle is the orthocenter of its medial triangle, so it is impossible for them 

to have unique symbols, but I try to use 𝑂 for circumcenter and 𝐻 for orthocenter, if possible.  

Triangle vertices 𝐸, 𝐹, 𝐺, medial point 𝐶, and incenter 𝐼 are the only unique unaccented symbols.  

A single prime always means the foot of an altitude; e.g., 𝐸′, 𝐹′, 𝐺′.  Double subscripts on 𝐼 are 

touching points of a quadrilateral; on 𝑀 they are midpoints.  A parent and medial triangle have 

equal angles and should be written in that order; e.g., 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹 is medial to 𝐸𝐹𝐺.  Otherwise, 

double subscripts are reflections; thus, 𝐻𝐹𝐺 , 𝐻𝐺𝐸 , 𝐻𝐸𝐹  are the orthic reflections of 𝐸𝐹𝐺.   

 
95 Here I help tradesmen:  www.researchgate.net/publication/282947903_How_Math_Can_Be_Taught_Better  

http://www.researchgate.net/publication/282947903_How_Math_Can_Be_Taught_Better
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Orthic Triangle Incenter Theorem 

1. The orthocenter of an acute triangle is the incenter of its orthic triangle. 

2. The obtuse vertex of an obtuse triangle is the incenter of its orthic triangle. 
 

Proof of First Case 

Given 𝐸𝐹𝐺 with orthocenter 𝐻, by the cyclic quadrilateral theorem converse, 𝐸𝐺′𝐻𝐹′ is 

cyclic.  By the inscribed angle theorem, ∠𝐹′𝐸𝐻 = ∠𝐹′𝐺′𝐻 and ∠𝐸′𝐹𝐻 = ∠𝐸′𝐺′𝐻.  By the 

inscribed angle theorem converse, 𝐸𝐹𝐸′𝐹′ is cyclic and, by the inscribed angle theorem, 

∠𝐹′𝐸𝐻 = ∠𝐸′𝐹𝐻.  By the preceding equalities, ∠𝐹′𝐺′𝐸′ is bisected.  Analogously, ∠𝐺′𝐸′𝐹′ 

and ∠𝐸′𝐹′𝐺′ are bisected.  Thus, 𝐻 is the incenter of 𝐸′𝐹′𝐺′.    • 

 

We will now prove a result due to Leonhard Euler, who is famous in both geometry and calculus; 

his 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 founded complex analysis.  Also, he is the founder of modern ballistics. 
 

Euler Segment Theorem 

The medial point is collinear with the orthocenter and the circumcenter and twice as far from the 

former as the latter. 
 

Proof 

Given 𝐸𝐹𝐺, construct the medial triangle 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹.  By medial triangle theorem I, 

𝑀𝐹𝐺𝑀𝐺𝐸 =
1

2
𝐸𝐹 and 𝑀𝐺𝐸𝑀𝐸𝐹 =

1

2
𝐹𝐺 and 𝑀𝐸𝐹𝑀𝐹𝐺 =

1

2
𝐺𝐸.  Raise a perpendicular from 

𝐸𝐹 at 𝑀𝐸𝐹 that intersects 𝑀𝐹𝐺𝑀𝐺𝐸  at 𝑀′𝐸𝐹.  Raise a perpendicular from 𝐸𝐺 at 𝑀𝐺𝐸  that 

intersects 𝑀𝐸𝐹𝑀′𝐸𝐹  at 𝑂.  By the medial triangle orthocenter theorem, these segments 

are altitudes of the medial triangle and thus their intersection, 𝑂, is both the orthocenter 

of the medial triangle and the circumcenter of the parent triangle.  Construct altitudes 

from 𝐸 and 𝐺, the latter intersecting 𝑀𝐹𝐺𝑀𝐺𝐸  at 𝑀𝐺𝐺′ and 𝐸𝐹 at 𝐺′.  By the orthocenter 

theorem, the intersection of these altitudes, 𝐻, is the orthocenter of 𝐸𝐹𝐺.  𝐻𝑂 is the 

Euler segment of 𝐸𝐹𝐺.  By the two-to-one medial point theorem, 𝐶:= 𝐸𝑀𝐹𝐺 ∩ 𝐺𝑀𝐸𝐹 is 

the medial point and 𝑀𝐸𝐹𝐶 =
1

2
𝐺𝐶.  By the half-scale orthocenter to vertex theorem, 

𝑂𝑀𝐸𝐹 =
1

2
𝐻𝐺.  By the Lambert theorem, 𝑀𝐸𝐹𝑀′𝐸𝐹𝑀𝐺𝐺′𝐺′ is a right rectangle.  Thus,  

𝐺𝐺′⃡⃗ ⃗⃗⃗⃗ ∥ 𝑀𝐸𝐹𝑀′𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    and, by the transversal theorem, ∠𝑂𝑀𝐸𝐹𝐺 = ∠𝐻𝐺𝑀𝐸𝐹.  Thus, 𝐻𝐺𝐶 has 

two sides that are half the corresponding sides in 𝑂𝑀𝐸𝐹𝐶 and the included angle is equal.  

By the SAS half-scale triangle theorem, 𝑂𝐶 =
1

2
𝐻𝐶 and ∠𝑂𝐶𝑀𝐸𝐹 = ∠𝐻𝐶𝐺.  By the 

vertical angles theorem, C is collinear with 𝐻 and 𝑂.             ∎ 

 

The Euler line is the segment extended; neither exist for equilateral triangles because 𝐻 ≡ 𝑂. 
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By the center line theorem, the incenter is collinear with the Euler segment if and only if the 

triangle is isosceles.  But is it between the orthocenter and the circumcenter and thus on the 

Euler segment?  The Euler segment relates three major triangle centers but locating the incenter 

relative to it has long stymied geometers.  Guinand (1984) and Franzsen (2011) made progress! 

 

Guinand’s Theorem (without proof) 

For any non-equilateral triangle, the incenter lies strictly inside and the excenters lie strictly 

outside the circle whose diameter joins the medial point to the orthocenter. 

 

In 2001, Várilly proved that the Torricelli point is in the same circle that Guinand contained the 

incenter.  Then, in 2011, Franzsen proved the following theorem. 

 

Franzsen’s Theorem (without proof) 

Let 𝑑 be the distance from the incenter to the Euler segment, 𝑠 the semiperimeter, 𝜇 (Greek:  mu) 

the longest side and 𝜈 (Greek:  nu) the longest median.  Then, 
𝑑

𝑠
<

𝑑

𝜇
<

𝑑

𝜈
<

1

3
. 

 

Proofs are beyond the scope of this book, but this paper96 leads to questions that occupy modern 

geometers and are of interest to top students who want to participate alongside the professors.  

It is absurd that Agostino Prástaro97 denounces us for believing that mathematics ends with 

Euclid.  I never said that it did.  Indeed, the brilliant teenager is more likely to get published in a 

refereed journal if he pursues geometry than if he takes up any other scientific inquiry. 

 
96 forumgeom.fau.edu/FG2011volume11/FG201126.pdf  
97 davidlowryduda.com/reviewing-goldbach/#more-706  

http://forumgeom.fau.edu/FG2011volume11/FG201126.pdf
https://davidlowryduda.com/reviewing-goldbach/#more-706
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Orthocenter and Wallace Line Theorem 

The Wallace line determined by 𝑃 and 𝐸𝐹𝐺 bisects 𝑃𝐻, with 𝐻 the orthocenter. 
 

∠𝐸 can be acute, right or obtuse; in each case, 𝑃𝑃𝐺
⃗⃗ ⃗⃗ ⃗⃗  ⃗ cuts 𝜔, or 𝑃𝐺𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ cuts 𝜔, or 𝑃𝑃𝐺

⃡⃗ ⃗⃗ ⃗⃗  ⃗ touches 𝜔.  

Here, ∠𝐸 acute and 𝑃𝑃𝐺
⃗⃗ ⃗⃗ ⃗⃗  ⃗ cuts 𝜔.  I will shake the hand of the man who proves all nine cases! 

 

 Proof 

Given 𝐸𝐹𝐺 with 𝑃 on the circumcircle, 𝜔, between 𝐸 and 𝐺, let 𝑄:= 𝑃𝑃𝐺
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔 and          

𝑀:= 𝐸𝐹 ∩ 𝑃𝐻𝐸𝐹  and 𝑃′′: = 𝑃𝑄⃗⃗⃗⃗  ⃗ ∩ 𝐻𝑀⃗⃗⃗⃗⃗⃗  ⃗.  By the transversal lemma, 𝑃𝑃′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐺𝐻𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  By the 

orthocenter and circumcircle theorem, 𝐺′𝐻 = 𝐺′𝐻𝐸𝐹 and, 𝑀𝐺′𝐻 ≅ 𝑀𝐺′𝐻𝐸𝐹 by SAS, so 

𝑀𝐻 = 𝑀𝐻𝐸𝐹.  ∠𝑃𝑄𝐺 = ∠𝑃𝐻𝐸𝐹𝐺 = ∠𝑃′′𝐻𝐻𝐸𝐹 = ∠𝑃𝑃′′𝐻 = ∠𝐻𝐸𝐹𝑃𝑃′′ by the inscribed 

angle, isosceles triangle, transversal and transversal theorems.  By T & V and Wallace 

theorem II, 𝑃′′𝐻⃡⃗⃗⃗⃗⃗⃗⃗ ∥ 𝑄𝐺⃡⃗⃗⃗  ⃗ ∥ 𝑃𝐺𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  By AAS, 𝑃𝑃𝐺𝑀 ≅ 𝑃′′𝑃𝐺𝑀, so 𝑃𝑃𝐺 = 𝑃′′𝑃𝐺; that is, 𝑃𝐺  is 

the midpoint of 𝑃′′𝑃, so 𝑃′′ can be renamed 𝑃𝐸𝐹.  By mid-segment theorem #2, the 

Wallace line determined by 𝑃 bisects 𝑃𝐻.      • 
  

Euler Circle Lemma 

Given 𝐸𝐹𝐺 with 𝐸′, 𝐹′, 𝐺′ the feet of the altitudes, then 𝐸′, 𝐹′, 𝐺′, 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  are concyclic. 
 

 Proof 

Given 𝐸𝐹𝐺, assume that 𝐺′ is between 𝐸 and 𝑀𝐸𝐹; if it is not, re-label 𝐸 and 𝐹.  By mid-

segment theorem #1, 𝑀𝐸𝐹𝑀𝐹𝐺 =
1

2
𝐸𝐺.  By Thales’ diameter theorem, 𝑀𝐺𝐸𝐺′ =

1

2
𝐸𝐺.  By 

transitivity, 𝑀𝐸𝐹𝑀𝐹𝐺 = 𝑀𝐺𝐸𝐺′, so 𝑀𝐺𝐸𝐺′𝑀𝐸𝐹𝑀𝐹𝐺  is an isosceles triangle frustum.  By mid-

segment theorem #1, 𝐺′𝑀𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∥ 𝑀𝐺𝐸𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  By the isosceles triangle frustum theorem, 

𝐺′, 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  are concyclic.  Analogously, 𝐸′ and 𝐹′ are on this circle.          ∎ 
 

We tacitly used the circumcenter theorem corollary; any three noncollinear points fully define a 

circle.  One can also say that the orthic and the medial triangles have the same circumcircle. 
 

Euler Circle Theorem 

Given 𝐸𝐹𝐺 with 𝐸′, 𝐹′, 𝐺′ the feet of the altitudes and 𝐻 the orthocenter, the following nine points 

are concyclic:  𝐸′, 𝐹′, 𝐺′ and 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  and 𝑀𝐸𝐻 , 𝑀𝐹𝐻 , 𝑀𝐺𝐻. 
 

 Proof 

Consider 𝐸𝐹𝐻.  The feet of its altitudes are 𝐸′, 𝐹′, 𝐺′ and, by the Euler circle lemma, they 

are concyclic with 𝑀𝐸𝐻 and 𝑀𝐹𝐻.  Analogously, 𝑀𝐺𝐻 is on this circle.  𝐸′, 𝐹′, 𝐺′ fully define 

a circle so, by the Euler circle lemma, 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  are also on this circle.          ∎ 
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Euler Center Theorem 

The center of the Euler circle is the midpoint of the Euler segment. 

 

 Proof 

Recall the figure for the proof of the Euler segment theorem.  𝐺′𝑀𝐸𝐹𝑂𝐻 is a triangle 

frustum.  By the diameter and chord theorem, the mediator of 𝐺′𝑀𝐸𝐹 is a diameter of the 

Euler circle because 𝐺′𝑀𝐸𝐹 is a chord.  By the triangle frustum mid-segment theorem 

converse, it bisects the Euler segment, 𝑂𝐻.  Analogously, the mediators of 𝐸′𝑀𝐹𝐺  and 

𝐹′𝑀𝐺𝐸  bisect 𝑂𝐻.  Thus, the result, because diameters intersect at the center.          ∎ 

 

Euler Radius Theorem 

The radius of a triangle’s Euler circle is half its circumradius. 

 

 Proof 

Given 𝐸𝐹𝐺, let 𝑂,𝑁,𝐻 be the circumcenter, Euler center and orthocenter.  By the SAS 

half-scale triangle theorem, 𝑁𝐻𝑀𝐺𝐻 is half the lengths of 𝑂𝐻𝐺, so 𝑁𝑀𝐺𝐻 =
1

2
𝑂𝐺.        ∎ 

 

Euler Diameter Theorem 

𝑀𝐸𝐻𝑀𝐹𝐻𝑀𝐺𝐻 ≅ 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹 and 𝑀𝐸𝐻𝑀𝐹𝐺 , 𝑀𝐹𝐻𝑀𝐺𝐸 , 𝑀𝐺𝐻𝑀𝐸𝐹  are diameters of the Euler circle. 

 

Given 𝐸𝐹𝐺, we know that 𝑀𝐸𝐻 , 𝑀𝐹𝐻 , 𝑀𝐺𝐻 are on the Euler circle.  But does the Euler circle bisect 

the segment between the orthocenter and any point on the circumcircle? 

 

Euler Bisection Theorem 

The Euler circle bisects any segment from the orthocenter to the circumcircle. 

 

 Proof 

Given 𝐸𝐹𝐺, let 𝑂,𝑁,𝐻 be the circumcenter, Euler center and orthocenter; 𝑂1 is on the 

circumcircle.  For any 𝑁1 on the Euler circle, 𝑁𝑁1 =
1

2
𝑂𝑂1 by the Euler radius theorem.  

Find 𝑁1 such that it is on the same side of 𝐻𝑂⃡⃗ ⃗⃗  ⃗ as 𝑂1 and 𝑁𝑁1
⃡⃗ ⃗⃗⃗⃗⃗⃗ ∥ 𝑂𝑂1

⃡⃗ ⃗⃗ ⃗⃗  ⃗.  Connect 𝐻𝑂1.  By 

the Euler center theorem, 𝑁 ≡ 𝑀𝐻𝑂.  With 𝑁𝑁1 =
1

2
𝑂𝑂1, we have all the conditions for 

mid-segment theorem #3 regarding 𝑂𝑂1𝐻; thus, 𝑁1 ≡ 𝑀𝐻𝑂1
.  𝑂1 is any point on the 

circumcircle and 𝑁1 is a point on the Euler circle that bisects 𝐻𝑂1.            ∎ 

 

Problem 5.2  Prove that the circumcircle of a triangle is the Euler circle of a triangle whose vertices 

are the given triangle’s incenter and two of its excenters. 
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Problem 5.3  Given 𝐸𝐹𝐺, prove that 𝑂,𝑀𝐸𝐹 , 𝐹,𝑀𝐹𝐺  are concyclic and that this circle is congruent 

to the Euler circle of 𝐸𝐹𝐺. 

 

A homothetic double of a triangle has sides twice the lengths of the sides of the given triangle 

and side extensions pairwise parallel.  Blue belts will learn that homothetic dilations can be any 

proportion, but we have not yet defined proportions.  Homothecy is introduced here only for 

doubling of the lengths.  Orange belts had two examples, though they did not then call them this: 

  

1. 𝐸𝐹𝐺 is the homothetic double of 𝑀𝐺𝐸𝑀𝐹𝐺𝐺. 

 

2. The parent triangle, 𝐸𝐹𝐺, is the homothetic double of the medial triangle, 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹. 

 

In example #1, 𝐺 = 𝐸𝑀𝐺𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝑀𝐹𝐺

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ because the sides are collinear, so lines through the vertices 

taken pairwise either intersect at 𝐺 or the vertices are 𝐺.  In example #2, by the medial and parent 

triangle theorem, the medial triangle and its parent triangle have the same medial point, so      

𝐶:= 𝐸𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝑀𝐺𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺𝑀𝐸𝐹
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  In examples #1 and #2, 𝐺 and 𝐶 are the homothetic centers.   

 

Double–Long Triangle Theorem I 

𝐸𝐹𝐺 is the orthic triangle of its double-long triangle, 𝑋𝑌𝑍. 

 

Double–Long Triangle Theorem II 

The double-long triangle is a homothetic double of the long triangle. 

 

 Proof 

By the long circle theorem, 𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺  are the midpoints of 𝐼𝑍, 𝐼𝑌, 𝐼𝑋, respectively.  By 

mid-segment theorem #1, 𝑋𝑌⃡⃗⃗⃗  ⃗, 𝑌𝑍⃡⃗ ⃗⃗ , 𝑍𝑋⃡⃗⃗⃗  ⃗ are pairwise parallel to 𝐿𝐹𝐿𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐿𝐸𝐿𝐹

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐿𝐺𝐿𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 

𝑋𝑌, 𝑌𝑍, 𝑍𝑋 are twice as long as 𝐿𝐹𝐿𝐺 , 𝐿𝐸𝐿𝐹 , 𝐿𝐺𝐿𝐸 , respectively.  The incenter of 𝐸𝐹𝐺 is 

the homothetic center of 𝑋𝑌𝑍 and 𝐿𝐸𝐿𝐹𝐿𝐺.               ∎ 

 

Double–Long Triangle Theorem III 

The circumcircle of a triangle is the Euler circle of its double-long triangle. 

 

 Proof 

By the long triangle theorem, the incenter of a triangle is the orthocenter of its long 

triangle.  By the double-long triangle theorem II, the side extensions are parallel; thus, by 

the transversal theorem, the incenter is also the orthocenter of the double-long triangle.  

By the long circle theorem, the long centers are midway between the double-long 

triangle’s orthocenter and its vertices.  Thus, by the circumcenter theorem corollary.    ∎ 
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Double–Scale Chords Theorem 

Given a circle of radius 𝑟, center 𝑂1 and 𝑇𝑄1 a chord on it, the locus of points, 𝑄2, such that   

𝑇𝑄2 = 2𝑇𝑄1 and 𝑇, 𝑄1, 𝑄2 are collinear is a circle of radius 2𝑟 tangent to the given circle at 𝑇. 

 

 Proof 

Let 𝑂2 be the center of the circle of radius 2𝑟 tangent to the given circle at 𝑇.  For any 𝑄1 

on the 𝑂1-circle, let 𝑄2 be the intersection of 𝑄1𝑇⃡⃗⃗⃗⃗⃗  ⃗ and the 𝑂2 circle.  By the vertical angles 

theorem or reflexivity (if the circles are disjoint or not, respectively) and isosceles triangle 

theorem, ∠𝑂1𝑄1𝑇 = ∠𝑂1𝑇𝑄1 = ∠𝑂2𝑇𝑄2 = ∠𝑇𝑄2𝑂2.  By the AAS half-scale triangle 

theorem, 𝑇𝑄2𝑂2 is a homothetic double of 𝑇𝑄1𝑂1, so 𝑇𝑄2 = 2𝑇𝑄1.           ∎ 

 

Problem 5.4  Through one of two points of intersection of two circles, draw a line so the circles 

cut off two chords, one double the length of the other. 

 

 Solution 

Let 𝑂1 be the center of one circle and 𝑃 be a point of intersection.  By the double-scale 

chords theorem, the locus of endpoints of double-length chords is a circle of twice the 

radius and tangent to the 𝑂1-circle at 𝑃.  By the common point theorem, its center is 

collinear with 𝑂1 and 𝑃.  Where it intersects the other given circle is an endpoint.          ∎ 

 

Discussion 

Because the problem did not specify which circle gets the longer chord, there are two 

solutions.  There are always exactly two because the given circles are not tangent.        ∎ 

 

Problem 5.5  Given an angle ∠𝐸𝐹𝐺 and a point 𝑃 not on either ray of the angle, draw a line 

through 𝑃 that intersects 𝐹𝐸⃗⃗⃗⃗  ⃗ at 𝐽 and 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾 so 𝑃𝐽 is double 𝑃𝐾. 

 

 Two Solutions 

1. Assume that 𝑃 is on the 𝐺 side of 𝐹𝐸⃡⃗⃗⃗  ⃗; if not, then re-label.  Let 𝐿 be an arbitrary point 

on 𝐹𝐸⃗⃗⃗⃗  ⃗.  By C. 3.3, construct a line through 𝑀𝑃𝐿 parallel to 𝐹𝐸⃡⃗⃗⃗  ⃗.  𝐾1 is its intersection 

with 𝐹𝐺⃗⃗⃗⃗  ⃗.  𝐽1: = 𝑃𝐾1
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝐸⃡⃗⃗⃗  ⃗.  By mid-segment theorem #2, 𝑃𝐽1 = 2𝑃𝐾1. 

 

2. Extend 𝐿𝑃⃗⃗ ⃗⃗   by half 𝐿𝑃 to 𝑁.  By C. 3.3, construct a line through 𝑁 parallel to 𝐹𝐸⃡⃗⃗⃗  ⃗.  𝐾2 is 

its intersection with 𝐹𝐺⃗⃗⃗⃗  ⃗.  𝐽2: = 𝑃𝐾2
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝐸⃡⃗⃗⃗  ⃗.  By the transversal, vertical angles and ASA 

half-scale triangle theorems, 𝑁𝑃𝐾2 is half the lengths of 𝐿𝑃𝐽2; thus, 𝑃𝐽2 = 2𝑃𝐾2.    ∎ 

 

We cannot yet solve problems like this for arbitrary proportions, but triple is as easy as double.   
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The tri-segment theorem and its converse were needed for the Napoleon theorem to prove that 

the tri-segment and the base extensions are parallel, but the tri-segment being either one- or 

two-thirds of the base is also very useful.  It is easy to extend this to the quartile points.  Blue 

belts will prove the side-splitter theorem, which extends this to any proportion and is something 

that every Common Core student memorizes.   But memorizing facts is what history class is for; 

we are here to learn logic!  Until we prove the extension, we will just use 
1

4
,
1

3
,
1

2
,
2

3
,
3

4
. 

 

Problem 5.6  Given an angle ∠𝐸𝐹𝐺 and a point 𝑃 not on either ray of the angle, draw a line 

through 𝑃 that intersects 𝐹𝐸⃗⃗⃗⃗  ⃗ at 𝐽 and 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾 so 𝑃𝐽 is triple 𝑃𝐾. 

 

Most homothecy problems are solved without knowing or learning what the proportion is.  For 

this to work, we must know that it works for all real numbers, but they were not fully defined 

until two thousand years after Euclid.  We will solve such a problem now, but without proving it. 

 

Problem 5.7  Inscribe a square inside an equilateral triangle. 

 

 Solution (without proof) 

Given 𝐸𝐹𝐺 equilateral, construct 𝐸𝐹𝐹′′𝐸′′ square and on the same side of 𝐸𝐹⃡⃗⃗⃗  ⃗ as 𝐺.  Let 

𝐽: = 𝐸′′𝑀𝐸𝐹 ∩ 𝐸𝐺 and 𝐾:= 𝐹′′𝑀𝐸𝐹 ∩ 𝐹𝐺.  𝐽′ and  𝐾′ are the feet of perpendiculars 

dropped on 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐽 and 𝐾, respectively.  𝐽𝐾𝐾′𝐽′ is square and it is inscribed in 𝐸𝐹𝐺. ∎ 

 

When I was a 14-year-old geometry student in high school, the teacher inscribed an equilateral 

triangle, a square and a hexagon in a circle and then gave us problem 5.7 as a challenge problem, 

even though similarity and homothecy was still in our future.  I solved it!  Not Eddie Opitz or any 

other of those guys.  But I could not prove 𝐽𝐾𝐾′𝐽′ square.  I knew only of mid-segment theorem 

#1, but 𝐽𝐾𝐾′𝐽′ is not half scale, and I did not have the side-splitter theorem yet.  Neither do you. 

 

Homothetic doubles were defined for triangles, but we can also say that the circumcircle is the 

homothetic double of the Euler circle because its radius is double, and its center is twice as far 

from the orthocenter.  For the Euler circle, this terminology is just another way of stating the 

Euler bisection theorem.  But students should be familiar with this usage because, as blue belts, 

they will solve problems by constructing circles whose radii are the same proportion as that of 

the distances of their centers from a point on their line of centers called the homothetic center. 

 

Both College Geometry by Altshiller-Court and Advanced Euclidean Geometry by Johnson have 

homothecy for their second chapter, so review this section and read that chapter during the 

summer to prepare.  Also, Geometry–Do has an appendix on preparing for College Geometry.  
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Altshiller-Court’s ninth chapter (out of ten) is about circle inversion while Johnson’s third chapter 

is this 2nd degree black-belt topic – hopefully, it is College Geometry that you will be assigned. 

 

Lemma 5.6   

Given 𝐸𝐹𝐺 and 𝑃 on the circumcircle, 𝜔, long of ∠𝐸, construct the Wallace line determined by 𝑃.  

Extend 𝑃𝑃𝐸
⃗⃗ ⃗⃗ ⃗⃗  ⃗ to intersect 𝜔 at 𝐾.  Then, ∠𝐾𝑃𝐸𝑃𝐹 = ∠𝑃𝐺𝐸. 

 

 Proof for the Acute Case 

 Suppose 𝑃𝐸 is a diameter of 𝜔.  By Thales’ diameter theorem, ∠𝐾𝑃𝐸𝑃𝐹 = 𝜌 = ∠𝑃𝐺𝐸. 
 

𝐾 is between 𝐸 and 𝐺; if it is not, re-label 𝐹 and 𝐺.  𝑃𝑃𝐸𝐺𝑃𝐹 is cyclic by either the cyclic 

quadrilateral theorem converse or by Thales’ diameter theorem; thus, ∠𝐺𝑃𝐸𝑃𝐹 = ∠𝐺𝑃𝑃𝐹  

by the inscribed angle theorem.  ∠𝐾𝑃𝐸𝑃𝐹 = 𝜌 ± ∠𝐺𝑃𝐸𝑃𝐹.  ∠𝑃𝐺𝐸 = 𝜌 ± ∠𝐺𝑃𝑃𝐹  by the 

exterior angle theorem.  Subtract 𝜌 and substitute equals.     • 

 

The Steiner line is parallel to the Wallace line such that the Wallace line is halfway between it 

and the Wallace line’s pedal point.  L. 5.7 proves that 𝐻 is on it, so it is also called the ortholine. 
 

Lemma 5.7 

Onto the lemma 5.6 figure, construct the Steiner line; let 𝑆 be its intersection with 𝑃𝐾⃡⃗⃗⃗  ⃗.  Let the 

altitude from 𝐸 intersect the Steiner and Wallace lines at 𝐻 and 𝐿, respectively.  Extend 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗   to 

intersect 𝜔 at 𝐻′′.  Then, 𝐻 is the orthocenter of 𝐸𝐹𝐺 and 𝑀𝐻𝑃 is on the Wallace line. 
 

 Proof for the Acute Case 

By the transversal theorem corollary (right angles at 𝐸′ and 𝑃𝐸), 𝐻𝐸′⃡⃗ ⃗⃗ ⃗⃗  ∥ 𝑆𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗  .  By the 

parallelogram theorem, 𝐻𝑆𝑃𝐸𝐿 is a parallelogram.  By the inscribed angle theorem, 

∠𝑃𝐾𝐸 = ∠𝑃𝐺𝐸.  By lemma 5.6, ∠𝐾𝑃𝐸𝑃𝐹 = ∠𝑃𝐺𝐸.  By the transversal lemma, 𝐾𝐸⃡⃗⃗⃗  ⃗ ∥ 𝑃𝐸𝐿⃡⃗ ⃗⃗ ⃗⃗  .  

By the parallelogram theorem, 𝐾𝐸𝐿𝑃𝐸 is a parallelogram.  By transitivity, 𝐻𝑆 = 𝐸𝐾.  

𝐻′′𝑃 = 𝐸𝐾 by the parallels and circle theorem; so, 𝐻𝑆 = 𝐻′′𝑃.  By the isosceles triangle 

frustum theorem, 𝐻𝐻′′𝑃𝑆 is a triangle frustum, so ∠𝑆𝐻𝐸′ = ∠𝑃𝐻′′𝐸′.  By mid-segment 

theorem #2, 𝑃𝐸𝑆 = 𝑃𝐸𝑃.  By SAS, 𝐸′𝑃𝐸𝑆 ≅ 𝐸′𝑃𝐸𝑃, so 𝐸′𝑆 = 𝐸′𝑃.  By ASL, 𝐻𝑆𝐸′ ≅ 𝐻′′𝑃𝐸′, 

so 𝐻𝐸′ = 𝐻′′𝐸′.  By the orthocenter and circumcircle theorem, 𝐻 is the orthocenter of 

𝐸𝐹𝐺, 𝐻′′ is 𝐻𝐹𝐺  and, by mid-segment theorem #2, 𝑀𝐻𝑃 is on the Wallace line. • 
 

Wallace Lines and Euler Circle Theorem 

The two Wallace lines determined by the endpoints of a diameter of a triangle’s circumcircle are 

perpendicular and intersect on the Euler circle. 
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Proof 

Let 𝑃 and 𝑄 be endpoints of a diameter of the circumcircle.  By Wallace theorem V, the 

Wallace lines determined by 𝑃 and 𝑄 are perpendicular.  Draw lines through 𝑃 and 𝑄 

parallel to their Wallace lines; these too are perpendicular.  By Thales’ diameter theorem, 

their intersection, 𝑌, is on the circumcircle.  By lemma 5.7, 𝑀𝐻𝑃 is on the Wallace line 

determined by 𝑃, so, by mid-segment theorem #2, 𝑀𝐻𝑌 is on the Wallace line determined 

by 𝑃.  Analogously, 𝑀𝐻𝑌 is on the Wallace line determined by 𝑄.  So 𝑀𝐻𝑌 is on both 

Wallace lines – it is their intersection – and it is midway from the orthocenter to a point 

on the circumcircle.  By the Euler bisection theorem, it is on the Euler circle.          ∎ 
 

We will here define the 2nd Torricelli point, 𝑉, the 2nd Torricelli apexes and the 2nd Torricelli 

segments.  If the triangle is too obtuse, we do not use these terms. 

 

Second Torricelli Lemma  The 2nd Torricelli segments are concurrent at the 2nd Torricelli point. 

 

Second Torricelli Angles Theorem  If 𝑉 is long of ∠𝐸𝐹𝐺, ∠𝐸𝑉𝐺 = 2𝜑 and ∠𝐸𝑉𝐹 = ∠𝐹𝑉𝐺 = 𝜑. 
 

Torricelli Points and Euler Circle Theorem 

The midpoint of the two Torricelli points is on the Euler circle.   

 

 Proof 

Given 𝐸𝐹𝐺, relabel 𝐸, 𝐹, 𝐺 so 𝑉 is long of ∠𝐸𝐹𝐺.  Let 𝑀𝐸𝑈 , 𝑀𝐹𝑈 , 𝑀𝐺𝑈  be the midpoints 

between the vertices and the 1st Torricelli point, 𝑈.  The Euler circles of 𝐸𝑈𝐹 and 𝐸𝑈𝐺 

intersect at 𝑀𝐸𝑈 and another point we will call 𝑀.  In the former circle, by the inscribed 

angle theorem, ∠𝑀𝐸𝑈𝑀𝑀𝐺𝐸 = ∠𝑀𝐸𝑈𝑀𝐺𝑈𝑀𝐺𝐸.  In 𝐸𝑈𝐺, by mid-segment theorem #1, 

𝐸𝑀𝐸𝑈
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑀𝐺𝑈𝑀𝐺𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑀𝐸𝑈𝑀𝐺𝑈
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑀𝐺𝐸𝐸⃡⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗; thus, by the parallelogram theorem, 

𝐸𝑀𝐸𝑈𝑀𝐺𝑈𝑀𝐺𝐸  is a parallelogram and ∠𝑀𝐸𝑈𝑀𝐺𝑈𝑀𝐺𝐸 = ∠𝑈𝐸𝐺.  By transitivity, 

∠𝑀𝐸𝑈𝑀𝑀𝐺𝐸 = ∠𝑈𝐸𝐺.  Analogously, ∠𝑀𝐸𝑈𝑀𝑀𝐸𝐹 = ∠𝑈𝐸𝐹.  Adding these two equalities 

gives us ∠𝑀𝐸𝐹𝑀𝑀𝐺𝐸 = ∠𝐸.  ∠𝐸 = ∠𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸  by medial triangle theorem I; by 

transitivity, ∠𝑀𝐸𝐹𝑀𝑀𝐺𝐸 = ∠𝑀𝐸𝐹𝑀𝐹𝐺𝑀𝐺𝐸 .  By the inscribed angle theorem converse, 

𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀,𝑀𝐺𝐸  are concyclic; that is, 𝑀 is on the Euler circle of 𝐸𝐹𝐺.  Define 𝑀′′ so 

𝐺𝑀′′𝐸 is the homothetic double of 𝑀𝐺𝑈𝑀𝑀𝐸𝑈 with homothetic center 𝑈; so, 𝑀 ≡ 𝑀𝑈𝑀′′.  

2𝜑 = ∠𝑀𝐸𝑈𝑈𝑀𝐺𝑈 = ∠𝑀𝐺𝑈𝑀𝐺𝐸𝑀𝐸𝑈 = ∠𝑀𝐺𝑈𝑀𝑀𝐸𝑈 = ∠𝐺𝑀′′𝐸.  The equalities are by 

the Torricelli angles theorem, parallelogram angles theorem (mid-segment theorem for 

𝑈𝑀𝐺𝑈𝑀𝐺𝐸𝑀𝐸𝑈 a parallelogram), inscribed angle theorem and homothecy, respectively.  

By the second Torricelli angles theorem and the inscribed angle theorem converse, 𝑀′′ is 

on the circumcircle of 𝐺𝑉𝐸.  Analogously, 𝑀′′ is on the circumcircles of 𝐸𝑉𝐹 and 𝐹𝑉𝐺.  

Thus, 𝑀′′ ≡ 𝑉.  By homothecy, 𝑀 (on the Euler circle of 𝐸𝐹𝐺) is the midpoint of 𝑈𝑉.    ∎ 
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By tying together the Wallace lines, Torricelli points and the Euler circle, these two theorems 

conclude the red-belt chapter.  When black belts learn of harmonic division, they will prove the 

Feuerbach theorem, which relates the Euler circle to the incircle and the three excircles.   

 

But now, problems!  Red belts cannot hope to win the International Mathematical Olympiad – a 

Yi–Dan black belt might – but you can at least avoid having to hand in a blank exam paper. 

 

Problem 5.8  Let 𝜔1 and 𝜔2 with centers 𝑂1 and 𝑂2 have common point 𝐸.  Let 𝐹 and 𝐺 be points 

on 𝜔2.  Also, let 𝐹′′: = 𝜔1 ∩ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺′′: = 𝜔1 ∩ 𝐸𝐺⃡⃗⃗⃗  ⃗.  Prove 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐹′′𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

 

 Case One:  Disjoint Circles 

By the common point theorem, 𝐸 is on the line of centers.  By the tangent theorem, there 

is a line, ℓ, through 𝐸 perpendicular to 𝑂1𝑂2
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  Let 𝐻:= 𝐹𝐺′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ ℓ and 𝐻′′: = 𝐹′′𝐺⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ ℓ.  

∠𝐻𝐸𝐹 = ∠𝐸𝐺𝐹, by the tangent and chord theorem.  Analogously, ∠𝐻′′𝐸𝐹′′ = ∠𝐸𝐺′′𝐹′′.  

But ∠𝐻𝐸𝐹 = ∠𝐻′′𝐸𝐹′′ by the vertical angles theorem, so ∠𝐺′′𝐺𝐹 = ∠𝐹′′𝐺′′𝐺.  By the 

transversal lemma, 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐹′′𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .       • 

 

Proving this for one circle inside the other is left as an exercise. 

 

Lemma 5.8 

Given the base and the orthocenter, if it is not on the base, a triangle is fully defined. 

 

 Proof 

Given 𝐸𝐹 and orthocenter 𝐻, construct 𝐸𝐻⃡⃗⃗⃗  ⃗ and 𝐹𝐻⃡⃗⃗⃗  ⃗.  Let 𝐸′ and 𝐹′ be the feet of 

perpendiculars dropped onto 𝐸𝐻⃡⃗⃗⃗  ⃗ from 𝐹 and onto 𝐹𝐻⃡⃗⃗⃗  ⃗ from 𝐸, respectively.  By the 

perpendicular length theorem, 𝐸′ and 𝐹′ are unique, so 𝐸𝐹′⃡⃗ ⃗⃗⃗⃗  and 𝐹𝐸′⃡⃗ ⃗⃗⃗⃗  are fully defined and 

their intersection, 𝐺, is unique.  Thus, 𝐸𝐹𝐺 is fully defined.             ∎ 

 

If the triangle is right, then 𝐸′ and 𝐹′ will coincide with 𝐻 and, thus, this point is 𝐺.  It is also true 

that, given the base and either the incenter or the medial point, a triangle is fully defined.  But 

this is not true if given the circumcenter.  Do you see why? 

 

Problem 5.9  Let 𝜔1 and 𝜔2 with centers 𝑂1 and 𝑂2 have common chord 𝐸𝐹.  Let 𝐽: = 𝑂1𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔1 

and 𝑀:= 𝑂1𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔2 and 𝐾:= 𝑂2𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔1 and 𝐿:= 𝑂2𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔2.  (Assuming 𝐽,𝑀, 𝐾, 𝐿 exist.)  Prove: 

1. 𝐽𝐾⃗⃗⃗⃗ , 𝐸𝐹⃗⃗⃗⃗  ⃗, 𝐿𝑀⃗⃗⃗⃗⃗⃗  are concurrent at a point 𝑃. 

2. 𝐽, 𝐸,𝑀, 𝑃 are concyclic. 

3. 𝐿, 𝐸, 𝐾, 𝑃 are concyclic. 
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Solution 

1. By Thales’ diameter theorem, ∠𝐽𝐸𝐹 and ∠𝐿𝐸𝐹 are right, so 𝐽, 𝐸, 𝐿 are collinear.  Let 

𝑃:= 𝐽𝐾⃗⃗⃗⃗ ∩ 𝐸𝐹⃗⃗⃗⃗  ⃗ and 𝑃′′: = 𝐿𝑀⃗⃗⃗⃗⃗⃗ ∩ 𝐸𝐹⃗⃗⃗⃗  ⃗.  By Thales’ diameter theorem, ∠𝐾 and ∠𝑀 are 

right, so, by the orthocenter theorem, 𝐹 is the orthocenter for a triangle with base 𝐽𝐿.  

By lemma 5.8, 𝐽𝐿𝑃 ≅ 𝐽𝐿𝑃′′ and 𝑃 is 𝑃′′. 

 

2. By the inscribed angle theorem, 𝛼 = ∠𝐹𝐸𝑀 = ∠𝐹𝐿𝑀.  By Thales’ diameter theorem, 

𝜌 = ∠𝐸 = ∠𝐾.  Let 𝛽 = ∠𝐾𝑃𝐿.  ∠𝑃𝐾𝐿 = 𝜌, so 𝛼 = 𝜌 − 𝛽.  ∠𝐽𝐸𝑀 = 𝜌 + 𝛼 = 𝜎 − 𝛽.  

By the cyclic quadrilateral theorem converse, 𝐽, 𝐸,𝑀, 𝑃 are concyclic. 

 

3. Analogously, 𝐿, 𝐸, 𝐾, 𝑃 are concyclic.               ∎ 

 

Problem 5.10  Prove that the orthocenter of a triangle is the incenter of the triangle whose 

vertices are where the given triangle’s altitudes cut its circumcircle.  

 

 Solution to Acute Case 

By the orthocenter and circumcircle theorem, the altitudes cut the circumcircle of 𝐸𝐹𝐺 

at the orthic reflections, 𝐻𝐸𝐹 , 𝐻𝐹𝐺 , 𝐻𝐺𝐸.  By mid-segment theorem #1, 𝐻𝐸𝐹𝐻𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐺′𝐸′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝐻𝐹𝐺𝐻𝐺𝐸
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸′𝐹′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐻𝐺𝐸𝐻𝐸𝐹

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐹′𝐺′⃡⃗ ⃗⃗ ⃗⃗  ⃗.  By the orthic triangle incenter theorem, the 

orthocenter of 𝐸𝐹𝐺 is the incenter of 𝐸′𝐹′𝐺′ and, since the sides of 𝐻𝐸𝐹𝐻𝐹𝐺𝐻𝐺𝐸  and 

𝐸′𝐹′𝐺′ belong to pairwise parallel lines, angle bisectors of 𝐸′𝐹′𝐺′ are angle bisectors of 

𝐻𝐸𝐹𝐻𝐹𝐺𝐻𝐺𝐸.  Thus, their incenters concur at the orthocenter of 𝐸𝐹𝐺.  • 

 

Observe that 𝐻𝐸𝐹𝐻𝐹𝐺𝐻𝐺𝐸  is the homothetic double of 𝐸′𝐹′𝐺′ with homothetic center 𝐻.  This is 

analogous to how the double long triangle is the homothetic double of the long triangle with 

homothetic center 𝐼, but P. 5.10 is a different pair of triangles and a different center, so students 

should be careful not to conflate them.  If you close your good eye, the figures look much alike. 

 

The next problem introduces some terminology that red belts need to know.  The tangential 

triangle is an example of an antipedal triangle.  Since the pedal triangle is formed by dropping 

perpendiculars to the sides and connecting their feet, the antipedal triangle is formed by drawing 

segments from the pedal point to the vertices and perpendiculars through them at the vertices 

to form the sides.  If we take the circumcenter as the pedal point, then, by the tangent theorem, 

the antipedal triangle sides are tangent to the circumcircle; hence, its name.  

 

Problem 5.11  Prove that the orthic triangle and the tangential triangle are homothetic and that 

their homothetic center is on the Euler line, but that it is not the orthocenter. 
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This problem shows there are two ways to form the tangential triangle; either directly from the 

circumcenter as described in the paragraph above, or indirectly from the orthic triangle.  Which 

is easier depends on whether you have already found the circumcenter or have already found 

the orthic triangle.  The following problem provides a third way to find the parent triangle. 

 

Problem 5.12  Prove that the parent triangle is antipedal if the orthocenter is the pedal point. 

 

1. Draw the three medians and extend them outside the triangle a distance equal to the 

segment inside the triangle.  Connect the endpoints. 

 

2. Draw lines through each vertex parallel to the opposite sides and cut them off a distance 

from the vertex that is equal to the length of the opposite side.  Connect the endpoints. 

 

3. Draw segments from the orthocenter to the vertices and perpendiculars through them at 

the vertices to form the sides of the parent triangle.  Cut them off where they intersect. 

 

The first works well with a center-finding ruler like the Geometry–Do ruler; the second requires 

drawing parallel lines and then laying off lengths on them, which the Geometry–Do ruler can do, 

though this is slower than the first method.  The third is fastest, but only if one already has the 

orthocenter; it can be done with the Geometry–Do ruler or any clear plastic right triangle. 

 

Yellow belts learned that the contact triangle is the pedal triangle if the incenter is the pedal 

point.  In the following problem we will show that the double-long triangle – also known as the 

excentral triangle – is the antipedal triangle when the incenter is the pedal point. 

 

Problem 5.13  Prove that the double-long triangle is antipedal if the incenter is the pedal point. 

 

The following triangle centers all have named triangles for their pedal or antipedal triangles.   

 

 Pedal Point Pedal Triangle Antipedal Triangle  
 Circumcenter Medial Triangle Tangential Triangle  
 Incenter Contact Triangle Double-Long Triangle  
 Orthocenter Orthic Triangle Parent Triangle  

 

Problem 5.14  Given 𝐸𝐹𝐺 with 𝐸, 𝐹, 𝐺 counterclockwise, find: 

1. 𝑃 such that ∠𝑃𝐸𝐹 = ∠𝑃𝐹𝐺 = ∠𝑃𝐺𝐸.  This angle is 𝛼; 𝑃 is the first Brocard point. 

2. 𝑄 such that ∠𝑄𝐸𝐺 = ∠𝑄𝐺𝐹 = ∠𝑄𝐹𝐸.  This angle is 𝛽; 𝑄 is the second Brocard point. 

3. Prove that 𝛼 = 𝛽.  This is called the Brocard angle. 
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𝐸, 𝐹, 𝐺 counterclockwise is standard procedure in geometry, though this practice is not always 

followed.  In this problem, if they were clockwise, it would switch the first and second Brocard 

points.  The Brocard triangle is formed by the intersection of segments from the vertices to their 

associated Brocard points.  It is inscribed in the Brocard circle, which is related to the symmedian. 

Henri Brocard was a French naval officer and a meteorologist; but it was an Englishman, Lewis 

Fry Richardson, who devised the seven axioms of meteorology, giving it the rigor of geometry.   

 

A discussion of Brocard’s work and of complete quadrilaterals could conceivably go in the red-

belt chapter because they are advanced triangle geometry, though some complete quadrilateral 

theorems involve the Newton line, which is quadrature theory.  However, I have decided to put 

this material in the Teacher’s Manual as challenge problems for gifted students.  It is not generally 

taught in the high schools of any country and the aspiring engineer who has only three years to 

study geometry in high school is advised to press on from here to quadrature theory (blue belt), 

harmonic division (Cho–Dan, 1st degree black belt), circle inversion (Yi–Dan, 2nd degree black 

belt), and, if there is time, to projective geometry (Sam–Dan, 3rd degree black belt).98   

 

Sam–Dan is the highest rank that one can obtain; the Sam–Dan of Geometry–Do has enough 

background to read Mihalescu or any of several other advanced geometry textbooks that are 

available in English.  They are all different and they each have their followers; the student should 

ask the professors in his chosen specialty for guidance in any further study of geometry.  

Mihalescu was an artillery officer during WWII and discusses problems of interest to army officers 

as well as to engineers; aspiring mathematicians may want a more abstract textbook that 

discusses non-Euclidean geometry, topology, and other topics in pure mathematics.   

 

The Yi–Dan of Geometry–Do probably has enough geometry for the International Mathematical 

Olympiad, with the possible exception of geometry on the complex plane, which we cannot get 

into because complex analysis is an upper-division college course, and this is a high-school 

textbook.  The IMO also asks questions about number theory and combinatorics.  The teenage 

mathematician should keep his interest in mathematics broad; there will be plenty of time to 

choose a specialty before becoming a PhD.99 

 
98 Thus, the recent boldface terms (from P. 5.14 onward) do not appear in the glossary.  In keeping with my policy of 

not defining terms unless they are used later, Brocard’s work, the symmedian and complete quadrilaterals will be 

left to advanced students and their teachers – with the help of the Teacher’s Manual – to research on their own.        

I do not want to be like Common Core that is always defining terms and then never using them.  This just results in 

geometry being reduced to a long and boring vocabulary test of words that the students will never use – like learning 

a language that is spoken in a country that one will never visit.  Geometry–Do is all about practical applications. 
99 The International Journal of Computer Discovered Mathematics presents many geometric results that remain 

unproven and are left as exercises.  Proving any one of them will get you published in a refereed journal while you 

are still a teenager.  www.journal-1.eu  Try!  “Published author” looks really good on a college application.        

http://www.journal-1.eu/
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Red Belt Exit Exam 
 

1. Problem 4.14 can be solved by citing the long quadrilateral theorem; please do so. 
 

2. Prove the incenter, circumcenter and bi-medial of a bi-centric quadrilateral to be collinear. 
 

3. Let 𝐸𝐹𝐺 be acute, 𝐹′𝐺′⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔 = {𝑃1, 𝑃2} and 𝑄1: = 𝐹𝑃1
⃡⃗ ⃗⃗ ⃗⃗  ∩ 𝐸′𝐺′⃡⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑄2: = 𝐹𝑃2

⃡⃗ ⃗⃗ ⃗⃗  ∩ 𝐸′𝐺′⃡⃗ ⃗⃗ ⃗⃗  ⃗.  

Prove 𝑃1, 𝑃2, 𝑄1, 𝑄2 are concyclic.  { } denotes a set, so 𝑃1 and 𝑃2 are the two intersections. 
 

4. Given 𝐸𝐹𝐺 with incenter 𝐼 and excenters 𝑋, 𝑌, 𝑍, prove that any two of these centers and 

the two triangle vertices that are not collinear with them are concyclic.  Locate the center. 
 

5. Given 𝐸𝐹𝐺 with excenters 𝑌 and 𝑍, let 𝐸𝐹𝑁𝐺  be isosceles with 𝑁𝐺  on the circumcircle of 

𝐸𝐹𝐺 and on the same side of 𝐸𝐹⃡⃗⃗⃗  ⃗ as 𝐺.  Prove that 𝐸, 𝐹, 𝑍, 𝑌 are concyclic with center 𝑁𝐺 . 
 

6. Prove that the Carnot theorem is true for obtuse triangles, except that one must subtract 

the perpendicular dropped from the circumcenter onto the side opposite the obtuse angle. 
 

7. Given 𝐸𝐹𝐺𝐻 and 𝑃:= 𝐸𝐹⃗⃗⃗⃗  ⃗ ∩ 𝐻𝐺⃗⃗⃗⃗⃗⃗  and 𝑄:= 𝐹𝐺⃗⃗⃗⃗  ⃗ ∩ 𝐸𝐻⃗⃗⃗⃗⃗⃗ , prove that the circumcircles of 𝐹𝐺𝑃 

and 𝐺𝐻𝑄 intersect on 𝑃𝑄 if and only if  𝐸𝐹𝐺𝐻 is cyclic. 
 

8. 𝐸𝐹𝐺𝐻 is cyclic and orthodiagonal with bi-medial 𝑇.  Prove 𝑇𝐸𝐹𝑇𝐹𝐺𝑇𝐺𝐻𝑇𝐻𝐸 to be bi-centric. 
 

9. Demonstrate elementary quadrature theory by proving the diagonal bisection theorem. 
 

Note that problem #2 is due to none other than the famous physicist, Isaac Newton.  He proved 

what physicists call their superb theorem100, that a spherically symmetric mass distribution 

attracts a body outside it as if its entire mass were concentrated at its center.  Chandrasekhar101 

said that Newton’s geometric proof in Principia, “must have left its readers in helpless wonder.”   
 

The editor102 of the Real-World Economics Review writes, “It is a completely mistaken idea that 

scientific theory is based on deductions from a series of postulates.”  This is not true.  The World 

Economics Association, aka the Post-Autistic Economics Network, is wrong.  They sow hatred for 

logic while promoting their Marxist agenda by writing every sentence, “Statistics show that 

[Marxist dogma].”  How clever!  Marxism has had a 150-year streak of bad luck with logic.  Bums! 

 
100 Newton’s Superb Theorem: An Elementary Geometric Proof by Chris Schmid: arxiv.org/abs/1201.6534  
101 At the age of 19 he deduced the maximum mass of a stable white dwarf star.  More massive white dwarves can 

– if they do not throw off mass – collapse with enough gravitational pressure that it overcomes the electron 

degeneracy pressure, so their atomic nuclei are pressed together into one big lump, which creates a neutron star.   
102 www3.unifr.ch/econophysics/?q=content/deification-science-its-disastrous-consequences  

https://arxiv.org/abs/1201.6534
http://www3.unifr.ch/econophysics/?q=content/deification-science-its-disastrous-consequences
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Practice Problems 

 

5.15 Given 𝐸𝐹𝐺 with incenter 𝐼 and ∠𝐺 equal to 𝜑.  If 𝐸𝐼⃗⃗⃗⃗  and 𝐹𝐼⃗⃗⃗⃗  intersect the opposite sides at 

𝐽 and 𝐾, respectively, prove that 𝐼𝐽 = 𝐼𝐾. 
 

5.16  Given a circle, find a point on the extension of its diameter from which the tangents are 

       equal to the radius. 

 

5.17      On each leg of a right triangle, find points equidistant from the hypotenuse and the apex. 
 

5.18  Given a circle between two parallel lines, draw a tangent that is cut by the lines at a length  

       equal to a given segment. 

 

5.19 Construct a right triangle given the hypotenuse and the length from its midpoint to a leg. 
 

5.20 Construct a triangle given an altitude and the circumradii of the two triangles it divides. 
 

5.21 Given the orthic triangle, 𝐸′𝐹′𝐺′, construct its associated triangle, 𝐸𝐹𝐺. 

 

5.22 Given the radius, draw a circle with its center on a line and touching another circle. 
 

5.23 Given a circle, a line outside it and an angle, circumscribe a triangle with an interior angle 

equal to the given angle and that vertex on the line. 

 

5.24 Given two points and two segments, draw a circle with radius equal to one segment that 

passes through one point and has tangents to the other point equal to the other segment. 

 

5.25 If two circles are tangent at 𝐺 and 𝐸𝐹⃡⃗⃗⃗  ⃗ is tangent at 𝐸 and 𝐹, prove that ∠𝐸𝐺𝐹 is right. 
 

5.26 Given 𝐸𝐹𝐺 with 𝑃 on the circumcircle between 𝐸 and 𝐹, prove that the Wallace line with 

respect to 𝑃 bisects 𝐻𝑃. 

 

5.27 Prove that the Wallace line determined by 𝑃 intersects the Euler circle at 𝑀𝑃𝐻. 

 

5.28 Given 𝐸𝐹𝐺, let 𝐽𝐾𝐿 have sides that go through 𝐸, 𝐹, 𝐺 and extensions parallel to the 

opposite sides of 𝐸𝐹𝐺.  Prove that the circumcircle of 𝐸𝐹𝐺 is the Euler circle of 𝐽𝐾𝐿. 

 

5.29 Through one of two points of intersection of two circles, draw a line so the circles cut off 

two chords, one three times the length of the other. 
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Isometric Transformations without Linear Algebra 

 

Defining geometry as “properties of geometric figures that are not changed by motion” makes 

sense only to those who know linear algebra; without vectors, motion is nowhere defined.  

Students are profoundly frustrated by Common Core geometry, largely because of its practice of 

saying “slide this figure over there” or “rotate this figure around that point.”  If the students know 

anything about geometry, they know that the pencil lead is impregnated in the paper.  Geometric 

figures cannot be moved anywhere; they can be redrawn elsewhere on the paper, but that is all.   

 

To translate a segment is to draw another segment parallel to the given segment and equal to it 

in length.  By the equal segments on parallels theorem, this forms a parallelogram.  Thus, saying 

that you are translating a segment is just another way of saying that you are drawing a 

parallelogram.  Nothing is gained by teaching students two ways of saying the same thing. 

 

Analogously, saying that you are rotating a point is just another way of saying that you are 

drawing an isosceles triangle with a given apex angle.  And rotating a line around a point on it is 

another way of saying that you are laying a given angle against the line.  Claiming that all of 

geometry is about isometric transformations is not profound, it is just a different phraseology.  

And, frankly, it is venal because, as soon as the definition of geometry as “properties of geometric 

figures that are not changed by motion” has been invoked, the teacher has become a shill for Bill 

Gates.  Motion of geometric figures does not exist on a sheet of paper; it exists only on the screen 

of computers that are running animation software already in use in shooter video games, except 

now ten times the price – The taxpayers will pick up the tab! – and boring because it is triangles, 

not horrific mutants, that are moving around the screen.  And you do not even get to shoot them. 

 

Nevertheless – No motion involved! – I will explain how to rotate a line around a point not on it.   

 

To rotate a line around a point not on it is to construct a right kite with its definitional diagonal 

the perpendicular dropped from the point to the line and extended to a length, 𝑑, that depends 

on the angle of rotation.  Its midpoint is the circumcenter of the right kite.  The pair of sides 

bracketing the point are the intersection of the circumcircle with the circle around the given point 

that is tangent to the given line.  The other pair of sides extended is the rotation; we always 

rotate both ways.  If the angle of rotation, 𝜃, is given in degrees, then 𝑑 = 𝑟 𝑠𝑒𝑐 𝜃 where 𝑟 is the 

distance from the point to the line; that is, the radius of rotation.  𝑑 = 𝑟 𝑠𝑒𝑐 60° = 2𝑟 for a 60° 

rotation; though, for this angle, we already knew that the hypotenuse of a half equilateral triangle 

is twice the length of the leg at that vertex.  This knowledge makes construction of the right kite 

easy in problem 5.30, next.  (If the highways are equally spaced, then the solution is easy, so we 

will assume that they are not.)  In problem 5.31, we will demonstrate how to construct the right 

kite that defines rotation when we must use C. 1.5 to replicate the angle of rotation. 
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Problem 5.30  A nuclear power plant is to be built in an area where there are three parallel 

highways.  There is concern that terrorists might attack, either by land from one of the highways, 

or by air.  Military posts will be built on each of the highways with infantry that can respond to a 

ground attack.  Also, these posts are to be at the vertices of an equilateral triangle with the power 

plant at the center, so their anti-aircraft guns provide uniform coverage of the air space above it. 

 

 Solution 

Let 𝐸, 𝐹, 𝐺 be the vertices of the equilateral triangle with 𝐹 on the middle highway.  Since 

there are no conditions restricting the lateral position of the triangle on the highways, we 

can choose 𝐺 arbitrarily.  By the angle sum theorem, the interior angles of an equilateral 

triangle are all 𝜑, so, if the middle line passes through 𝐹, then a rotation of it by this angle 

will pass through 𝐸, which we know to be on the 𝐸-line.   

 

Drop a perpendicular from 𝐺 to the middle line and call this length 𝑟.  Extend it another 𝑟 

so the definitional diagonal is 2𝑟 long.  Around its midpoint draw a circle of radius 𝑟; by 

Thales’ diameter theorem, this diameter subtends a right angle at any point on the circle.  

Draw a circle of radius 𝑟 around 𝐺.  It intersects the first circle at points that are the right 

vertices of right triangles with one leg half the diameter; that is, half equilateral triangles. 

 

The other pair of sides of this right kite (not 𝑟 long) are on the middle line rotated by 𝜑; 

extend them to the 𝐸-line and call these points of intersection 𝐸1 and 𝐸2.  Build equilateral 

triangles on the bases 𝐸1𝐺 and 𝐸2𝐺, each on the other side of the right vertex of their 

respective half equilateral triangles.  Their apexes should be on the 𝐹-line.          ∎ 

 

Problem 5.31  Given an angle, two lines, and a point between them, draw a circle around the 
point so the lines cut off a chord that subtends at the center the given angle. 
 

Solution 

Drop a perpendicular from the point, 𝑂, onto the nearer line, with foot 𝑂′.  On one side 

of 𝑂𝑂′⃗⃗⃗⃗ ⃗⃗  ⃗, by C. 1.5, replicate the given angle and lay off the distance from the point to the 

line so 𝑂𝑂′′ = 𝑂𝑂′.  Find 𝐸 on the second line such that 𝐸𝑂′′ ⊥ 𝑂𝑂′′.  Draw a circle around 

𝑂 of radius 𝑂𝐸 and let 𝐹 be its intersection with the first line so 𝐸 and 𝐹 are on the same 

side of 𝑂𝑂′⃡⃗ ⃗⃗ ⃗⃗  .  𝐸𝐹 subtends the given angle at the center of the 𝑂-circle.           ∎ 

 

Replicating on the same side of 𝑂𝑂′⃡⃗ ⃗⃗ ⃗⃗   as the line intersection fails if the given angle and the angle 

made by the line intersection are supplements; on the other side, it fails if they are equals.  Thus, 

there are one or two solutions unless the line intersection and the given angle are both right.  

This fails unless the point is on the angle bisector of the lines, in which case you draw a square. 
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On the Difference Between Engineering and Competition Problems 

 

Engineers are always constrained by conditions beyond their control.  For instance, if you are 

contracted to build a road between two towns that are divided by a river, the bridge must be 

roughly between them; you cannot expect people to add an hour to their journey just because 

you found a better site for bridge building fifty klicks downstream.  Military engineers must meet 

even more stringent constraints.  The generals have the final say and they know what they are 

doing when it comes to making use of terrain features.  This is why many defensive positions are 

built without any input from the engineers; there was little leeway in where to position weapons 

and, in haste, their positioning was just not optimized.  But an engineer with a compass and 

straightedge can optimize the design in an hour.  Haste is no excuse for being less than optimal! 

 

Suppose there are two straight roads that intersect behind enemy lines at 45° and a rock 

outcropping between them, on your side.  You will blast out a cave in the front of the rock and 

pour concrete for a bunker with a 30° slit to fire an automatic cannon through.  The enemy 

comes, and you will probably be taking fire while the concrete is still green.  You must hurry!!! 

 

You do not know which road the enemy will choose and it takes time and hurts accuracy if you 

must adjust your sights as they approach, so it is best if you know of points on each road equally 

distant from your gun; also, if these points are on the edges of your gun’s top traverse, then the 

enemy is as close as possible103 and the gunner can quickly locate his kill zone by transversing to 

the edge of his bunker slit.  So, how do you pour the concrete for your bunker slit, optimally? 

 

It is problem 5.31!!!  Did you get it?  P. 5.31 is an engineering problem because there are only a 

few well-described cases when the construction fails – when the top traverse of the gun and the 

angle made by the roads are equal or supplementary – and, since these are external constraints 

of independent origin, it is highly unlikely that they will happen to cause failure of the geometry. 

 

In mathlete competitions, the problem exists untethered to terrain or tactical considerations.  If 

it says, “diagram not drawn to scale,” this is a big clue that, if it were, you could just measure the 

asked-for length or angle with your ruler or protractor.  So, draw it yourself!  But, if the diagram 

is drawn accurately, this too is a big clue.  It means that the construction is probably not useful 

to engineers because it almost never works for arbitrarily chosen parameters.  The exam was 

composed by drawing the solution and then just deleting some of the lines, so it is problematic. 

 

In problem 5.32, I drew two parallel lines through the circle, picked exterior points on them, and 

measured the “given” angle.  Then I deleted the lines to make it problematic.  Do this in reverse! 

 
103 You have heard of KISS; Keep It Simple, Stupid?  I teach KESS; Killing’s Easier at Short-Range, Stupid. 
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Problem 5.32  

In the figure shown, find points 𝐺 and 𝐻 on the circle such that the chord 𝐺𝐻 subtends at the 

center an angle of 𝜑 and such that 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐸𝐻⃡⃗⃗⃗  ⃗. 
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On the Relation Between Geometry and Probability 

 

Common Core mandates that geometry classes include probability/statistics.  In the introduction 

to the Glossary, I mock Glencoe Geometry for wasting time doing statistics on how many ladies 

visit a hair salon.  ROFL!!!  Amateur sociologists – Isn’t everybody one? – teaching in high school 

just love this about Common Core because it means that they can spend the year teaching basic 

statistics – the only math they know – and yet, inexplicably, draw pay as a “geometry” teacher.  

Geometry has nothing to do with introductory statistics, but quadrature is related to probability. 

 

All aspiring engineers learn integral calculus: finding area.  They are learning about Reimann 

integrals, which are over bounded intervals on the real number line – think of all the skinny 

rectangles standing shoulder to shoulder – which is later extended to unbounded intervals out 

to infinity.  Such integrals may not be defined, but students learn which ones are; for example, 

the integral of 
1

𝑥
 out to infinity is infinite, but the integral of 

1

𝑥𝑛 out to infinity is finite if 1 < 𝑛. 

 

[𝑎, 𝑏] is the set of all real numbers 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏, and (𝑎, 𝑏) is the set of all real numbers 

𝑥 such that 𝑎 < 𝑥 < 𝑏.  The Reimann integral of 𝑓(𝑥) over [𝑎, 𝑏] or (𝑎, 𝑏) is the same thing, even 

if 𝑓(𝑎) or 𝑓(𝑏) do not exist.  For instance, ∫
1

𝑥2

∞

0
𝑑𝑥 over [0,∞) is undefined because 

1

02 is 

undefined, but you can just ignore the unpleasant 𝑥 = 0 and integrate over (0,∞).  Analogously, 

you can ignore holes in a function when integrating it.  If 𝑓(𝑥) = 𝑥 for all 𝑥 except 𝑥 = 1, where 

𝑓(1) = 𝑦, with 𝑦 any real number or even if it is just undefined, ∫ 𝑓(𝑥)𝑑𝑥
2

0
= 2, regardless of 

what 𝑦 is.  There is an infinity of points in [0, 2], and a finite number of weird ones do not change 

the integral over [0, 2].  Lebesgue integration, which Kolmogorov used to give probability an 

axiomatic foundation, takes this discussion even further to consider integrating over sets more 

complicated than just intervals.  That Kolmogorov was an axiomatist gives relation to probability 

and geometry; though, that Kolmogorov was associated with the New Math that failed so 

miserably in America forty years ago tarnishes his legacy.  Set theory in elementary school is age 

inappropriate and unneeded.  (Common Core is making a similar mistake by teaching tykes tricks 

used by 1950s accountants to speed up doing their sums; age inappropriate and unneeded!) 

 

The important point, regarding Kolmogorov’s theory of probability, is that it is possible for an 

event to have zero probability even if particular cases are possible, provided that these cases are 

a finite subset of an infinite event space.  For instance, if 𝑓(𝑥) = 𝑥 for all 𝑥 except 𝑥 = 1, where 

𝑓(1) = 5, then the probability of 𝑓(𝑥) = 5 for 𝑥 ∈ [0, 2] is zero.  Seriously.  One exception out 

of an infinity does not change the probability.  It is not almost zero probability; it is just plain zero. 

 

Disjoint   Figures that do not overlap; their areas form an additive group 
This includes touching circles and adjacent triangles, if outside each other. 
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This definition may confound some readers.  It may seem that two circles that touch are not 

disjoint because they have a common point.  Indeed, “nothing in common” is the dictionary 

definition of disjoint, and it is the colloquial meaning of the word.  But mathematical terms are 

not always in line with their colloquial meaning.  It is important to us that the areas of disjoint 

figures form an additive group; without group theory, quadrature theory has no foundation! 

 

Euclid said, “a point is that which has no part, and a line is breadthless length,” which has left a 

lot of people asking, “What?”  This statement can best be understood in the context of probability 

theory.  The probability of 𝑓(𝑥) = 5 for 𝑥 ∈ [0, 2] is zero for the above function because points 

have no length.  If 𝐸𝐹𝐺 ≅ 𝐽𝐾𝐿, then |𝐸𝐹𝐺𝐻| = |𝐸𝐹𝐺| + |𝐺𝐻𝐸| = |𝐽𝐾𝐿| + |𝐺𝐻𝐸|; that is, the 

total area of figures is the same whether they are adjacent or drawn away from each other.  The 

probability of a point inside 𝐸𝐹𝐺𝐻 being on 𝐸𝐺 is zero because lines have no area. 

 

In the preceding section, On the Difference Between Engineering and Competition Problems, I 

write that P. 5.32 is, “probably not useful to engineers because it almost never works for 

arbitrarily chosen parameters.”  Mathematicians may have thought that I had gone soft, using a 

vague, colloquial term like “probably.”  But, while common men do use this term frequently and 

often in the vaguest sense, it does have a rigorous mathematical definition. 

 

Problem 5.31, in the military context of the two lines being roads and the given angle being the 

top traverse of an automatic cannon firing through a bunker slit, is an engineering problem.  This 

is because the probability of the geometry working is 100%.  Even though the geometry fails 

when the angles are equal or supplementary, the probability of this occurring is zero. 

 

Problem 5.32 is not useful to engineers, though it might be good fun at a mathlete competition, 

because the probability of the geometry working is almost zero in cases where the points are 

given by tactical considerations such as rock outcroppings, and the angle is given by the top 

traverse of a gun.  The way to make the geometry work for a mathlete exam is to start with the 

parallel lines, pick some points on them, and then measures the so-called “given” angle.  Then, 

in a step made possible only with tracing paper or the “delete” button on graphic software, 

remove the parallel lines.  The probability of this working for an arbitrary angle is not exactly zero, 

but there is little choice unless the points are very close to each other relative to the diameter. 

 

Awareness of the two types of problems help one approach an exam.  P. 5.32 seems contrived, 

so assume the problem is solved.  Draw parallels through 𝐸 and 𝐹, label 𝐺 and 𝐻 and the angle 

subtended at the center by 𝐺𝐻 as 𝜃.  Rotate 𝐻𝐸 around 𝑂 by 𝜃 to 𝐺𝐽.  ∠𝐹𝐺𝐽 = 𝜃 (verify), so 𝐺 is 

on the locus of vertices for 𝜃 subtended by 𝐹𝐽.  We want 𝜑, so find 𝐽 by rotating 𝐸 by 𝜑, then 

construct the locus arc by P. 4.5.  It cuts the circle in 0, 1 or 2 places.  For each 𝐺, by C. 3.3, is 𝐻.  
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Disjoint   There is zero probability of any points being inside both figures 

 

Measure The size of sets; counts of discrete points, lengths of segments or areas of triangles 

 

Probability The ratio of the measure of a subset to the measure of the whole set 

 

Random The points in a segment or inside a triangle or circle are uniformly distributed 

 

This is not how other geometry textbooks define these terms.  On the back cover, I say that 

organization is my principal contribution to geometry, but my effort in Volume Two to unite 

geometry with Kolmogorov’s Foundations of Probability is original – hopefully in a good way. 

 

Most geometry textbooks define disjoint as figures whose intersection is impossible; that is, there 

is no intersection.  As explained above, this is not the same thing as there being zero probability 

of any points being inside both figures; they can touch, but just not overlap.  Note that random 

assumes a uniform distribution; I have waxed sarcastic on people assuming uniformity without 

justification104, but in geometry it is justified.  Also note that measure refers only to the size of 

sets, not of angles.  Most geometry textbooks define the measure of an angle in terms of radians, 

but that is because modern geometry textbooks are also introductory trigonometry textbooks.   

 

Geometry–Do is unique in not teaching any trigonometry, except in a couple of stand-alone 

appendices.  The only angles that we know of, in both Volume One and Volume Two, are 𝜑, 𝜌 and 

𝜎.  To assign radians to an angle requires measuring the length of its arc, but this can only be 

done with calculus.  In Geometry–Do, length refers only to how long a segment is.  And area refers 

only to the size of a triangle or a union of disjoint triangles, never to circles or to other curves, 

though we do accept that central angles of 𝜌 and 𝜎 quarter and halve a circle, respectively.    Now 

let us illustrate these ideas by solving some simple probability problems; let us also introduce the 

basic discrete probability distributions that all high school students are expected to know. 

 

Problem 5.33  Pick a number, any number, between 1 and 10.  What is the chance of it being 5? 

 

The chance of 5 is zero.  I did not say “pick a whole number,” I said, “pick any number.”  In this 

case, probability is a ratio of lengths.  Points do not have length, so the numerator’s length is 

zero; segments have length, and the length of [1, 10] in the denominator is nine.  𝑃(5) =
0

9
= 0.  

In discrete probability, measure means a finite number of items, like colored balls in an urn; but, 

in geometry problems, it means lengths or areas – infinities of uniformly distributed points. 

 
104 People who know nothing of statistics will consider a sample of some data obviously skewed over [0,∞), locate 

the minimum, 𝑎, the maximum, 𝑏, and claim that it is uniformly distributed over [𝑎, 𝑏].  “Data driven!” they boast. 



Victor Aguilar  Geometry without Multiplication 

261 
 

Problem 5.34  If 𝑥 ∈ [0, 5], what is the probability of 𝑥 being closer to 1 than it is to 3? 

 

 Solution 

2 is midway between 1 and 3, so 𝑥 ∈ [0, 2] is closer to 1 than it is to 3.  Thus, the ratio of 

the desired length to the whole length is 
2

5
= 40%.  Note that [0, 2) is also 2 long.         ∎ 

 

Problem 5.35  Three points are at random on a circle.  What is the chance they are in a semicircle? 

 

The choose function, (𝑛
𝑟
), is 𝑛𝐶𝑟 on scientific calculators.  It is how many ways you can pick from 

a finite set without replacement when order does not matter.  (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 where the ! symbol 

means factorial; e.g.,  5! = 5 × 4 × 3 × 2 × 1 and (5
2
) =

5!

2!3!
=

5×4

2×1
= 10.  (𝑛 − 𝑟)! cancels out 

much of 𝑛!.  Note that 0! = 1.  Learn to do this manually for when you do not have a scientific 

calculator, or for when you are only choosing two items.  The classic example is a menu:   

 

Problem 5.36  How many ways can you and your date choose from three appetizers, five entrées 

and four desserts?  You intend to share, so you do not want to both get the same of an item. 

 

 Solution      (3
2
)(5

2
)(4

2
) = 3 × 10 × 6 = 180.               ∎ 

 

If you do not mind getting the same menu items – you are choosing with replacement – it is 

325242 = 3600.  A lot more!  You must know if you are choosing with or without replacement.   

 

In the first two probability distributions below, the probability of success in a single trial – called 

a Bernoulli experiment – is a constant, 𝑝.  The classic example is flipping a coin; if success is 

heads, then 𝑝 = 0.5 and this remains constant no matter how many times the coin is flipped.  In 

𝑟 samples, you are looking for 𝑥 goodies.  The probability of this and that occurring is the product 

of their probabilities; the probability of this or that occurring is the sum of their probabilities.  

Thus, the probability of 𝑥 goodies and 𝑟 − 𝑥 badies is 𝑝𝑥(1 − 𝑝)𝑟−𝑥, but there are 𝑟 choose 𝑥 

ways that these can be sequenced, which is an “or” because only one sequence occurs at a time.  

𝑥 and 𝑟 retain their same meanings in the two equations below; other textbooks swap meanings. 

 

𝑃(𝑥) = (𝑟
𝑥
)𝑝𝑥(1 − 𝑝)𝑟−𝑥          binomial distribution; goodies in 𝑟 samples              𝜇 = 𝑟𝑝 

 

𝑃(𝑟) = (𝑟−1
𝑥−1

)𝑝𝑥(1 − 𝑝)𝑟−𝑥      negative binomial; samples needed to get 𝑥 goodies        𝜇 =
𝑥

𝑝
 

 

If 𝑥 = 1, the latter is the geometric distribution.  It is 𝑃(𝑟) = 𝑝(1 − 𝑝)𝑟−1 and is likely in quality 

control, where “success” results in immediately stopping the machine and ending the sampling. 
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The hypergeometric is like the binomial except for sampling from a small collection of 𝑛 items 

with 𝑔 goodies.  If the collection is vast, like all the tuna in the sea, approximate with the binomial. 

 

𝑃(𝑥) =
(𝑔𝑥)(𝑛−𝑔

𝑟−𝑥)

(𝑛𝑟)
                 hypergeometric; goodies in 𝑟 samples                𝜇 = 𝑟

𝑔

𝑛
 

 

Problem 5.37  What is the chance of at least two aces in a five-card draw from a 52-card deck? 
 

 Solution       
(42)(

48
3 )+(43)(

48
2 )+(44)(

48
1 )

(52
5 )

≈ 4%.               ∎ 

 

What if we bet on the draw needed to get a pair of aces?  I pay a dollar for every card you deal 

me, and you pay me $25 when I get a pair of aces.  There are two aces in 26 cards, so you have 

a slim 
1

25
= 4% advantage.  This is roughly the vigorish of blackjack, so you are a fair guy.  Yes? 

 

𝑃(𝑟) =
(𝑟−1
𝑥−1)(

𝑛−𝑟
𝑔−𝑥)

(𝑛
𝑔)

     negative hypergeometric; samples needed to get 𝑥 goodies     𝜇 = 𝑥
𝑛+1

𝑔+1
 

 

Advantage mine!!!  The expected number of cards needed to get two aces is 𝜇 = 2 ×
53

5
= 21.2 

cards, so any payout of at least $22 wins for me.  I will take your bets as fast as you can deal!  
 

What if the trials are not discrete events but rather just the passage of time as you wait for 

something?  Suppose a liquor store averages twenty customers per hour at its drive-thru window.  

But the clerk needs to use the bathroom, so he is wondering, what is the chance of at least one 

customer in the next five minutes?  An estimate could be made by thinking of every minute as a 

“discrete” trial with 𝑝 =
1

3
 because twenty customers an hour is one every three minutes.  So, by 

the binomial distribution, the probability of getting at least one customer in five minutes is 100% 

minus the probability of getting none; that is, 1 − (
2

3
)
5

≈ 87%.  A time increment of ten seconds 

yields 1 − (
17

18
)
30

≈ 82%.  If the time increment can approach zero, it is a Poisson process. 

 

𝑃(𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
   Poisson distribution; goodies in a given time period    𝜇 = 𝜆 

 

Lambda, 𝜆, is the average number of events in the time we are considering; in this case, five 

minutes, so 𝜆 =
20

12
=

5

3
 events.  Thus, the chance of the clerk’s bathroom break being interrupted 

is 100% minus the chance of no customers; that is, 1 − 𝑒−
5

3 ≈ 81%.  Here, the 82% estimate is 

better because two customers in ten seconds must queue; they are not independent.  But, if 

events are independent, like radioactive material emitting neutrons, then it is a Poisson process. 



Victor Aguilar  Geometry without Multiplication 

263 
 

Problem 5.38 

There is a rectangular skylight in my otherwise lead-sheathed laboratory.  If a cosmic ray passes 

through the skylight, what is the probability that it is closer to the center than to the edge? 

 

 Solution 

Draw the diagonals; by “center,” we mean the bi-medial.  It and two vertices define a 

triangle.  By the medial triangle area theorem, a nested triangle with its apex at the bi-

medial quarters the area of its parent triangle.  By mid-segment theorem #1, the bases of 

nested and parent triangles have parallel extensions, so they form a rectangle with a 

quarter of the area of the window.  By the mid-segment theorem, part two, any segment 

from the bi-medial to the edge of the window is halved where it cuts the small rectangle.  

Thus, the probability of being closer to the center is 25%.             ∎ 

 

Problem 5.39 

Two points are randomly placed on a circle; they are connected to each other and to the center.  

What is the probability that these segments form an acute triangle? 

 

 Solution 

Let 𝑂 be the circle center; 𝑃 and 𝑄 are the two points.  For the vertex at 𝑂 to be acute,   

𝑄 must be in the semicircle that 𝑃 is on the center line of.  There is a 50% chance of this 

occurring.  By the tangent theorem, the other two vertices are acute, so it is 50%.        ∎ 

 

In the following problem, assume that the area of a circle is 𝜋𝑟2, even though this is a result of 

trigonometry, not geometry.  This classic problem is on the border between the two sciences. 

 

Problem 5.40 

Two points are randomly placed inside a circle; they are connected to each other and to the center.  

What is the probability that these segments form an acute triangle? 

 

 Solution 

Let 𝑂 be the circle center, 𝑃 be the point farthest from 𝑂, and 𝑄 be the other point.  Draw 

a circle around 𝑂 through 𝑃.  Let 𝑟 be the radius of this circle, 𝑟 = |𝑂𝑃|.  𝑄 is somewhere 

inside this circle, which has area 𝜋𝑟2.  By the tangent theorem, the vertex at 𝑃 is acute.  

For the vertex at 𝑂 to be acute, 𝑄 must be in the semicircle that 𝑃 is on the center line of.  

For the vertex at 𝑄 to be acute, by Thales’ diameter theorem, 𝑄 must be outside the circle 

of radius 
𝑟

2
 centered at 𝑀𝑂𝑃.  Thus, for the triangle to be acute, 𝑄 must be in a region of 

area 
𝜋𝑟2

2
− 𝜋 (

𝑟

2
)
2

.  Divide by 𝜋𝑟2 and simplify:  The probability is 25%.           ∎ 
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Strategic Defense Applications of Geometry 

 

Scenario #1:  Your roughly circular island has three fairly evenly spaced port cities connected by 

straight highways.  There are many guns aimed seaward at the cities, but there is concern that 

the enemy might land troops on the coast and then bring guns to bear on the cities from the hills.  

The army can quickly move troops on paved roads, but not through the muddy interior.  Because 

there are always traffic jams near the cities, the army has decided to build a fort on each of the 

three highways and connect them directly to each other with roads through the interior that are 

restricted to military vehicles.  Where should they build?   

 

Scenario #2:  Suppose that India and Pakistan are at war.  Guided missiles are not free, and the 

Indian Army has allocated them elsewhere, so you are tasked with defending the Gulf of Kutch 

with guns at Okha that you will supplement with two big mortars near Tragadigham and the 

round island north of Salaya.  Knowing that the Euler segment coincides with the center line of 

an isosceles triangle, you position your mortars to be equidistant from Okha so, by the mediator 

theorem, they can fire simultaneously and have the same ballistics on any warship moving down 

the center line where naval mines have left open a corridor for commercial shipping.  To time the 

firing, the ships will break two laser beams so, at constant velocity, the time between passing the 

circumcenter, 𝑂, and the medial point, 𝐶, is exactly half the time it will then take them to reach 

the orthocenter, 𝐻.  All the while, the guns at Okha will be raking them from stern to stem! 
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Scenario #3:  Suppose that you are a colonel in command of three army bases at distances of 

10, 12 and 16 klicks from one another.  The general wishes to construct a munitions dump inside 

your triangle and to further defend it with three antiaircraft guns that form an equilateral triangle 

with the munitions dump at its center and your three bases on each of the three sides of the 

equilateral triangle.  He insists that this equilateral triangle be as large as possible. 

 
This is the Moss problem from page 235; did you get it?  This first appeared in the Ladies Diary, 

though it was posed by a gentleman, Thomas Moss.  He did not think of the military application, 

probably because antiaircraft guns did not exist in 1735.  But Daniel Bernoulli’s Hydrodynamica 

was published only three years later, which was the axiomatic theory that the Wright Brothers 

applied 165 years later, in 1903.  As so often happens, axiomatic theory precedes its application 

by one or two centuries, at which time data is finally generated to illustrate the abstract theory. 

 

If it had not been for David Hume, the English could have met General Washington with biplanes 

in 1776.  I discuss how David Hume held back science in my earlier book (Aguilar, pp. 98-99). 

 

“When I see, for instance, a billiard ball moving in a straight line toward another,... may I not 

conceive that a hundred different events might as well follow from that cause?...  All these 

suppositions are consistent and conceivable.  Why then should we give preference to one 

which is no more consistent or conceivable than the rest (David Hume, p. 50)?” 

 

However, the term “consistent” is only meaningful in reference to a specific set of axioms, in 

this case those of Newtonian Mechanics.  Only one of the hundreds of different events 

mentioned in the above quotation conserve both momentum and energy, so, in reference to 

these two axioms, all the other events are inconsistent.  The purpose of having a theory at all 

is that one does not have to apply experience to every event but need only apply it once when 

deciding on one's axioms, in this case that momentum and energy are both conserved.   

 

Applying experience to every event is perpetuated today by people like Jean-Philippe Bouchaud, 

who engage in blind guesswork while desperately praying that “statistical regularities should 

emerge.”  The statistics that logical positivists boast so proudly of are nothing but a history of 

their failures.  And this is a history of failures that dragged on for centuries after the axiomatic 

theory was already in place that could have solved the problem that their guesswork was blindly 

stabbing at.  The same thing happened to Leonhard Euler, whose 1745 axiomatic theory of 
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ballistics lay dormant until WWI, when artillerists finally stopped stumbling around stooped over 

and staring at the dirt while filling fat binders with vast and incoherent data on cannonball marks. 

 

There is no such thing as statistical physics!!!  All real physics – 100% of it – is based on axioms. 

 

But now, let us get busy solving the Moss problem.  Tomorrow, three flatbed trucks will arrive 

with antiaircraft guns, followed by a train of cement trucks turning wet cement.  The drivers need 

to know where to position the guns and where to pour concrete for the munitions dump.  Hume 

and his acolytes (e.g., Bouchaud) are welcome to stumble around for centuries taking random 

measurements while hoping beyond hope that “statistical regularities should emerge.”  But we 

need a solution today; only the axiomatic method can deliver provably true results this fast! 

 

 Solution 

Build equilateral triangles on the sides of the given triangle and connect their apexes to 

the given triangle’s opposite vertices.  These segments concur at the Torricelli point.  At 

each given vertex, draw perpendiculars to the Torricelli segments; they intersect at the 

vertices of the largest equilateral triangle that has the given vertices on its sides.          ∎ 

 

Let 𝐽𝐾𝐿 be not too obtuse as, indeed, a 10 ∶ 12 ∶ 16 triangle is; the Torricelli point, 𝑈, is inside 

𝐽𝐾𝐿.  𝐸𝐹𝐺 is the constructed triangle with 𝐽, 𝐾, 𝐿 on 𝐹𝐺, 𝐺𝐸, 𝐸𝐹, respectively.  We must prove:  

(1) 𝐸𝐹𝐺 is equilateral; and (2) 𝐸𝐹𝐺 is the largest equilateral triangle that has 𝐽, 𝐾, 𝐿 on its sides. 

 

 Proof of Part 1  

By the Torricelli angles theorem, ∠𝐽𝑈𝐾 = ∠𝐾𝑈𝐿 = ∠𝐿𝑈𝐽 = 2𝜑.  By the right cyclic 

theorem applied to 𝐸𝐿𝑈𝐾, 𝐹𝐽𝑈𝐿 and 𝐺𝐾𝑈𝐽, ∠𝐸 = ∠𝐹 = ∠𝐺 = 𝜑.           ∎ 

 

 Proof of Part 2 

By the Viviani equilateral theorem, 𝑈𝐽 + 𝑈𝐾 + 𝑈𝐿 is the altitude of 𝐸𝐹𝐺.  Suppose there 

is another equilateral triangle that has 𝐽, 𝐾, 𝐿 on its sides.  𝐽, 𝐾, 𝐿 cannot be the feet of 

perpendiculars dropped onto this triangle’s sides from 𝑈, so let us call these feet 𝐽′, 𝐾′, 𝐿′.  

∠𝑈𝐽′𝐽 = 𝜌, so 𝑈𝐽′𝐽 is right and 𝑈𝐽′ < 𝑈𝐽 by the greater side theorem.  Analogously,  

𝑈𝐾′ < 𝑈𝐾 and 𝑈𝐿′ < 𝑈𝐿.  By the Viviani equilateral theorem, the altitude of this other 

equilateral triangle is 𝑈𝐽′ + 𝑈𝐾′ + 𝑈𝐿′ < 𝑈𝐽 + 𝑈𝐾 + 𝑈𝐿.             ∎ 

 

If ∠𝐿 > 2𝜑, then we must accept the “Torricelli point” being outside 𝐽𝐾𝐿 and write an angles 

theorem for it: 𝑈 is the “Torricelli point” of 𝐽𝐾𝐿 if and only if ∠𝐾𝑈𝐿 = ∠𝐿𝑈𝐽 = 𝜑.  The solution 

to the Moss problem is the same; the proof – left as an exercise – uses the Viviani sum theorem. 
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Note to Philosophers 

 

The most fundamental question of philosophy is what it means to be human.  We used to think 

that tool making was the defining characteristic until Jane Goodall observed chimpanzees dipping 

for insects with purpose-made twigs.  Stone is harder to work, but that does not make a man.  I 

argue that the defining characteristic is abstract reasoning using symbols to represent things.  If 

I hide a child’s toy and then show her a drawing of the floor plan of our house and I say, “This is 

our house, here is your room, here is the kitchen and X marks the spot where your toy is hidden,” 

she will look at the drawing and then go get her toy.  This would not work with our dog.  I could 

draw maps on the floor every day and he would die of old age without ever showing a glimmer 

of understanding.105  It is geometry, not engineering, that distinguishes us from the animals. 

 

Immanuel Kant spoke of Euclidean geometry and is widely derided today by people who feel that 

the work of Lobachevski and Bolyai consign Critique of Pure Reason to the rubbish bin.  But at the 

time of publication, 1781, there was only one geometry; the work of Lobachevski and Bolyai came 

50 years later and Riemann 25 years after that.  What matters is not that Kant used the term 

Euclidean as though it were synonymous with geometry but that he cited only theorems before 

Book I, Proposition 29 of The Elements, the first theorem to use Euclid’s fifth postulate.106 

 

What Kant really meant is that you do not have to explain to children that a segment being 

straight implies that it is the shortest path between two points, or that the points on the shortest 

path are between the two points.  Basic concepts like what points and lines are and what it means 

for a line to be straight or for a point to be between two other points do not require explanation; 

the geometry teacher is just assigning names to concepts that the child already understands.  This 

is the same point that the Epicureans made when they scoffed at the triangle inequality theorem 

for being evident even to an ass, who knows what the shortest path to a bale of hay is.107 

 

Some geometers define a segment as two points and all those between them.  But the shortest 

path and the points between are the same thing.  A point would not be thought of as between 

two others if it were not on the shortest path from one to the other.  Defining a segment as the 

shortest path between two points is more useful because there are lots of problems in geometry 

about minimizing lengths; e.g., problems 3.2 to 3.4 and the problems of Torricelli and Fagnano.  

Our axioms are chosen not just to be intuitive to a child, but also to be productive for the adults. 

 
105 Of course, the dog has instincts that the child lacks.  When I blew a dying-rabbit call inside my house, my dog, 

who had never seen a rabbit, went nuts looking for it while the little girl just covered her ears.  So, while she scoffs 

at him for not reading maps, he scoffs at her for not helping pull the couch back to get at the dying rabbit. 
106 Bolyai coined the term neutral geometry to mean what is common to Euclidean and hyperbolic geometry. 
107 Toss bread onto a duck pond and watch the ducks define the geometric meaning of a segment with their wakes. 
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I will now quote at length from my earlier book, whose first three chapters were about the 

philosophical foundations of economics, though epistemology is relevant to any science that has 

real-world applications.  I began the epistemology chapter with a quotation of Immanuel Kant: 

 

Reason, holding in one hand its principles… and in the other hand the experiment which it has 

devised according to those principles, must approach nature in order to be taught by it; but not 

in the character of a pupil who agrees to everything the master likes, but as an appointed judge 

who compels the witnesses to answer the questions which he himself proposes.  –  Kant 

 

I began (p. 18) with the observation that “there are three senses of the term ‘truth:’ 

 

1. The observation that a phenomenon exists which conforms to a certain definition, or 

the observation that no phenomena exist which conform to that definition; 

2. The applicability of a theory to a situation so that the relations or the characteristics 

to which those phenomena conform can be predicted by their conformance to the 

other, or the contingency of that theory’s application on the conformance of 

phenomena not yet observed; and 

3. The ability of a theory to apply without contradiction to some situation, or the 

impossibility of that theory to apply to any situation because its every alternative 

contains a contradiction. 

 

When I wrote this in 1999, I thought everybody understood how logical deduction got its name, 

but apparently this is not the case, so I will explain.  Willard Quine (p. 69) gives an example: 
 

−{𝑝 ⟶ 𝑠𝑞.⟶ −(𝑠𝑞 ⟶ 𝑝):−[−(𝑟𝑝) − (𝑝 ⟶ 𝑠)]} 

 

Through various machinations (pp. 69–71), he converts this into alternational normal schemata: 

 

𝑝 𝑠  ∨  𝑝 𝑞  ∨  𝑝 𝑝 ∨  𝑠 𝑞 𝑠  ∨  𝑠 𝑞 𝑞  ∨  𝑠 𝑞 𝑝 ∨  𝑟 𝑝 𝑠 ∨  𝑝 𝑝 𝑠 

 

Quine writes, “We can quickly shorten this result by deleting the patently inconsistent clauses 

‘𝑝 𝑝’, ‘𝑠 𝑞 𝑞’, and ‘𝑝 𝑝 𝑠’.  We then have: 

 

𝑝 𝑠  ∨  𝑝 𝑞  ∨  𝑠 𝑞 𝑠  ∨   𝑠 𝑞 𝑝 ∨  𝑟 𝑝 𝑠 

 

Such deletion is a case of the procedure explained in Chapter 6: each of the patently inconsistent 

clauses may be thought of as supplanted by ‘⊥’, which afterwards drops by resolution.”108 

 

This is how logical deduction gets its name; the logician is deleting the inconsistent clauses. 

 
108 In logic, ⊥ means inconsistent; this differs from geometry, where the symbol means perpendicular. 
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Much of the criticism of my book in the ensuing twenty years seems based on people – including 

professional philosophers – thinking that “deduction” is just a name.  Deduction establishes third-

sense truth by deleting the inconsistent clauses; if they all get deducted, then the statement is 

untrue in the third sense; that is, it is inconsistent.  Quine (pp. 74–75) presses simplification 

further by using the seven forms of simplification from his Chapter 9.  This deduction results in: 
 

𝑝 𝑠  ∨  𝑝 𝑞  ∨  𝑠 𝑞 ∨  𝑟 𝑝 𝑠 

 

Quine continues, “The initial clause is in fact redundant; it is equivalent to: 

 

𝑝 𝑞  ∨  𝑠 𝑞 ∨  𝑟 𝑝 𝑠 

 

“There is a quick way of testing any clause of an alternational normal schema to see if it can be 

thus dropped as redundant.  The law (vii) of Chapter 9 tells us how: just check, by fell swoop, 

whether the clause implies the rest of the schema... 

 

“Two good ways are now before us for simplifying alternational normal schemata.  We can test 

a clause for redundancy, and we can test a literal for redundancy, in each case by fell swoop.  An 

alternational normal schema can, however, resist both redundancy tests and still admit of 

simplification in more devious ways.  An example is: 

 

𝑝 𝑞  ∨  𝑝 𝑞 ∨  𝑞 𝑟  ∨  𝑞 𝑟 

 

By twelve fell swoops the reader can test each clause and each literal for redundancy and draw 

a blank every time.  Yet it has a simpler equivalent, 𝑝 𝑞  ∨  𝑝 𝑟 ∨  𝑞 𝑟.” 

 

It absurd that the logical positivists (Ayer, et. al.) illustrate deduction with ridiculous examples 

like “all bachelors are unmarried men.”  Ayer sneers at the work of mathematicians as being 

trivial, giving the example 91 × 79 = 7,189 as something that we are capable of, unlike the 

common man, who is only capable of calculating 7 + 5 = 12.  Geometer, does Ayer’s description 

of your accomplishments have you just busting out with pride?  Not.  Ayer should never have 

used the word “logic” in the title of his book.  Logical positivists know nothing about logic! 

 

But now, having shown that analytic a priori knowledge – the results of logical deduction – is just 

a teensy bit more difficult to come by than the drivel that logical positivists accuse it of being, let 

us turn our attention to something that they know even less about: synthetic a priori knowledge! 

 

Axiomatic Theory of Economics has a section (pp. 43–48) titled, The possibility of synthetic a priori 

knowledge.  But economists – who are all logical positivists – just sneered and shrieked 
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accusations of insanity (autism) at me.  Until Steve Keen et. al. started calling me “autistic,” I had 

never heard the word before; I had to look it up in the dictionary.  “Autistic” – that, I am not.109 

 

While there are a finite number of theories implied by a given one, there are an infinite number 

of theories that could have implied a given theory.  These theories are found by adding 

definitions (which are always available) to an alternative of the given theory.  If, out of this 

infinity of theories, the analysis of one of them yields an alternative that contains only the 

characteristics of the given theory (which is implied by the one under analysis) and yet imply a 

relation that is not contained in that given theory, this relation is synthetic a priori knowledge. 

 

The use of additional definitions which are then deducted after a solution has been found is 

often forgotten, leading people to believe that synthetic a priori knowledge is impossible and 

that all understanding is analytic.  That synthesis is a passing event which leaves no mark on 

its creation and that all declarative sentences are analyzable from discursive postulates has led 

many linguists to take this stand.  As linguists deal with theories whose creation has been 

forgotten and which have turned into statements that could have easily been handed down 

from a mountain as synthesized, it is not surprising that they should regard them as analytic 

knowledge.  They need only ask “What do the words mean in this configuration?” and they 

know the meaning of the theory.  They forget that at one time the theory was unknown but a 

simpler one was known without certain relations.110  Then people noticed that, whenever they 

used the theory, the phenomena that conformed to it had those relations, but they were 

hesitant to risk anything on the assumption that future phenomena would have those 

relationships also, for they could not be sure that it was not a coincidence.  Then someone 

found an anti-implication of the theory which, when analyzed, yielded those relations as 

synthetic a priori knowledge...  An illustration of synthetic a priori knowledge will now be given: 

 

If definition 𝑝 is of a given equilateral triangle 𝑋𝑌𝑍 

and definition 𝑞 is of a square, what additional 

definition(s) 𝑟 must be added to 𝑝𝑞 so that the 

analysis of 𝑝𝑞𝑟 leaves only the characteristics of 𝑝 

and 𝑞 (there are no superfluous lines) but with the 

square given definite size, 𝐴𝐵𝐶𝐷, so that it fits 

inside triangle 𝑋𝑌𝑍 , as shown to the right? 
 

 

This is P. 5.7, an application of homothecy, but I solved it when I was 14 and when I had not heard 

of homothecy.  So, even if you are not a geometer, you should still try it before turning the page. 

 
109 Also, until Keen et. al. accused me of being a follower of Debreu, I had never before heard the name Debreu. 
110 For instance, it has long been known that the exterior angle of a triangle is greater than either remote interior 

angle.  It looks like it is equal to their sum, but people could not be sure when taking measurements off a clay tablet.  

Then, some smart guy drew a line parallel to the base through the apex, proved the angle sum theorem, and erased 

his line.  Descartes would later say this theorem is in the “essence” of a triangle; i.e. analyzed from its definition.  No. 
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Neither the definition of 𝑝 (three equal sides of definite length) nor the definition of 𝑞 ([a 

square111 with] four equal sides of indeterminate length) contains any information about the 

positions of 𝐵 or 𝐶.  Additional characteristics are needed (lines have to be drawn) to find these 

lengths.  But these additional characteristics have to be deducted again for the new theory to 

keep the same extension.  It is easy to delude oneself in this sort of exercise by assuming that the 

additional definitions needed are contained in the “full” meaning of the given definitions, even 

though they are not strictly expressed in them.  It is the mark of an immature science to rely on 

such assumed meaning; only when a science defines its terms in the strictest way possible can it 

truly be called a science. 

 

The figure to the right illustrates the solution.  The 

first additional definition needed is of another 

equilateral triangle with 𝑋𝑍 as one side.  Next, 

connect the opposite vertices so that the line crosses 

𝑋𝑍 at its midpoint.  Then, construct a square with 𝑋𝑍 

as one side (additional triangles must be constructed 

to prove the sides perpendicular to 𝑋𝑍, but they are 

not shown).  Finally, draw lines from the midpoint of 

𝑋𝑍 to the upper corners of the new square.  The 

points where they cross 𝑋𝑌 and 𝑌𝑍 are the definitive 

positions of 𝐵 and 𝐶.  Connect 𝐵 and 𝐶 and drop 

perpendiculars from them to line 𝑋𝑍 to find points   

𝐴 and 𝐷 of the square inside the equilateral triangle.  

This figure, 𝑝𝑞𝑟, is an anti-implication of 𝑝𝑞, as it can 

imply 𝑝𝑞 by deducting the additional lines just 

added.  They are not needed for phenomena to 

conform to the square inside the triangle.  After their 

deduction, however, the relation of 𝐵 and 𝐶 to lines 

𝑋𝑌 and 𝑌𝑍, which was not known before, is still 

there.  This relation is synthetic a priori knowledge. 

 

 

 

A more algebraic example is the integration of 
1

ln𝑥
.  The first three steps establish the needed 

anti-implication.  
 

∫
𝑑𝑥

ln𝑥
= ∫

1

𝑥 ln𝑥
+

𝑥

𝑥 ln𝑥
−

1

𝑥 ln𝑥
 𝑑𝑥 = ∫

1

𝑥 ln𝑥
+

𝑒ln𝑥−1

𝑥 ln𝑥
 𝑑𝑥 = ∫

1

𝑥 ln𝑥
+

1

𝑥 ln𝑥
 ∑

ln𝑛(𝑥)

𝑛!
∞
𝑛=1  𝑑𝑥  

 

          = ∫
𝑑𝑥

𝑥 ln𝑥
+ ∫∑

ln𝑛−1(𝑥)

𝑥𝑛!
∞
𝑛=1  𝑑𝑥 = ∫

𝑑𝑢

𝑢
+ ∫∑

𝑢𝑛−1

𝑛!
∞
𝑛=1  𝑑𝑢 = ln(ln 𝑥) + ∑

ln𝑛(𝑥)

𝑛𝑛!
∞
𝑛=1 + 𝑐 

 

Philosophers are invited to read the foundations, even if they cannot follow the later economics. 

 
111 I neglected to say “square;” also, I did not use overbars and used “line” loosely.  I am a better writer now!  The 

introduction is here:  www.researchgate.net/publication/349861553_Foundations_Axiomatic_Economics-Victor_Aguilar 

https://www.researchgate.net/publication/349861553_Foundations_Axiomatic_Economics-Victor_Aguilar
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Note to Computer Programmers 

 

Common Core geometry is sometimes just straight-out wrong; e.g., turning everything into real 

numbers, including the lengths of segments and the measures of angles, and then doing a bunch 

of algebra that includes adding them together.  But mostly it is just strange.  Why, for instance, 

are transformations the so-called “spine” of Common Core geometry?  Defining geometry as 

“properties of geometric figures that are not changed by motion” makes sense only to those who 

know linear algebra; without vectors, motion is nowhere defined.  Vague references to advanced 

math that neither the students nor their teacher have had is what killed New Math in the 1970s.   

 

So why are transformations the spine of Common Core geometry?  Because Bill Gates spent over 

$200M in 2008 alone and just steam-rolled mathematicians that actually understand geometry 

but had zero funding.  Why did he spend this money, and why is defining geometry as invariant 

properties of rigid figures under motion the only thing that even remotely resembles an ideology 

among Common Core shills?  Gates may not be able to construct an equilateral triangle to save 

his soul, but he does know one thing about geometry:  Pencil lead is impregnated in the paper.  

Geometric figures cannot be moved anywhere; they can be redrawn elsewhere on the paper, but 

that is all.  Defining geometry in terms of motion is just another way of saying that it can only be 

done on a school computer running educational software purchased from you-know-who. 

 

If lines are two pixels wide and a computer screen is 1366 × 768 pixels, a circle is typically no 

more than 200 units in diameter, about 600 units around.  To rotate a geometric figure 60° 

around a circle is to redraw it about 100 times.  Thus, there is not a single problem in plane 

geometry that a linear search of a few hundred possible solutions cannot produce a numerical 

answer to, and a multi-colored illustration of.  Gates eliminated solid geometry because the 

solution space is too big.  A century ago, George Wentworth taught plane and solid geometry – 

but not Gates!  So why am I writing about plane geometry?  Because the study of logic has virtue 

beyond just the drawing of pretty illustrations.  When Wentworth was the American geometry 

master, it was understood that the primary responsibility of schools was to teach students to 

employ cool logic even in the face of adversity.  Now schools shill for software moguls.  Deducing 

geometry from postulates as I do is the high road to logic.  Educational software does not do this. 

 

When I was in high school thirty years ago, contractors and retailers refused to hire high-school 

dropouts.  Today, most male dropouts have a construction job waiting for them, and the girls a 

retail job.  These jobs are available to dropouts because employers are aware that a high-school 

diploma is worthless.  A diploma is no assurance that an apprentice framer can square a wall or 

that a cashier can make change.  So, please do not criticize my pencil-and-paper methods!  

Programmers use logic too.  If squaring a wall or making change is hard, what is recursion like? 
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Geometry Informs the Numerical Analysis of Error in Computations 

 

Recall that to find the touching point requires using loci that intersect at an angle closer to 

perpendicular than the angle made by the tangent and the circle.  That Thales devised 

construction 4.4 to accomplish this is a large part of why he is still famous two millennia later.   

 

Recall from Algebra I the basic technique for finding the 𝑥 and 𝑦 where two lines intersect. 

 

Unique Solution:  𝑥 = 2, 𝑦 = 3 Uniqueness Fails Existence Fails 

𝑦 = 𝑥 + 1 𝑦 = 𝑥 + 1 𝑦 = 𝑥 + 1 

𝑦 = 2𝑥 − 1 2𝑦 = 2𝑥 + 2 𝑦 = 𝑥 + 2 

 

In this context, locus means all the points that satisfy an equation; that is, the graph of the line 

defined by the equation.  So, to solve two linear equations in two unknowns geometrically means 

to observe where their graphs (loci) intersect; to solve them algebraically means to perform 

algebra operations on 𝑦 = 𝑥 + 1 and 𝑦 = 2𝑥 − 1 until they turn into 𝑥 = 2 and 𝑦 = 3.   

 

But what about 𝑦 = 𝑚𝑥 + 𝑏 and 𝑦 = (𝑚 + 휀)𝑥 + 𝑐?  If 휀 is close to zero, then the two lines are 

so close to parallel that it is difficult to see where they intersect; both existence and uniqueness 

are on the verge of failure.  As 휀 approach zero, the solution approaches guesswork.  For two 

linear equations in two unknowns, little can be done to improve accuracy, but for multiple linear 

equations in as many unknowns, much can be accomplished by rearranging them with a 

technique called scaled partial pivoting.  This is college-level linear algebra.    

  

Polynomial regression is a statistical technique for fitting an nth degree polynomial to a set of data 

points such that 𝑦 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0 interpolates the experimental data.  

The problem is that 𝑥𝑛 and 𝑥𝑛−1 are almost the same function – graph them for 𝑥6 and 𝑥5 to see 

that they are almost on top of each other from zero to one – so this equation is not much different 

than 𝑦 = (𝑎𝑛 + 𝑎𝑛−1)𝑥
𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0.  Increasing the degree of the polynomial from 5 to 

6 was difficult but resulted in a negligible increase in accuracy.  The numerical analysis solution 

is Chebyshev polynomials, the first few (𝑇6 is not in the image) being shown below: 

 

𝑇0(𝑥) = 1  

𝑇1(𝑥) = 𝑥  

𝑇2(𝑥) = 2𝑥2 − 1  

𝑇3(𝑥) = 4𝑥3 − 3𝑥   

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1   

𝑇5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥   

𝑇6(𝑥) = 32𝑥6 − 48𝑥4 + 18𝑥2 − 1   
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Instead of finding the coefficients for the formula 𝑦 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0, we 

find the coefficients for the formula 𝑦 = 𝑐𝑛𝑇𝑛(𝑥) + 𝑐𝑛−1𝑇𝑛−1(𝑥) + ⋯+ 𝑐1𝑇1(𝑥) + 𝑐0.  There is 

an easy way to evaluate this formula without having to raise 𝑥 to any integer powers: 

 

   LET  𝑤𝑛+2 = 0  AND  𝑤𝑛+1 = 0 

  FOR  𝑘 = 𝑛  TO  0  STEP  −1 

  𝑤𝑘 = 𝑐𝑘 + 2𝑥𝑤𝑘+1 − 𝑤𝑘+2 

  NEXT  𝑘  

 𝑦 = 𝑤0 − 𝑥𝑤1 

 

It is beyond the scope of this book to prove that this algorithm works or to show how Chebyshev 

came up with his polynomials, but I will say this:  A set of functions that, within some range, have 

widely varying slopes instead of being like 𝑥5 and 𝑥6 are near zero, are called orthogonal.  Given 

a sequence of functions like 1, 𝑥, 𝑥2, ⋯, there is a procedure called the Gram-Schmidt process 

that creates a sequence of functions that is orthogonal.  In my 1999 book, Axiomatic Theory of 

Economics (p. 132), I had to approximate a function whose evaluation requires numerical 

integration and is thus time consuming.  Also, it increases at roughly the acceleration rate of 𝑒𝑥2
 

and thus quickly outpaces any polynomial.  I solved this problem by applying the Gram-Schmidt 

process to the sequence of functions 𝑒1, 𝑒𝑥, 𝑒𝑥2
, ⋯. 

 

Suppose that the ABC Chemical Company is manufacturing a product on a special-order basis for 

customers who specify a certain characteristic, 𝑦.  ABC knows that this characteristic in the 

finished product is positively related to how much of a certain chemical, 𝑥, is added to the 

mixture before stirring it in a ball mill for a week and then baking it.  But this is all they know and 

so ABC has hired you, young mathematician, to solve this problem for them.  All that ABC can tell 

you is that, after four expensive and time-consuming experiments, they have these (𝑥, 𝑦) pairs:  

(0,
2

3
) , (

1

3
,

25

36
) , (

2

3
,

59

54
) , (1,

25

12
).  Ask your linear algebra teacher for help! 

 

School problems with only four data points do not really need advanced mathematics; basic 

polynomial regression problems using 1, 𝑥, 𝑥2 and 𝑥3 can be solved on a 32-bit computer 

without solving for 𝑇0, 𝑇1, 𝑇2 and 𝑇3.  But real-life problems have more than four data points. 

 

In the above problem, the even spacing of the 𝑥 values indicate that these experiments were 

carried out for the express purpose of interpolation.  But it is more likely that you will be 

presented with the results of random guesses made in the past to satisfy actual customer orders.  

For this, use a polynomial of lower degree than there are data points to get a smooth function 

that slightly misses them rather than a wildly varying function that hits them exactly. 
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A Reply to the Enemies of Deductive Logic 
 

Grandparents proudly following their young grasshopper’s progress in Geometry–Do (On 

obtaining a black belt, it is appropriate to be presented with a motorcycle.  Hint!  Hint!) and who 

sat at Euclid’s feet may want to know where we are relative to The Elements.  The last pages of 

yellow belt, about half of orange belt, three-quarters of green belt and all of red belt are beyond 

The Elements.112  This puts the lie to critics who wish geometry to be just a review of algebra, 

such as Agostino Prástaro, who sneers at us for believing that mathematics ends with Euclid: 

 

I can understand that for mathematicians of your ilk, namely fans of intrinsic 

geometry, mathematics ends with Euclid.  But unfortunately (for you) this is not a 

universally shared opinion.  On the other hand, it is a questionable opinion that a 

serious program in intrinsic geometry could be suitable to introduce high school 

students in geometry…  By conclusion, in my opinion in order for geometry to be 

more attractive for high school students, it should be suitable to introduce it as an 

algebra application. 
 

George Birkhoff’s axioms are called metric because they associate every length and angle with a 

real number; those of Euclid, David Hilbert and I are called intrinsic because they do not.  

Professor Prástaro113 (University of Rome) is wrong about intrinsic geometry ending with Euclid.  

Great advances have been made in the intervening 2300 years, right up to the present; Franzsen 

published at a time when current high-school students were in elementary school. 
 

But the most telling part of this quotation is the last line, where Professor Prástaro insists that 

geometry should be introduced as an algebra application.  In the United States this is already 

mandated by Common Core.  Sophomore geometry is a review of freshman algebra.  The triangles 

serve no purpose beyond setting up Algebra I problems.  How well does this work? 

 

Orange Belt Exit Exam 

Given two circles, a line and a length, construct a line parallel to the given one so it cuts the two 

given circles the given length apart.  How many possible solutions are there? 

 

If we follow Prof. Prástaro’s advice to “introduce it as an algebra application,” we must first come 

to grips with the fact that God, in his Wisdom, did not imprint a Cartesian coordinate grid on the 

surface of the Earth.  It is only in Common Core textbooks that every point comes pre-labeled 

with its coordinates.  So, let us take the given line as the 𝑥-axis and center a circle on the 𝑦-axis. 

 
112 Euclid proved quadrature theorems as soon as he could, which scattered them.  I make all of quadrature blue 

belt, but bring easy theorems forward to an orange-belt appendix so first-year students know all of Euclid’s Book I. 
113 A critique of Prástaro’s work: davidlowryduda.com/reviewing-goldbach/#more-706  

https://davidlowryduda.com/reviewing-goldbach/#more-706
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Two circles, 𝜔1 and 𝜔2, are defined by 𝑥2 + (𝑦 − 13)2 = 112 and (𝑥 + 2)2 + (𝑦 − 10)2 = 72, 

respectively, and the given length of 11 units is laid off on the 𝑥-axis.  We hope to find 𝑦0 such 

that the intersection of the line 𝑦 = 𝑦0 and the circle 𝑥2 + (𝑦 − 13)2 = 112 is found at (𝑥1, 𝑦1) 

and the intersection of the line 𝑦 = 𝑦0 and the circle (𝑥 + 2)2 + (𝑦 − 10)2 = 72 is found at 

(𝑥2, 𝑦2) and the equation √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 = 11 is satisfied.  This is a lot of algebra!   

 

Geometry–Do students will immediately recognize that, if we are looking for a segment that is 

both parallel to and equal in length to a given segment, then we are going to construct a 

parallelogram.  Construct circles 𝜔3 and 𝜔4 congruent to 𝜔2 but 11 units to the left and the right.  

If they intersect 𝜔1 – No guarantees of intersection! – then the horizontal distance from the 

intersections to  𝜔2 is 11 units.  In this case, 𝜔3 and 𝜔4 each intersect 𝜔1 twice, so four solutions. 

 

 
 

Common Core geometry standards114 denigrate deductive logic, “in college some students 

develop Euclidean and other geometries carefully from a small set of axioms,” emphasis on some, 

implying that high-school teachers are forbidden from developing geometry from a small set of 

axioms, as we do.  Russian 12-year-olds laugh when they read, “During high school, [American 

10th grade] students begin to formalize their geometry.”  By 10th grade the Russians will be 

studying Ceva’s theorem.  And hate for deductive logic is not just in America; it got its start in 

France.  Their core curriculum states, “teut expos’e de logique formalle est exclu” [any formal 

logic is excluded], and Jean Dieudonné coined the slogan, “A bas Euclide!  Mort aux triangles!” 

 
114 It’s not just a suggestion, it’s the law! www.corestandards.org/Math/Content/HSG/introduction  

http://www.corestandards.org/Math/Content/HSG/introduction/
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David T. Conley115 (p. 3) boasts of Common Core:  
 

International comparisons also helped ensure the standards were set at a high 

level.  For example, the Third International Mathematics and Science Study (TIMSS) 

yielded detailed profiles of how numerous other countries teach math, which 

assisted in identifying the most effective sequencing of mathematics topics. 
 

TIMSS may have talked to the Italians, but they certainly did not talk to the Russians!  Even 

without the ability to read Russian, it is clear from the title of Pogorelov's textbook116 that this is 

for 7th grade students.  A Russian student that has completed the first six chapters of Pogorelov 

– 7th grade is five chapters and the sixth is completed a month into 8th grade – can pass David 

Conley’s so-called “internationally benchmarked” standards for American high-school graduates.  

Common Core is all about memorization and Conley’s exam requires students to memorize but 

not prove a few theorems beyond the first six chapters of Pogorelov.   
 

Common Core is a charade.  David Conley is unknown in mathematics but, by his writing style, it 

is clear that he is much more closely associated with Madison Avenue than with any university.  

If he did attend college, I am certain that he never darkened the door of their mathematics 

department.117  He refers to himself as a “Professor of Leadership,” whatever that is.  David 

Conley has posted 70 papers at Research Gate and received less than 700 downloads, total.  By 

comparison, my manuscript118 was downloaded over 700 times in its first five months at Research 

Gate, from January to June 2016.  This is a startling statistic considering that – until I defeat 

Common Core and am legally allowed to publish – I am doing this for free.  The taxpayers 

purchased every one of David Conley’s 70 papers with government grants averaging about a 

quarter of a million dollars per paper – a lot of money for papers downloaded less than ten times 

apiece.  It is clear that nobody but his socialist masters actually care what David Conley writes.  

Equally obvious is that – despite using “college ready” as their favorite buzzword – the socialists 

are turning Common Core students into worker bees for their government-owned factories.119  

Socialists want laborers who are literate enough to read the operating manual for the machines 

they are to toil at, but not literate enough to read books.  Certainly not books about logic! 

 
115 A blizzard of buzzwords intended to both baffle and befuddle you!  www.inflexion.org/download/36952  
116 This is in Russian, but the title is readable: www.axiomaticeconomics.com/Pogorelov_geometry_7-9.pdf  
117 I found David Conley’s curricula vitae; he has a BA in social sciences, an MA in multiculturalism and a PhD in school 

administration.  There is no evidence that he has ever taken a college-level mathematics class in his life.  The only 

actual teaching experience of this pasty-faced multiculturalist is an Ethnic Heritage Program in Jefferson County 

Public Schools from 1978 to 1982.  The rest of his life has been spent dictating to people who actually majored in 

the academic subject they teach exactly what material they are and are not allowed to teach. 
118 www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication  
119 Strictly speaking, it is called fascism, not socialism, when big companies like McGraw Hill or Pearson bribe their 

way into a monopoly.  And the big factories are owned by stockholders, though effectively they are the government. 

https://www.inflexion.org/download/36952
http://www.axiomaticeconomics.com/Pogorelov_geometry_7-9.pdf
https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
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On When to Use Algebra Instead of Geometry 

 

In the Comparison with Common Core Geometry at the end of the white belt chapter, I mock 

Common Core proponents for turning every problem into an algebra problem. 

 

Teachers!  If you have read this far hoping for advice on how to get your #%$^@ 

students through the Common Core standardized exam, here it is:  Ask for the 

perimeter of a triangle with vertices (−2,3), (−4,−4), (−7,−1) and make it a 

race.  The easy way is to lay the three sides end-to-end on a line.  Taking the sum 

of three applications of the algebraic distance formula is the hard way. 

√(−2 − (−7))
2
+ (3 − (−1))

2
+ √(−2 − (−4))

2
+ (3 − (−4))

2
+ √(−7 − (−4))

2
+ (−1 − (−4))

2
≈ 17.9 

 

So true!  I have interviewed American teachers and, when I point out that they do not require 

their students to purchase a compass, they have gotten defensive, sifted through their desk 

drawer until they found one, and insisted that they had once demonstrated bisecting an angle. 

 

A geometric construction is the best way to find the perimeter of a triangle drawn on graph 

paper.  Even in the absence of graph paper, it is the easiest way to solve problem 1.24. 

 

Problem 1.25  Given a triangle with base 14 mm and legs 13 mm and 15 mm, what is the height? 

 

The preceding section, A Reply to the Enemies of Deductive Logic, presents yet another example 

of a problem that is far easier to solve with geometry than algebra.  But I am not an implacable 

enemy of algebra; I have taught algebra and I consider myself at least competent in the subject. 

 

The ancients struggled with some problems that we now know cannot be solved with geometry, 

the most famous being angle trisection.  With two 30-meter strings a geometer can bisect an 

angle to as much accuracy as a surveyor with hundreds of dollars of optical equipment can trisect 

it.  A square with the same area as a unit circle has sides of length √𝜋, which is an ancient problem 

that motivated the algebraic approximation of 𝜋.  Legend has it that the god Apollo punished the 

people of Delos with a plague.  The oracle of Delphi informed them that they must double the 

volume of their cubic Apollo altar.  A segment √2
3

 long cannot be constructed geometrically – 

cube roots require algebra – and Apollo would sooner see them all die than to accept 1.26. 

 

The mirror problem is easy (yellow belt), but a closely related problem is impossible. 

 

Mirror Problem 

Given a light and an observer, find the point on a mirror to shine the light at the observer. 
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If a laser is shined at an arc, it reflects in the same way as it would off a flat mirror that is tangent 

to the arc at the aiming point.  Initially, I wanted to end the yellow-belt chapter with a fun 

adventure story about a geometry student who is abducted by aliens and forced to fight other 

captive humans with lethal laser guns.  The arena is in a tank farm on the far side of the moon, 

where the aliens are stockpiling fuel and oxygen for their planned attack on Earth.  But, instead 

of shooting at the other humans, the boy uses geometry to find the aiming points on the tanks 

that he needs to hit the aliens, who are observing from behind a laser-proof screen.  Having killed 

the aliens, he then leads the other humans to commandeer an alien battleship, bomb the alien 

military base and save the world!  Great fun, but – Ahem! – our story is impossible. 

 

The impossible part of this story is not that there is an alien military base on the far side of the 

moon – there may well be – but that the aiming point on a cylinder cannot be constructed with 

a compass and straightedge.  For a cue ball and an object ball inside a round billiard table – rather 

than outside a steel tank – this is the Alhazen Billiard Problem first proposed by Ptolemy in 150 

but made famous by al-Haytham c. 1020; it was proven impossible by P. M. Neumann in 1998. 

 

It is possible to solve this exactly with algebra, but this requires first setting up a quartic (fourth-

degree polynomial equation) and then solving it with Ferrari’s formula.  This is not high-school 

algebra; it is not undergraduate algebra either.  This would be a challenging problem for a 

graduate student in the mathematics department – definitely not in the education department 

like your teacher – and one that is specializing in advanced algebra.  I would do it numerically: 

 

If the tank center is at the origin and of radius 20 m, suppose the gunner is at (22, 24) and the 

alien is at (20, 35) and behind a screen.  If (𝑥0, 𝑦0) is a point on the tank, then 𝑦0 = √400 − 𝑥0
2.  

The line from the center of the tank through (𝑥0, 𝑦0) is 𝑦 =
𝑦0

𝑥0
𝑥 and so, for the angle of incidence 

to equal the angle of reflection, we must have atan
𝑦0

𝑥0
− atan

24−𝑦0

22−𝑥0
= atan

35−𝑦0

20−𝑥0
− atan

𝑦0

𝑥0
; the 

left and right sides are the complements of the angles of incidence and of reflection, respectively. 

 

FOR 𝑥 = 8 TO 16 STEP 2−12 

 𝑦 = √400 − 𝑥2 

 𝑧 = |2 atan
𝑦

𝑥
− atan

24−𝑦

22−𝑥
− atan

35−𝑦

20−𝑥
| 

 IF 𝑧 < 0.0001 THEN PRINT 𝑥, 𝑦, 𝑧 

NEXT 𝑥 

 

The aiming point is approximately (12.0271, 15.97964).  Incrementing in an integer power of 

two reduces round-off error.  Make the step size a 216 part of the maximum, in this case 16.  In 

QBasic, 2−12 is written 1 / 2 ^ 12, square root is SQR, absolute value is ABS and arctangent is ATN. 
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Pedagogic Instruction for North American Teachers 

 

The first task of the American high-school geometry teacher is to disabuse students of the notion 

that geometry is just a boring review of Algebra I.  (Nothing new here.  Blah!!!)  And the first step 

towards disabusing the students of this misguided notion is disabusing yourself of it.  So, teacher, 

take the following exam and – only after you have tried your hardest – turn the page upside down 

to learn how a Geometry–Do practitioner would solve these problems.  Use any method that you 

think will work.  Be like the ancient Greeks and use a compass and straightedge; be like the 

modern Americans and use a scientific calculator; consult your horoscope; whatever gets it done.   

 

1. Yellow!  𝐸 is (16, 16), 𝐹 is (2, 9), 𝐺 is (17, 6) and 𝑃 is (13, 9).  Find 𝐽 ∈ 𝐹𝐸⃗⃗⃗⃗  ⃗ and 𝐾 ∈ 𝐹𝐺⃗⃗⃗⃗  ⃗ 

such that 𝑃𝐽𝐾 is of minimal perimeter.  Round the answer to the nearest hundredth. 

 

2. Yellow!  You are given a point (−6,−5); a line with equation 2𝑥 − 11𝑦 = 109; and a 

circle with equation 𝑥2 + 𝑦2 = 25.  Find a point on the line such that the given point is 

exactly halfway between it and the circle.  Round the answer to the nearest hundredth. 

 

3. Orange!  Three roads, 𝐸𝐹⃡⃗⃗⃗  ⃗, 𝐸𝐺⃗⃗⃗⃗  ⃗, 𝐹𝐺⃗⃗⃗⃗  ⃗, would make a triangle, 𝐸𝐹𝐺, with vertices 𝐸 at 

(−120,−110), 𝐹 at (90,−160) and 𝐺 at (0, 240), in meters.  But, instead of making 

sharp turns at the vertices, 𝐸𝐹⃡⃗⃗⃗  ⃗ will have exits to curve into 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗ that are arcs of the 

𝜔𝑍 and 𝜔𝑌 excircles.  What is the distance between the exits to 𝐸𝐺⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗ on 𝐸𝐹⃡⃗⃗⃗  ⃗? 

 

4. Green!  Given a triangle 𝐸𝐹𝐺, let 𝐺′ be the foot of the altitude from 𝐺 and call this the 

origin.  If 𝐸 and 𝐺 have coordinates (−15, 0) and (0, 112), respectively, and 𝐺𝐺′⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝜔 is 

(0, −36), with 𝜔 the circumcircle of 𝐸𝐹𝐺, what are the coordinates of its orthocenter? 

 

5. Red!  The coordinates of the first Torricelli apexes are (0, 0), (−26, 43) and (20, 53).  

What are the coordinates of the vertices of their associated triangle? 
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Are you convinced that geometry is easier than algebra?  Now let us consider pedagogy. 
 

American teachers often dress up, like a history teacher dressing as an historical character.  This 

is a practice that they apparently learned of in their five years of education classes (Can you say, 

“Never lecture!”) when they were not learning the content of their specialty.  But I tell you: 
 

1. Do not wear a black belt unless you are one.  If and only if you pass the green belt entrance 

exam, you can wear a green belt; otherwise, you are orange belt.  There is nothing wrong 

with an orange belt being the highest ranked geometer at a school that teaches shop 

students white- and yellow-belt geometry – somebody must be the leader. 
 

2. There is nothing wrong with lecturing.  The best way to convey information to people is 

to tell it to them.  “Discovery math” is just another word for laziness.  The teacher waits 

for a bright student to solve the problem and then she takes credit for the discovery.   
 

At the beginning of the green-belt chapter I write: 
 

We have now proven over a hundred theorems based on only our six geometric 

postulates.  (The circle postulate is needed whenever we say, “construct an 

isosceles triangle.”)  
 

Did you, teacher, ask yourself exactly when you had tacitly invoked the circle postulate?  Here I 

quote from the white-belt chapter.  [Edit:  This was shortened, but I will quote it in full here.] 
 

In the following construction, existence and uniqueness of 𝐹𝐸⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗ requires 

invoking the line postulate, though this goes unsaid.  In the same way that, given 

𝐸 and 𝐹, we speak of 𝐸𝐹 without bothering to invoke the segment postulate, we 

now speak of 𝐹𝐸⃗⃗⃗⃗  ⃗ or 𝐹𝐸⃡⃗⃗⃗  ⃗ whenever 𝐹𝐸 has been defined.  This practice is in keeping 

with our plan to avoid tedious proofs with mincing steps, but the student should 

never forget that Euclid’s postulates are ever-present and needed.   
 

Construction 1.1  Bisect an angle. 
 

Solution 

Given ∠𝐸𝐹𝐺, take any point 𝐽 on 𝐹𝐸⃗⃗⃗⃗  ⃗.  There exists a point 𝐾 on 𝐹𝐺⃗⃗⃗⃗  ⃗ such 

that 𝐹𝐽 = 𝐹𝐾.  Construct an isosceles triangle with base 𝐽𝐾 and apex 𝐿 

on the other side of 𝐽𝐾⃡⃗⃗⃗  from 𝐹.  By SSS,  𝐽𝐹𝐿 ≅ 𝐾𝐹𝐿, which holds the 
equality ∠𝐽𝐹𝐿 = ∠𝐾𝐹𝐿.                                                                ∎  

 

We now carry out this construction again, this time presented in the traditional two columns: 
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∠𝐸𝐹𝐺  Given. 

Take any point 𝐽 on 𝐹𝐸⃗⃗⃗⃗  ⃗.   Segment postulate implies 𝐹𝐸 exists. 

Line postulate implies 𝐹𝐸⃗⃗⃗⃗  ⃗ exists. 

There exists a point 𝐾 on 𝐹𝐺⃗⃗⃗⃗  ⃗ such that 

𝐹𝐽 = 𝐹𝐾.   

Segment postulate implies 𝐹𝐺 exists. 

Line postulate implies 𝐹𝐺⃗⃗⃗⃗  ⃗ exists. 

Equal magnitudes are an equivalence 

relation and can be reproduced 

wherever needed. 

Construct an isosceles triangle with 

base 𝐽𝐾 and apex 𝐿 on the other side of 

𝐽𝐾⃡⃗⃗⃗  from 𝐹. 

Choose an arbitrary length. 

Circle postulate implies a circle with 

center 𝐽 and this radius is fully defined. 

Circle postulate implies a circle with 

center 𝐾 and this radius is fully defined. 

Each circle is the locus of points that 

satisfy one side of the triangle being of 

this length.  Where these loci intersect 

are the points that satisfy the definition 

of an isosceles triangle.  Find an 

intersection 𝐿 on the other side of 𝐽𝐾⃡⃗⃗⃗  

from 𝐹 so 𝐽𝐿 = 𝐾𝐿.  If it does not exist, 

then try a longer radius until it does. 

By SSS, 𝐽𝐹𝐿 ≅ 𝐾𝐹𝐿.   𝐽𝐹 = 𝐹𝐽, 𝐾𝐹 = 𝐹𝐾 by length definition 

𝐽𝐹 = 𝐾𝐹 by construction 

𝐹𝐿 = 𝐹𝐿 by reflexivity 

𝐿𝐽 = 𝐿𝐾 by construction 

By congruency, ∠𝐽𝐹𝐿 = ∠𝐾𝐹𝐿. Corresponding magnitudes of  

congruent triangles are equal. 

 

We introduced the term locus when constructing an isosceles triangle.  It also applies to the 

mediator and the angle bisector, which are the locus of points equidistant from the vertices and 

from the sides, respectively.  Note “all” in the definition of locus; thus, the iff in these theorems.  

A student beginning geometry should know how to solve two linear equations in two unknowns 

when a unique solution exists, and what it means for either uniqueness or existence to fail.   

 

Unique Solution:  𝑥 = 2, 𝑦 = 3 Uniqueness Fails Existence Fails 

𝑦 = 𝑥 + 1 𝑦 = 𝑥 + 1 𝑦 = 𝑥 + 1 

𝑦 = 2𝑥 − 1 2𝑦 = 2𝑥 + 2 𝑦 = 𝑥 + 2 
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In this context, locus means all the points that satisfy an equation; that is, the graph of the line 

defined by the equation.  So, to solve two linear equations in two unknowns geometrically means 

to observe where their graphs (loci) intersect; to solve them algebraically means to perform 

algebra operations on 𝑦 = 𝑥 + 1 and 𝑦 = 2𝑥 − 1 until they turn into 𝑥 = 2 and 𝑦 = 3. 

 

Geometry is like linear algebra except for two things:  1) The algebraic method is unavailable; we 

only look for the intersection of loci, and 2) Loci may be either lines or arcs.  Linear algebra is 

usually the first proof-oriented math class that one takes in college; recalling that it was related 

to geometry even at the white-belt level will become the fondest memory of college students 

looking back on their high-school studies.  I quote from College Geometry (p. 13) by Nathan 

Altshiller-Court, a standard lower-division university-level textbook: 

 

In a great many cases, the solution of a geometric problem depends upon the finding 

of a point which satisfies certain conditions…  If one of the conditions which the 

required point must satisfy be set aside, the problem may have many solutions.  

However, the point will not become arbitrary, but will move along a certain path, the 

geometric locus of the point.  Now by taking into consideration the discarded 

condition and setting aside another, we make the required point describe another 

geometric locus.  A point common to the two loci is the point sought. 

 

Teacher, you will do well to remember that there is attrition from both ends of the spectrum!  

Some white belts perform poorly because they need the material presented to them more slowly, 

which is why you must be capable of and have the patience to write a detailed two-column proof 

of the type displayed above.  Capital-E Educators tend to assume that everybody who performs 

poorly is like this, which has resulted in some really tedious textbooks, though I believe that such 

students are in the minority.  I tell you, there are also many poor performers who are not slow, 

as evidenced by their high marks in algebra, but who have concluded that geometry is wholly 

disconnected from algebra and can thus be jettisoned without loss.  Capital-E Educators do not 

seem to realize how hectic teenagers’ lives are with homework, sports, clubs, and mandatory 

“volunteer” work.  They do not realize that teenagers prioritize. 

 

That isosceles triangles have two angle bisectors equal is an easy corollary of ASA.  Yellow belts 

proved the converse, but here we consider the classic proof by Jakob Steiner, which depends on 

the parallelogram theorem and is analogous to the proof of the mid-segment theorem, except 

that here 𝐽 and 𝐾 are the intersections of 𝐸𝐺 and 𝐹𝐺 with the bisectors of the opposite angles, 

where before we considered 𝑀𝐺𝐸  and 𝑀𝐹𝐺 .  It is not satisfactory to use the parallel postulate to 

prove the converse of a theorem that does not require it but, since this was the only known proof 

for a long time, it is worth knowing, and it here serves our purpose in pedagogy. 
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Steiner–Lehmus Theorem 

If a triangle has two angle bisectors equal, then it is isosceles. 

 

 Classic Proof 

Given 𝐸𝐹𝐺 with 𝐹∗ and 𝐸∗ the intersections of 𝐸𝐺 and 𝐹𝐺 with the bisectors of the 

opposite angles, given equal.  Find the intersection, 𝐽, of loci 𝐹𝐽 = 𝐹𝐸∗ and 𝐹∗𝐽 = 𝐸𝐹.  Of 

the two, use the one on the 𝐺 side of 𝐸𝐹⃡⃗⃗⃗  ⃗.  By SSS, 𝐽𝐹𝐹∗ ≅ 𝐹𝐸∗𝐸 and ∠𝐽𝐹𝐹∗ = ∠𝐹𝐸∗𝐸.  

Also, ∠𝐽𝐹∗𝐹 = ∠𝐹𝐸𝐸∗ = ∠𝐹∗𝐸𝐸∗, the former by congruence and the latter by angle 

bisection.  Let 𝑀:= 𝐸𝐸∗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹𝐹∗⃗⃗ ⃗⃗ ⃗⃗  ⃗.  ∠𝐸𝑀𝐹∗ = ∠𝐹𝑀𝐸∗ by the vertical angles theorem.  By 

the angle sum theorem, the sum of the other two angles in 𝐸𝑀𝐹∗ and 𝐹𝑀𝐸∗ are equal; 

that is, ∠𝑀𝐹∗𝐸 + ∠𝐹∗𝐸𝑀 = ∠𝐹𝐸∗𝑀 + ∠𝑀𝐹𝐸∗.  By the exterior angle theorem, this is 

∠𝐸𝑀𝐹 and it is obtuse because the other two angles of 𝐸𝑀𝐹 are both half of the vertices 

of a triangle and so they must sum to an acute angle because, if they summed to an obtuse 

angle, double them would exceed a straight angle, in defiance of the angle sum theorem.  

∠𝐽𝐹∗𝐹 = ∠𝐹∗𝐸𝐸∗; so, substitute ∠𝐽𝐹∗𝐹 for ∠𝐹∗𝐸𝑀.  ∠𝐽𝐹𝐹∗ = ∠𝐹𝐸∗𝐸; so, substitute 

∠𝐽𝐹𝐹∗ for ∠𝐹𝐸∗𝑀.  ∠𝑀𝐹∗𝐸 + ∠𝐽𝐹∗𝐹 = ∠𝐽𝐹𝐹∗ + ∠𝑀𝐹𝐸∗.  These angles are obtuse so, 

by OSS, 𝐸𝐹𝐽 ≅ 𝐽𝐹∗𝐸 and 𝐹𝐽 = 𝐹𝐸∗ = 𝐸𝐹∗.  By SSS, 𝐸𝐹𝐸∗ ≅ 𝐹𝐸𝐹∗, so ∠𝐸𝐹𝐸∗ = ∠𝐹𝐸𝐹∗.  

By the isosceles triangle theorem converse, 𝐸𝐹𝐺 is isosceles.            ∎ 

 

Those who excel in linear algebra will benefit from a teacher who can relate it to their study of 

geometry.  Also of interest to algebraists are the concepts of analytic and synthetic knowledge, 

terminology first introduced by Immanuel Kant.  Green belts learned that “Analytic is knowledge 

contained in the given information and analysis is just restating it in a different way, hopefully 

clearer.  Auxiliary are lines or arcs not given whose intersection goes beyond analytic.  For 

instance, in construction 1.1 we drew equal circles around 𝐽 and 𝐾.  Their intersection gives us 

knowledge of the apex 𝐿 that is not contained in the information and is thus not analytic.  But, 

for this knowledge to be synthetic, it must remain after the auxiliary lines and arcs are erased.  

There are a million lines and arcs that could potentially be added to a geometric diagram, but 

only the ones that leave relevant information after being erased are productive.  If the 

information they provide only exists as long as they are in place, then that information is not 

solving the given problem, but solving a different one with additional given information.” 

 

Why is this of interest to those who are good at algebra?  Let us perform algebra operations on 

𝑦 = 𝑥 + 1 and 𝑦 = 2𝑥 − 1 until they turn into 𝑥 = 2 and 𝑦 = 3.  We set the right sides equal 

using the transitive property, add 1 − 𝑥 to both sides, simplify to get 𝑥 = 2, and then substitute 

this into either given equation to get 𝑦 = 3.  Adding 1 − 𝑥 is the auxiliary, not the million other 

things that might have been added, because it leaves only the answer to the given question.   
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Thus, the teacher should be able to make it clear to good algebraists that geometry is doing 

essentially the same thing, only graphically.  One obstacle yet remains.  Some white-belt students 

have already attended and failed another geometry class and thus come with baggage.  This is 

especially true if they did not fail but dropped out in protest of Common Core.  Explain that this 

textbook does not use the SMSG axioms120, whose Ruler Postulate states that any line can be 

placed one-to-one onto the real numbers so the distance between two points is the absolute 

value of the difference of their corresponding real numbers, and whose Angle Measurement 

Postulate states that every angle corresponds to a real number between 0 and 180.  SMSG is 

apparently unaware that, by transitivity, this makes lengths and angles the same thing. 
 

Glencoe Geometry (p. 256) declares two triangles congruent, one with all its sides and angles 

labeled: 𝑎 = 38.4 mm, 𝑏 = 54 mm, 𝑐 = 32.1 mm and 𝛼 = 45°, 𝛽 = 99°, 𝛾 = 36°.  The other 

triangle has the side corresponding to 𝑎 labeled (𝑥 + 2𝑦) mm and the angle corresponding to 𝛽 

labeled (8𝑦 − 5)°.  Glencoe solves 𝑥 + 2𝑦 = 38.4 and 8𝑦 − 5 = 99 to get 𝑥 = 12.4 and 𝑦 = 13, 

mysteriously reported without unit labels.  What is the geometric interpretation of 𝑥 and 𝑦???   
 

The chapter on congruent triangles in Glencoe is just one long lesson in the algebraic solution of 

simultaneous equations; the congruent triangles are used only to set up the two equations to be 

solved.  They never solve three equations in three unknowns nor introduce Cramer’s rule, making 

it all a very Algebra I lesson.  The reason that nobody cares about the units of 𝑥 and 𝑦 is that 

nobody cares about geometry.  “Angles, shmangles!  Who cares what the units are as long as we 

do not have to learn anything new but can just review easy but boring algebra we already know?” 

 

Educators with a capital E like the term “critical thinking” and use it often.  At one time or another, 

just about every topic in every high-school subject has been described as instilling critical thinking 

in the students.  It’s a buzzword!  Even geometry teachers are expected to teach students critical 

thinking.  But what does this mean?  Given the name, it must mean effective criticism. 
 

Checking the units, as demonstrated in the preceding critique, is effective.  But McGraw-Hill is 

not the only idiot in the room!  Geometry by Houghton-Mifflin-Harcourt (p. 917) declares two 

triangles congruent; transferring all the lengths and angles to one triangle, we have 𝑎 = 11 mm, 

𝑏 = 8 mm, 𝑐 = 14 mm and 𝛼 = 55°, 𝛽 = 36°, 𝛾 = 89°.  By SSS, the triangle is fully defined.  By 

the Law of Cosines, 𝛾 = acos (
𝑎2+𝑏2−𝑐2

2𝑎𝑏
), so 𝛼 ≈ 51.6°, 𝛽 ≈ 34.8°, 𝛾 ≈ 93.6°.  Not even close!!! 

 

Common Core teachers just hate it when students use critical thinking on them!  While they were 

not taking any college math classes, they were taking education classes about how to teach gifted 

students.  They did not learn what to do about students who are smarter than they are.       

 
120 A bastardization of Birkhoff: www.math.stonybrook.edu/~scott/mat515.fall14/smsg.pdf  

http://www.math.stonybrook.edu/~scott/mat515.fall14/smsg.pdf
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Antiparallel Lines Should Be Called Supplementary Lines 

 

I did not initially include a discussion of antiparallel lines in this book because I did not like the 

name.  It seemed like it would confuse students, especially those for whom English is not their 

first language, because it translates to “not parallel.”  There are many lines that are not parallel 

to a given line and this naming convention does not single out the one under consideration. 

 

But recently (11 Jan 23), a retired high-school teacher named Pat Ballew wrote a blog citing the 

Wolfram Math page about this, which gave the subject renewed interest and raised the specter 

that I might be thought a dummy who is unaware of this “advanced” geometry.  So here goes! 

 

Transversal Lemma       (Euclid, Book I, Prop. 27) 

 If alternate interior angles are equal, the two lines crossed by the transversal are parallel. 

 

This appeared near the beginning of the orange-belt chapter, but it is actually neutral geometry 

(it was among the yellow-belt exit exam questions) because it depends only on the exterior angle 

inequality theorem.  Euclid (The Elements, Book I, Prop. 16) and I both prove it using only neutral 

geometry; that is, without a parallel postulate.  Let us now define supplementary lines as follows: 

 

Lines, Supplementary If alternate interior angles are supplementary, the two lines crossed             

by the transversal are supplementary relative to that transversal. 

 
Wolfram, quoting Johnson ([1929] 2007, p. 172), rather clumsily puts it, “they make the same 

angle in the opposite senses.”  Maybe “opposite senses” was defined in 1929, but the only named 

angle pair in this book is alternate interior angles.  This is red belt because the following theorems 

cite green- and red-belt theorems.  I am not aware of any neutral geometry results about this. 

 

Supplementary Lines in Pairs Theorem 

𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ are supplementary lines relative to the angle bisector of ∠𝐸𝑃𝐹, as shown in the 

figure, if and only if 𝐹𝐺⃡⃗⃗⃗  ⃗ and 𝐻𝐸⃡⃗⃗⃗  ⃗ are supplementary lines relative to the angle bisector of ∠𝐹𝑄𝐺. 

 

 Proof 

Let the transversal be the bisector of ∠𝐸𝑃𝐹.  𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ are supplementary lines relative 

to this transversal because 𝛿 + 𝛿′ = 𝜎.  Let 𝑄 ≔ 𝐸𝐹⃡⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃡⃗⃗⃗  ⃗ and we will assume that it is 

on the 𝐸 side of the angle bisector; if it is not, then relabel.  Let 𝑀 be the intersection of 

the ∠𝑃 and ∠𝑄 bisectors.  ∠𝑀 is right by the center line theorem in the isosceles triangle 

with apex 𝑄.  By the center line theorem, 𝑀 is the base midpoint of an isosceles triangle 

with apex 𝑃, so 휀 + 휀′ = 𝜎.  Thus, the result, and analogously for the converse.          ∎ 
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Traditionally, the transversal being an angle bisector was baked into the definition, so the figure 

formed two nested similar triangles, 𝐸𝐹𝑃 with angles 𝛼, 𝛽, 𝛾, and 𝐻𝐺𝑃 with angles 𝛽, 𝛼, 𝛾.  These 

are the only theorems we will prove here but, for us, the transversal is allowed to be other things. 

 
Supplementary Lines are Cyclic Theorem 

𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ are supplementary lines relative to the angle bisector of ∠𝐸𝑃𝐹, as shown in the 

figure, if and only if 𝐸𝐹𝐺𝐻 is cyclic. 

 

 Proof 

Assume 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺𝐻⃡⃗⃗⃗  ⃗ are supplementary.  In the quadrilateral with opposite vertices 𝐸 and 

𝑀, by the quadrilateral angle sum theorem, ∠𝐸 = 𝜌 − 𝛿 + 휀.  In the quadrilateral with 

opposite vertices 𝐺 and 𝑀, by the quadrilateral angle sum theorem, ∠𝐺 = 𝜌 + 𝛿 − 휀.  

Thus, ∠𝐸 + ∠𝐺 = 𝜎 and, by the cyclic quadrilateral theorem converse, 𝐸𝐹𝐺𝐻 is cyclic.  • 

 

Walk the proof backwards to get the converse. 

 

Thus, if we center a circle on the base mediator so it goes through the base endpoints, the two 

cuts on the legs or their extensions define a line supplementary to the base.  The circumcircle 

cuts both legs at the apex, in which case it is the tangent that is supplementary to the base (see 

below).  In particular, the orthic triangle lemma informs us of one such circle: 

 

Orthic Triangle Sides are Supplementary Theorem 

Given 𝐸𝐹𝐺, 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐸′𝐹′⃡⃗ ⃗⃗ ⃗⃗  ⃗ are supplementary lines relative to the angle bisector of ∠𝐺. 
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Base Supplementary to Apex Tangent Theorem 

The tangent to the circumcircle touching at the apex is supplementary to the base relative to the 

apex angle bisector. 

 

 Proof 

In the figure, the angles 𝛼 equal each other and the angles 𝛽 equal each other by the 

tangent and chord theorem.  The angles 휀 equal each other by the skew angle theorem. 

 

𝛼 − 𝛽 = 2휀     skew angle theorem 

𝛼 = 𝜌 − 𝛿     complementary in 𝐸𝐺′𝐺 

𝜌 − 𝛿 = 𝛽 + 2휀    eliminate 𝛼 from the above two equations 

𝜌 = 𝜃 + 휀     complementary in 𝐺′𝐺∗𝐺 

𝜃 = 𝛽 + 𝛿 + 𝜖    eliminate 𝜌 from the above two equations 

 

Thus, the tangent to the circumcircle touching at the apex is supplementary to the base 

relative to the apex angle bisector.                ∎ 

 

By the transversal theorem, all the lines supplementary to the base of a triangle are parallel to 

each other because they all have the same alternate interior angle on the apex angle bisector; 

that is, 𝜎 − 𝜃 in the figure above.  The line touching the circumcircle at the apex is supplementary 

to the base and, by the tangent theorem, it is perpendicular to the circumcircle radius to the 

apex, as are all the other lines supplementary to the base, by the transversal theorem corollary. 
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Foundations of Geometry Revisited 

 

Patience Please!!! 

 

I am still working on this three-page appendix.  I left these pages blank now so I could update the 

page numbers in the index.  The foundations appendix will be posted in the next month or two – 

it is now 1 Feb 23.  I will announce it in the comments section at Research Gate. 

 

www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication  

  

https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
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A Look Ahead:  Blue Belt!!! 

 

Young adult (YA) novelists typically end their stories with the hero and heroine narrowly escaping 

one death trap only to run headlong into another.  This next adventure is described in a short 

sample chapter from the as-yet-to-be-written sequel.  Clever!  Borrowing a page from the YA 

playbook, I thought I would here prove a few theorems from the early pages of the blue-belt 

chapter, so students can see just how much fun Volume Two is going to be. 

 

Medial Triangle Area Theorem 

The medial triangle and the three triangles around it quarter the area of the parent triangle. 

 

Medial Parallelogram Area Theorem I 

The area of a medial parallelogram is half that of its parent quadrilateral. 

 

Medial Parallelogram Area Theorem II 

1. |𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
1

2
||𝐸𝐹𝐺| − |𝐹𝐺𝐻|| =

1

2
||𝐸𝐹𝐻| − |𝐸𝐺𝐻||         (Part One) 

2. |𝑀𝐹𝐺𝑀𝐹𝐻𝑀𝐻𝐸𝑀𝐸𝐺| =
1

2
||𝐸𝐹𝐺| − |𝐸𝐹𝐻|| =

1

2
||𝐹𝐺𝐻| − |𝐸𝐺𝐻||         (Part Two) 

 

The first case is 𝐸,𝐻,𝑀𝐸𝐺  on one side of 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐹, 𝐺,𝑀𝐹𝐻 on the other side.  The symbols 

1

4
 and 

3

4
 do not imply division; they denote the medial triangle area theorem quartering a triangle. 

 

 Proof of First Case 

|𝐹𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
3

4
|𝐹𝐺𝐻| and |𝐸𝑀𝐸𝐺𝑀𝐺𝐻𝐻| =

3

4
|𝐸𝐺𝐻| and |𝐸𝑀𝐸𝐹𝑀𝐸𝐺| =

1

4
|𝐸𝐹𝐺| and   

|𝐹𝑀𝐹𝐻𝑀𝐸𝐹| =
1

4
|𝐸𝐹𝐻| by the medial triangle area theorem.  Thus, 

|𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| = |𝐸𝐹𝐺𝐻| −
1

4
(3|𝐹𝐺𝐻| + 3|𝐸𝐺𝐻| + |𝐸𝐹𝐺| + |𝐸𝐹𝐻|)  

   = |𝐸𝐹𝐺𝐻| −
1

4
(2|𝐹𝐺𝐻| + |𝐹𝐺𝐻| + 2|𝐸𝐺𝐻| + |𝐸𝐺𝐻| + |𝐸𝐹𝐺| + |𝐸𝐹𝐻|) 

   = |𝐸𝐹𝐺𝐻| −
1

2
(|𝐹𝐺𝐻| + |𝐸𝐺𝐻| + |𝐸𝐹𝐺𝐻|) 

   =
1

2
|𝐸𝐹𝐺𝐻| −

1

2
(|𝐹𝐺𝐻| + |𝐸𝐺𝐻|) 

   =
1

2
(|𝐸𝐹𝐺| + |𝐸𝐺𝐻|) −

1

2
(|𝐹𝐺𝐻| + |𝐸𝐺𝐻|) 

   =
1

2
(|𝐸𝐹𝐺| − |𝐹𝐺𝐻|)  

Now, let us replace the last two steps with this: 

   =
1

2
(|𝐸𝐹𝐻| + |𝐹𝐺𝐻|) −

1

2
(|𝐹𝐺𝐻| + |𝐸𝐺𝐻|) 

   =
1

2
(|𝐸𝐹𝐻| − |𝐸𝐺𝐻|) 

 Part two is the same proof with different labels.     • 
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The second case is 𝐸,𝐻,𝑀𝐹𝐻 on one side of 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 𝐹, 𝐺,𝑀𝐸𝐺  on the other side. 

 

 Proof of Second Case 

|𝐹𝐺𝑀𝐸𝐺𝑀𝐸𝐹| =
3

4
|𝐸𝐹𝐺| and |𝐻𝑀𝐹𝐻𝑀𝐺𝐻| =

1

4
|𝐹𝐺𝐻| and |𝐸𝑀𝐸𝐹𝑀𝐹𝐻𝐻| =

3

4
|𝐸𝐹𝐻| and  

|𝐺𝑀𝐺𝐻𝑀𝐸𝐺| =
1

4
|𝐺𝐻𝐸| by the medial triangle area theorem.  Thus, 

|𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| = |𝐸𝐹𝐺𝐻| −
1

4
(3|𝐸𝐹𝐺| + |𝐹𝐺𝐻| + 3|𝐸𝐹𝐻| + |𝐺𝐻𝐸|)  

   =
1

2
(|𝐹𝐺𝐻| − |𝐸𝐹𝐺|) =

1

2
(|𝐸𝐺𝐻| − |𝐸𝐹𝐻|)   •          ∎ 

 

The two cases show that we can always subtract the smaller area from the larger area.  Once I 

set up the second proof, I skipped most of the steps because it is analogous with the first proof. 

 

Medial Parallelogram Area Theorem III 

Given 𝐸𝐹𝐺𝐻, assume 𝑃:= 𝐹𝐺⃗⃗⃗⃗  ⃗ ∩ 𝐸𝐻⃗⃗⃗⃗⃗⃗  exists; then |𝐸𝐹𝐺𝐻| = 4|𝑀𝐸𝐺𝑀𝐹𝐻𝑃|. 

 

 Proof 

By mid-segment theorem #1, 𝑀𝐹𝐻𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐹𝐺⃡⃗⃗⃗  ⃗.  By mid-segment theorem #2, 

𝑀𝐹𝐻 , 𝑀𝐺𝐻 , 𝑀𝑃𝐻 are collinear.  By the triangle area and the medial triangle area theorem, 

|𝑀𝐹𝐻𝑀𝐺𝐻𝑃| = |𝑀𝐹𝐻𝑀𝐺𝐻𝑀𝐹𝐺| =
1

4
|𝐹𝐺𝐻|. 

 

By mid-segment theorem #1, 𝑀𝐸𝐺𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐻⃡⃗⃗⃗  ⃗.  By mid-segment theorem #2, 

𝑀𝐸𝐺 , 𝑀𝐺𝐻 , 𝑀𝑃𝐺  are collinear.  By the triangle area and the medial triangle area theorems, 

|𝑀𝐸𝐺𝑀𝐺𝐻𝑃| = |𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐻𝐸| =
1

4
|𝐸𝐺𝐻|. 

 

By medial parallelogram area theorem II, |𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
1

2
(|𝐸𝐹𝐺| − |𝐹𝐺𝐻|).  Half 

of this is |𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
1

4
(|𝐸𝐹𝐺| − |𝐹𝐺𝐻|). 

 

|𝑀𝐸𝐺𝑀𝐹𝐻𝑃| = |𝑀𝐹𝐻𝑀𝐺𝐻𝑃| + |𝑀𝐸𝐺𝑀𝐺𝐻𝑃| + |𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻|  

                       =
1

4
|𝐹𝐺𝐻| +

1

4
|𝐸𝐺𝐻| +

1

4
|𝐸𝐹𝐺| −

1

4
|𝐹𝐺𝐻|  

                       =
1

4
|𝐸𝐺𝐻| +

1

4
|𝐸𝐹𝐺| =

1

4
|𝐸𝐹𝐺𝐻|               ∎ 

 

Verify that this would have worked if we had set |𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
1

2
(|𝐸𝐹𝐻| − |𝐸𝐺𝐻|). 

 

The only original result of Geometry–Do – Never seen before! – will now be proven.  I just wish it 

were me who proved it – but it was my friend Milan Zlatanović of the University of Niš, Serbia. 
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Cramer–Castillon Problem 

Given three non-collinear points inside a circle, construct a triangle with vertices on the circle and 

with a different side through each point. 

 

Wholly unaware that this was an old-time problem, I just made it up while writing the green-belt 

chapter; I thought it might make a good exercise to keep the students busy over a long weekend!   

 

I worked on it for months to no avail until I realized that my focus on it was distracting me from 

writing about the theorems that I did know how to prove – I might never finish the book! 

 

At the time I was friends with a Russian geometry professor, so I thought I would show him the 

entrance to that rabbit hole – he went in headfirst!  Every few months I would ask him for an 

update, and he would show me a dozen pages of very advanced algebra.  His work seemed to 

have to do with elliptic curves though, frankly, it was over my head.  Finally, I reminded him that 

I was writing a high-school textbook.  If he succeeded – and that was still a big IF – it was beyond 

the scope of my book, and he should submit it to a math journal.  He never spoke to me again. 

 

In the meantime, I had become friends with a Serbian geometry professor, Dr. Zlatanović.  I was 

really worried!  Should I show him this problem and risk him never speaking to me again if he 

failed at it?  Might I get a reputation as the wrecker of geometry professors’ careers?  With much 

trepidation, I decided to show Dr. Zlatanović the rabbit hole from which geometers never return. 

 

Three days later, he had solved it.  “That was a tough one,” he said, “Send me another!” 

 

Dr. Zlatanović’s solution is blue belt because it makes use of the following quadrature theorems.  

Euclid proved these theorems in Book III by building rectangles on segments.  He did not use 

proportions, which he introduced in Book V.  But the proofs are easier if we have multiplication 

and the triangle similarity theorem; we will assume these so we can pretend to be blue belts.  But 

we need not assume the intersecting chords/secants similarity theorems; they are green belt. 

 

Intersecting Chords Theorem      (Euclid, Book III, Prop. 35) 

If two chords of a circle intersect inside the circle, the product of the two segments of one is equal 

to the product of the two segments of the other. 

 

 Proof 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝑇 its bi-medial, by the intersecting chords similarity theorem, 

𝐸𝐹𝑇~𝐻𝐺𝑇.  By the triangle similarity theorem, there exists 𝑘 such that |𝐸𝑇| = 𝑘|𝐻𝑇| and 

|𝐹𝑇| = 𝑘|𝐺𝑇|.  Thus, 
|𝐸𝑇|

|𝐻𝑇|
= 𝑘 =

|𝐹𝑇|

|𝐺𝑇|
.  By cross multiplication, |𝐸𝑇||𝐺𝑇| = |𝐹𝑇||𝐻𝑇|.    ∎ 
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Intersecting Secants Theorem     (Euclid, Book III, Prop. 36, 37) 

If two secants of a circle intersect outside the circle, the product of the two segments of one, from 

the intersection to where the circle cuts it, is equal to the product of the two segments of the 

other, from the intersection to where the circle cuts it. 

 

 Proof 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝑃:= 𝐹𝐸⃗⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃗⃗⃗⃗⃗⃗ , by the intersecting secants similarity theorem, 

𝑃𝐹𝐻~𝑃𝐺𝐸. By the triangle similarity theorem, there exists 𝑘 such that |𝑃𝐹| = 𝑘|𝑃𝐺| and 

|𝑃𝐻| = 𝑘|𝑃𝐸|.  Thus, 
|𝑃𝐹|

|𝑃𝐺|
= 𝑘 =

|𝑃𝐻|

|𝑃𝐸|
.  By cross multiplication, |𝑃𝐸||𝑃𝐹| = |𝑃𝐻||𝑃𝐺|.  ∎ 

 

Let 𝑃 be inside a circle with center 𝑂 and radius 𝑟.  𝑃 cuts a chord into lengths 𝑥 and 𝑦; it cuts a 

diameter 𝑧 from 𝑂.  By the intersecting chords theorem, 𝑥𝑦 =  (𝑟 + 𝑧)(𝑟 − 𝑧)  =  𝑟2 − 𝑧2.  The 

power of the point is 𝑟2 − 𝑧2.  Let 𝑃 be outside the circle.  A secant through it has lengths 𝑥 and 

𝑦 to the first and second intersections with the circle, respectively.  The secant through the center 

has lengths 𝑤 and 𝑤 + 2𝑟 to the first and second intersections with the circle, respectively.  By 

the intersecting secants theorem, 𝑥𝑦 =  𝑤(𝑤 + 2𝑟)  =  𝑤2 + 2𝑤𝑟 =  𝑤2 + 2𝑤𝑟 + 𝑟2 − 𝑟2  =

(𝑤 + 𝑟)2 − 𝑟2 = 𝑧2 − 𝑟2 with 𝑧 = |𝑂𝑃|.  The power of the point is |𝑟2 − 𝑧2| for points both 

inside and outside the circle.  The power of the point depends only on the point and the circle, 

not on the chord through 𝑃; it tells you the product 𝑥𝑦 even though you know neither 𝑥 nor 𝑦. 

 

If there is only one circle in a figure, the power of point 𝑃 is denoted |𝑃|.  Vertical bars also denote 

absolute value, as |𝑥 − 𝑦|, but points are uppercase and lengths lowercase, so it should be clear.  

If there are multiple circles, one must specify to which circle the power of a point is defined.  In 

the solution to the Cramer-Castillon problem below, 𝜔 is the circle that defines powers of points. 
 

The power of the point is a difference of squares, so we need to construct a square of this size.  

In the lemma, 𝑥 represents the larger of 𝑟 and 𝑧, and 𝑦 represents the smaller of 𝑟 and 𝑧.   

 

Lemma 5.9        (Euclid, Book II, Prop. 5) 

Given lengths 𝑦 < 𝑥, the rectangle of sides 𝑥 + 𝑦 and 𝑥 − 𝑦 is equal in area to the square of side 

𝑥 minus the square of side 𝑦. 
 

 Proof 

Construct the small square 𝐸𝐹𝐺𝐻 in the corner of the big square, 𝐸𝐽𝐾𝐿, with 𝐹 inside 𝐸𝐽 

and 𝐻 inside 𝐸𝐿.  Extend 𝐻𝐺⃗⃗⃗⃗⃗⃗  to intersect 𝐽𝐾 at 𝑀.  𝐸𝐽𝐾𝐿 − 𝐸𝐹𝐺𝐻 = 𝐻𝑀𝐾𝐿 ∪ 𝐽𝑀𝐺𝐹.  

Construct 𝑀𝑁𝑂𝐾 congruent to 𝐽𝑀𝐺𝐹 outside 𝐻𝑀𝐾𝐿.  𝐻𝑁𝑂𝐿 = 𝐻𝑀𝐾𝐿 ∪ 𝑀𝑁𝑂𝐾 is a 

rectangle.  By transitivity, 𝐻𝑁𝑂𝐿 = 𝐸𝐽𝐾𝐿 − 𝐸𝐹𝐺𝐻, so |𝐻𝑁𝑂𝐿| = |𝐸𝐽𝐾𝐿| − |𝐸𝐹𝐺𝐻|.   ∎ 
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Construction 5.2       (Euclid, Book II, Prop. 14) 

Given two squares, construct a square equal in area to their difference. 

 

 Solution 

Using the figure of lemma 5.9, extend 𝐻𝑁⃗⃗⃗⃗ ⃗⃗  by the length 𝑁𝑂 and label this point 𝑃 so 

𝑃𝑁 = 𝑁𝑂.  Build a semicircle on 𝐻𝑃 on the same side as 𝐽.  Extend 𝑂𝑁⃗⃗⃗⃗⃗⃗  until it meets this 

semicircle at 𝑄.  A square built on 𝑁𝑄 is equal in area to 𝐻𝑁𝑂𝐿 = 𝐸𝐽𝐾𝐿 − 𝐸𝐹𝐺𝐻.         ∎ 

 

 Proof 

Connect 𝑃𝑄 and 𝑄𝐻.  By Thales’ diameter theorem, 𝑃𝑄𝐻 is a right triangle.  By the right 

triangle theorem, 𝑃𝑁𝑄~𝑄𝑁𝐻.  By the triangle similarity theorem, 
|𝑃𝑁|

|𝑁𝑄|
=

|𝑁𝑄|

|𝐻𝑁|
.  By cross 

multiplication, |𝑁𝑄||𝑁𝑄| = |𝑃𝑁||𝐻𝑁|.  |𝑁𝑄||𝑁𝑄| = |𝑁𝑂||𝐻𝑁| = |𝐸𝐽𝐾𝐿| − |𝐸𝐹𝐺𝐻|.  

These equalities are by substitution and lemma 5.9, respectively.              ∎ 

 

As an aside, C. 5.2 can be used to find the square root of a number, 𝑛, represented by the length 

of a segment.  Extend it by one unit and build a semicircle on this (𝑛 + 1 )–length segment, then 

raise a perpendicular from the endpoint of the 𝑛–length segment and measure its length to 

where it cuts the semicircle.  Suppose I want √5.  I draw a segment six units long, put my compass 

pin at the three-unit mark to draw the semicircle, then raise a perpendicular from the five-unit 

mark and measure its distance to the semicircle.  Accuracy depends on the size of your compass. 

 

Construction 5.3   

Given an angle and a point inside a circle, draw a chord through the point that subtends the angle. 

 

 Solution 

Given 𝑃 in a circle with center 𝑂 and radius 𝑟, replicate the angle in an equal circle and 

draw the chord that subtends it.  Build a semicircle on this chord.  The power of the point 

is |𝑃| = 𝑟2 − 𝑧2 with 𝑧 = |𝑂𝑃|.  By C. 5.2, find a length 𝑝 such that 𝑝2 = 𝑟2 − 𝑧2.  Draw 

a line 𝑝 distant from the chord on the same side as the semicircle.  From where it cuts the 

semicircle, drop a perpendicular to the chord.  The foot of this perpendicular cuts the 

chord as 𝑃 cuts the desired chord.  Circles around 𝑃 of these radii (the cut segments of 

the chord in the equal circle) cut the given circle at the chord endpoints.           ∎ 

 

Discussion 

For a given point there is no maximum angle but, by the shortest chord theorem, the 

chord through 𝑃 perpendicular to the diameter through 𝑃 subtends the smallest possible 

angle.  If this is bigger than the given angle, then the construction is impossible.          ∎ 
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And now, what you have all been waiting for, the solution to the Cramer-Castillon problem! 

 

 Solution 

Let 𝑃1, 𝑃2, 𝑃3 be points inside a circle 𝜔 with center 𝑂 and radius 𝑟; the desired triangle is 

𝐸𝐹𝐺 with 𝑃1 ∈ 𝐸𝐹 and 𝑃2 ∈ 𝐹𝐺 and 𝑃3 ∈ 𝐺𝐸.  We first assume that 𝐸𝐹𝐺 is known (draw 

𝐸𝐹𝐺 and then 𝑃1, 𝑃2, 𝑃3) and draw the figure described in the next paragraph.  Then we 

will determine which points can be derived just from 𝑃1, 𝑃2, 𝑃3 and not from 𝐸, 𝐹, 𝐺.  Then 

we will show that 𝐸, 𝐹, 𝐺 can be derived from these points.  This completes the proof. 

 

Find 𝐽 on the circle such that 𝐹𝐽⃡⃗  ⃗ ∥ 𝑃2𝑃3
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗   and let 𝐾 be the intersection of 𝐸𝐽⃡⃗  ⃗ and 𝑃2𝑃3

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Find 

𝐿 on the circle such that 𝐹𝐿⃡⃗⃗⃗ ∥ 𝑃1𝐾⃡⃗⃗⃗⃗⃗  ⃗ and let 𝑀 be the intersection of 𝐽𝐿⃡⃗  ⃗ and 𝑃1𝐾⃡⃗⃗⃗⃗⃗  ⃗.  Case #1 

is that 𝐽 is on the arc of 𝐸𝐺.  Case #2, 𝐽 on the arc of 𝐸𝐹, requires replacing two sentences, 

which are shown in red after the sentences they replace.  𝐽 ≡ 𝐸 is left as an exercise. 

 

∠𝐸𝐾𝑃2 = ∠𝐸𝐽𝐹 = ∠𝐸𝐺𝑃2 by T & V and the inscribed angle theorem, respectively.  

∠𝐸𝐾𝑃2 + ∠𝐸𝐽𝐹 = 𝜎 = ∠𝐸𝐽𝐹 + ∠𝐸𝐺𝑃2 by T & V and the cyclic quadrilateral theorems, 

respectively.  𝑃2𝐺𝐾𝐸 is cyclic by the inscribed angle theorem converse.  By the 

intersecting chords theorem, |𝑃3𝑃2||𝑃3𝐾| = |𝑃3𝐸||𝑃3𝐺|.  But 𝐸𝐺 is also a chord in 𝜔 so 

|𝑃3𝐸||𝑃3𝐺| is the power of point 𝑃3 relative to 𝜔, which we call |𝑃3|.  Thus, |𝑃3𝐾| =
|𝑃3|

|𝑃3𝑃2|
 

and 𝐾 can be constructed.  ∠𝐸𝐽𝑀 + ∠𝐸𝐹𝐿 = 𝜎 by the cyclic quadrilateral theorem, but 

∠𝐸𝑃1𝑀 = ∠𝐸𝐹𝐿 by T & V, so ∠𝐸𝐽𝑀 + ∠𝐸𝑃1𝑀 = 𝜎 and 𝐸𝑃1𝑀𝐽 is cyclic by the cyclic 

quadrilateral theorem converse.  ∠𝐸𝐽𝑀 = ∠𝐸𝐹𝐿 by the inscribed angle theorem, but 

∠𝐸𝑃1𝑀 = ∠𝐸𝐹𝐿 by T & V, so ∠𝐸𝐽𝑀 = ∠𝐸𝑃1𝑀 and 𝐸𝐽𝑃1𝑀 is cyclic by the inscribed angle 

theorem converse.  By the intersecting secants theorem, |𝐾𝑀||𝐾𝑃1| = |𝐾𝐽||𝐾𝐸|.  But 𝐽𝐸 

is also a chord in 𝜔 so |𝐾𝐽||𝐾𝐸| is the power of point 𝐾 relative to 𝜔, which we call |𝐾|.  

Thus, |𝐾𝑀| =
|𝐾|

|𝐾𝑃1|
 and 𝑀 can be constructed.  𝐾 and 𝑀 can be constructed, so ∠𝑃3𝐾𝑀 

can be constructed.  But ∠𝐽𝐹𝐿 = ∠𝑃3𝐾𝑀 by the parallelogram angles theorem, so we 

know ∠𝐽𝐹𝐿.  By C. 5.2, draw through 𝑀 a chord 𝐽𝐿 in 𝜔 that subtends this angle.  Thus, 

𝐽, 𝐾, 𝐿,𝑀 can all be constructed independent of 𝐸, 𝐹, 𝐺.  𝐾𝐽⃡⃗⃗⃗  intersects 𝜔 at 𝐸.  A line 

through 𝐿 parallel to 𝐾𝑀⃡⃗⃗⃗⃗⃗  intersects 𝜔 at 𝐹.  𝐸𝑃3
⃡⃗ ⃗⃗⃗⃗  ⃗ intersects 𝜔 at 𝐺, as does 𝐹𝑃2

⃡⃗ ⃗⃗ ⃗⃗  .          ∎ 

 

This problem has never before appeared in a textbook because Castillon’s solution was too long, 

complicated and advanced for pedagogic purposes.  So, let us call this the Zlatanović problem!   

 

Now, hopefully, the students will all spend the next year anxiously awaiting some fulfillment from 

Amazon when their back-ordered copy of Geometry with Multiplication is finally delivered.  
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Needful Things 

 

Students going to college without having studied blue belt should review Elementary Quadrature 

Theory121 and this section, where we discuss the most needful similarity theorems.   

 

Extant terminology regarding similarity is ill-conceived in two ways that often confuse students:  
 

1. The point where a vertex angle bisector cuts the opposite side of a triangle has no name. 

2. Angle bisector theorem has different meanings in beginner and intermediate textbooks. 
 

A principal innovation of mine – perhaps the only thing I will be remembered for after my death 

– is denoting the midpoint of 𝐸𝐹 as 𝑀𝐸𝐹.  This makes geometry so much easier than it is in other 

textbooks, where midpoints are assigned randomly selected letters!  Look at the proofs of the 

medial parallelogram area theorems II and III in the preceding appendix.  Imagine what these 

proofs would be like if all the segment midpoints were assigned random letters.  Confusing!!! 

 

In this same spirit of clarity, I always represent the foot of an altitude with a single apostrophe; 

that is, 𝐸′, 𝐹′, 𝐺′ are the feet of altitudes dropped from 𝐸, 𝐹, 𝐺, respectively.  I never use single 

apostrophes for any other points, which is why I sometimes have 𝐸′′, 𝐹′′, 𝐺′′ in a proof (e.g., the 

Napoleon theorem) even if there is no mention of 𝐸′, 𝐹′, 𝐺′. 
 

Sadly, there is no word comparable to “foot” for the point where an angle bisector cuts the 

opposite side of a triangle.  In other textbooks, there is no consistent notation either; they denote 

these points with random letters.  In the notation section at the beginning of this book, I fix the 

labeling problem by calling these points 𝐸∗, 𝐹∗ and 𝐺∗.  But I think we need a name that can be 

spoken aloud in lectures, so I am going to call them the infeet of a triangle; individually, an infoot. 
 

The following theorem is seen as needful to first-year geometers.  

 

Infoot Ratio Theorem       (Euclid, Book VI, Prop. 3) 

The infoot cuts the base in the ratio of the legs, and the converse.  For 𝐺∗ of 𝐸𝐹𝐺, 
|𝐸𝐺∗|

|𝐹𝐺∗|
=

|𝐸𝐺|

|𝐹𝐺|
. 

 

Proof is easy; draw a parallel to 𝐹𝐺⃡⃗⃗⃗  ⃗ through 𝐸 that cuts the bisector of ∠𝐺.  Intermediate 

textbooks call this the angle bisector theorem while beginner textbooks follow my practice of the 

angle bisector theorem being that angle bisectors are equidistant from the sides.  This would be 

confusing for students of Volume Two; thus, blue belts need this new name for this old theorem. 

 
121 Solve P. 5.1 without Miquel.  Also, prove that, if 𝑃 is the intersection of two disjoint circles’ external tangents, 

then, for any secant from 𝑃 that cuts the circles at consecutive points 𝐸, 𝐹, 𝐺, 𝐻, |𝑃𝐸| × |𝑃𝐻| = |𝑃𝐹| × |𝑃𝐺|. 
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Let us call it the exfoot where the bisector of an exterior angle of a triangle cuts the extension of 

the opposite side; label the exfeet 𝐸×, 𝐹× and 𝐺×.  An analogous theorem holds. 

 

Exfoot Ratio Theorem 

The exfoot cuts the extension of the base in the ratio of the legs, and the converse.  For exfoot 𝐺× 

of 𝐸𝐹𝐺, 
|𝐸𝐺×|

|𝐹𝐺×|
=

|𝐸𝐺|

|𝐹𝐺|
. 

 

Euclid only proved the former.  According to Euclid’s translator, Heath, the latter was proven by 

Simson.  Simson is the man who was falsely credited with what we now call the Wallace line.  But 

Simson is renowned, and it would be sad if the only mention of him in this book is to discredit 

him, so we will here give him credit for something he did do.  The infoot and the exfoot define 

harmonic division.  It is college geometry; in high school, only the infoot theorem is needed.  But, 

just in case you get a professor who thinks harmonic division is still taught in high school, as it 

was in Wentworth’s day, you should know that, by transitivity, 
|𝐸𝐺∗|

|𝐹𝐺∗|
=

|𝐸𝐺×|

|𝐹𝐺×|
.  In words, you say 

that 𝐺∗ and 𝐺× divide 𝐸𝐹 internally and externally, respectively.  Because the ratios are equal, 

they together divide 𝐸𝐹 harmonically.  The figure 𝐸𝐹𝐺 with 𝐺∗ and 𝐺× located is called a pencil. 
 

Thales’ diameter theorem is proven at the very beginning of green belt and is thus second-year 

Geometry–Do, though students who fail to get a green belt are advised to go a few pages into 

green belt on their own because this and the inscribed angle theorem on the next page are 

generally expected of all high-school graduates.  In blue belt is another theorem due to Thales.  

Clarity demands that the adjectives “diameter” or “proportionality” be used to avoid confusion, 

though some textbooks say Thales’ theorem for the former and intercept theorem for the latter. 
 

Thales’ Proportionality Theorem 

The sides of an angle cut by some parallel lines are divided into proportional segments. 
 

This is the general case of the side-splitter theorem, but with more parallel lines.  The converse 

is also true; proportional segments imply that the lines are parallel.  The following theorem is not 

really a corollary because it does not cite Thales’ proportionality theorem, but it is closely related. 
 

Thales’ Proportionality Theorem Corollary 

Parallel lines cut by some angles with the same vertex are divided into proportional segments. 

 

Euclid put the Pythagorean theorem in Book I and triangle similarity in Book VI, which is also the 

organization of Geometry–Do.  Geometry books that are really algebra books begin with similarity 

and prove the Pythagorean theorem with the triangle similarity theorem and cross multiplication.   
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Orange belts prove the right triangle theorem, that the altitude to the hypotenuse of a right 

triangle forms two triangles similar to it and to each other.  Let the legs be 𝑢, 𝑣; the hypotenuse 

be 𝑤; the altitude to the hypotenuse be ℎ; and the projections of 𝑢 and 𝑣 on 𝑤 be 𝑢′ and 𝑣′.122 

 

Pythagorean Theorem (Algebra Version) 

𝑢2 + 𝑣2 = 𝑤2  

 

 Proof 
𝑢′

𝑢
=

𝑢

𝑤
 and 

𝑣′

𝑣
=

𝑣

𝑤
 by the right triangle and triangle similarity theorems.  𝑢2 = 𝑤𝑢′ and 

𝑣2 = 𝑤𝑣′ by cross multiplication.  Add these to get 𝑢2 + 𝑣2 = 𝑤𝑢′ + 𝑤𝑣′ = 𝑤2.          ∎ 

 

Proportions are something you should have learned in Algebra I; college professors will expect 

you to be rock solid on this.  Just in case you are a little wobbly, we will review now.  Also, there 

is geometric terminology that students should know, but it is not always taught in algebra class. 

 

Before typesetters had fractions, proportions were written 𝑎 ∶ 𝑏 = 𝑐 ∶ 𝑑.  One says that 𝑎 is to 𝑏 

as 𝑐 is to 𝑑.  The extremes are 𝑎 and 𝑑 and the means are 𝑏 and 𝑐.  𝑎 ∶ 𝑏 = 𝑐 ∶ 𝑑 implies 
𝑎

𝑏
=

𝑐

𝑑
 

but the converse is not true because lengths must be positive.  When geometers use fractions, 

they tacitly assume 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ+.  If you multiply both sides of 
𝑎

𝑏
=

𝑐

𝑑
 by 𝑏𝑑, you get 𝑎𝑑 = 𝑏𝑐.  

This is called cross multiplication.  If the means are equal, that value is called the mean 

proportional, which is the same thing as the geometric mean; 
𝑎

𝑏
=

𝑏

𝑐
 implies 𝑏 = √𝑎𝑐.  If one of 

the extremes is the unknown quantity, it is called the third proportional; 𝑎 =
𝑏2

𝑐
 or 𝑐 =

𝑏2

𝑎
.  In this 

case, the ratio of the extremes is  
𝑎

𝑐
=

𝑎2

𝑏2 =
𝑏2

𝑐2.  If the means are not equal and one of the extremes 

is the unknown quantity, it is called the fourth proportional; 
𝑎

𝑏
=

𝑐

𝑑
 implies 𝑎 =

𝑏𝑐

𝑑
 or 𝑑 =

𝑏𝑐

𝑎
. 

 

The geometric method for finding the fourth proportional cites Thales’ proportionality theorem.  

Lay off 𝑎 and then 𝑏 on one ray, 𝑐 on the other and then draw a parallel through the end of 𝑏.  

Third proportional means 𝑐 in 𝑎 ∶ 𝑏 = 𝑐 ∶ 𝑑.  To find the mean proportional, 𝑏, use Thales’ 

diameter theorem; 𝑎 + 𝑐 is the diameter and you raise a perpendicular from their joint.   

 

Right Triangle Theorem Corollaries      (Euclid, Book VI, Prop. 13) 

1. The right vertex altitude is the geometric mean of the projections; ℎ = √𝑢′𝑣′. 

2. Each leg is the geometric mean of the leg’s projection and the hypotenuse; 𝑢 = √𝑢′𝑤. 

3. The product of the altitude and the hypotenuse is the product of the legs; ℎ𝑤 = 𝑢𝑣. 

 
122 Never use 𝑎, 𝑏, 𝑐 for the sides of a right triangle; it is confusing if you then use it to set up 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 
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Given 
𝑎

𝑏
=

𝑐

𝑑
 the following are named operations that you should be able to do in a single step: 

 

       Inversion  
𝑏

𝑎
=

𝑑

𝑐
             Flip both fractions upside down. 

 

       Alternation 
𝑎

𝑐
=

𝑏

𝑑
  or  

𝑑

𝑏
=

𝑐

𝑎
          Switch the means or switch the extremes. 

 

       Composition 
𝑎±𝑏

𝑏
=

𝑐±𝑑

𝑑
            Add or subtract the denominators to the numerators. 

 

       Series Sum 
𝑎

𝑏
=

𝑐

𝑑
=

𝑎±𝑐

𝑏±𝑑
              For a series of ratios, be sure the + and – line up. 

 

A triangle’s area is 𝐴 =
𝑒ℎ𝐸

2
=

𝑓ℎ𝐹

2
=

𝑔ℎ𝐺

2
=

𝑏ℎ

2
, the latter if one side is the base.  𝐴 = 𝑟𝑠 is easy.  

If two triangles have the same height, alternation yields the same-height proportion, 
𝐴1

𝐴2
=

𝑏1

𝑏2
.  

Given 𝐸𝐹𝐺, if rays from 𝐸, 𝐹, 𝐺 are concurrent at an interior point, 𝑃, we will call where they cut 

the opposite sides 𝐸𝑃, 𝐹𝑃 , 𝐺𝑃, respectively.  Example:  Prove that 
|𝐸𝑃𝐺|

|𝐹𝑃𝐺|
=

𝐸𝐺𝑃

𝐹𝐺𝑃
.  By the same-height 

proportion, 
|𝐸𝐺𝑃𝐺|

|𝐹𝐺𝑃𝐺|
=

|𝐸𝐺𝑃𝑃|

|𝐹𝐺𝑃𝑃|
=

𝐸𝐺𝑃

𝐹𝐺𝑃
; by series sum, 

|𝐸𝐺𝑃𝐺|−|𝐸𝐺𝑃𝑃|

|𝐹𝐺𝑃𝐺|−|𝐹𝐺𝑃𝑃|
=

|𝐸𝑃𝐺|

|𝐹𝑃𝐺|
=

𝐸𝐺𝑃

𝐹𝐺𝑃
.  The same-height 

proportion solves problems where a triangle is inscribed in a figure and its vertices cut the sides 

at given ratios.  If |𝐸𝐹𝐺| = 84 m2 and 𝐸𝑋 = 2𝐹𝑋 and 𝐺𝑌 = 3𝐹𝑌, find |𝑋𝐹𝑌|.  It is 
84

3×4
= 7 m2. 

 

Incenter Ratio Theorem 

The incenter cuts the bisector of an angle as the sum of its adjacent sides is to its opposite side. 

 

And that is really all the work with similarity that is expected of American high-school graduates.  

Relentless use of cross multiplication, inversion, alternation, composition, and series sum of 

proportions will smoke the SAT.  But, a word of warning:  I checked the high-school math 

curriculum in Serbia and found that Ceva’s, Menelaus’, Stewart’s and Ptolemy’s theorems – all 

blue belt – are mandatory, and the former is used to prove the existence of the Gergonne point.  

I am told that, in practice, the latter two are taught only in the best high schools, or to honor 

students in the general Serbian high schools.  But every Serbian – even those not college bound 

– learns of Ceva and Menelaus and applies their theorems to practical problems.   

 

Every Serbian boy aspires to be another Nikola Tesla.  If you do not want a Serb to kick your butt 

four years from now when you go out into the big world with an electrical engineering degree 

from an American university, then you had better buy Geometry with Multiplication and read the 

blue-belt chapter on your own, even if it is not required to graduate from an American high 

school.  Common Core institutionalized mediocrity, but that is no excuse for you to be mediocre! 
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Preparation for Altshiller-Court’s College Geometry 

 

College Geometry, by Nathan Altshiller-Court, was the standard American undergraduate 

geometry textbook until colleges abandoned geometry due to the incoming freshmen not being 

even close to capable of reading the first chapter.  But, in 2007, Dover snatched it from the jaws 

of obscurity, so it is now available again as a college geometry textbook, at least until I publish 

Volume Two of Geometry–Do, which will compete with it.  But the first step towards competing 

successfully for the college textbook market is for there to be one.  This requires that high school 

graduates be capable of reading the first chapter of College Geometry, or any college textbook.  

Altshiller-Court helpfully lists (pp. 1-2) nine constructions that he expected of any high-school 

graduate in 1952.  Let us have a look!  With the triangle similarity theorem, we have got this. 

 

1. Divide a given segment into a given number of equal parts. 

 

Constructions 1.2 and 3.11 bisect and trisect a segment, respectively.  Three applications 

of C. 1.2 quadrisect a segment.  For integers 5 ≤ 𝑛, use a modification of C. 3.9.  Given 

𝑂𝐸𝑛, draw a ray 𝑂𝐺1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and then lay off 𝑂𝐺1 = 𝐺1𝐺2 = ⋯ = 𝐺𝑛−1𝐺𝑛 on it.   

 

2. Divide a given segment into a given ratio (i) internally; (ii) externally. 

 

Solution  

Given 𝐸𝐹 and lengths 𝑝 and 𝑞 in the desired ratio, draw parallel lines through 𝐸 and 𝐹.  

Lay off 𝑝 and 𝑞 so |𝐸𝑃| = 𝑝 and |𝐹𝑄| = |𝐹𝑄′′| = 𝑞 with 𝑃 and 𝑄 on opposite sides of 𝐸𝐹⃡⃗⃗⃗  ⃗.  

𝑃𝑄⃡⃗⃗⃗  ⃗ cuts 𝐸𝐹 internally and 𝑃𝑄′′⃡⃗ ⃗⃗ ⃗⃗  ⃗ cuts 𝐸𝐹⃗⃗⃗⃗  ⃗ externally.              ∎ 

 

Proof 

Let 𝐺 and 𝐻 be the internal and external cuts, respectively.  By the crossed triangle and 

triangle similarity theorems, 𝐸𝑃𝐺~𝐹𝑄𝐺, which holds the ratio 
𝑝

𝑞
=

|𝐸𝐺|

|𝐹𝐺|
.  By the nested 

triangle and triangle similarity theorems, 𝐸𝑃𝐻~𝐹𝑄′′𝐻, which holds the ratio 
𝑝

𝑞
=

|𝐸𝐻|

|𝐹𝐻|
.  ∎ 

 

3. Construct the fourth proportional to three given segments. 

 

Solution 

Given 
𝑎

𝑏
=

𝑐

𝑑
 with 𝑑 unknown, draw an angle and lay off 𝑎 and then 𝑏 on one ray and 𝑐 on 

the other.  Connect the ends of 𝑎 and 𝑐 and then draw a parallel to this through the end 

of 𝑏.  It cuts the other ray at the end of 𝑑.               ∎ 
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Proof 

By Thales’ proportionality theorem.                ∎ 

 

If 𝑏 = 𝑐, then the unknown 𝑑 is called the third proportional.  If 𝑐 is wanted, invert to get 
𝑏

𝑎
=

𝑑

𝑐
. 

 

4. Construct the mean proportional to two given segments. 

 

Solution 

Given 
𝑎

𝑏
=

𝑏

𝑐
 with 𝑏 unknown, draw a segment 𝑎 + 𝑐, bisect it and draw a semicircle 

around the midpoint.  Raise a perpendicular from the 𝑎 to 𝑐 joint; its height is 𝑏.          ∎ 

 

Proof 

By Thales’ diameter theorem and right triangle theorem corollary #1.           ∎ 

 

5. Construct a square equal in area to a given (i) rectangle; (ii) triangle. 
 

a. This is equivalent to problem #4 because 𝑏2 = 𝑎𝑐 implies that 
𝑎

𝑏
=

𝑏

𝑐
. 

ii.    Choose a triangle side to be the base, 𝑎, and let 𝑐 be half the apex altitude.  Then (i). 

 

6. Construct a square equal in area to the sum of two, three, or more given squares. 

 

Pythagorean theorem for the first two, then repeat for additional squares. 

 

7. Construct two segments given their sum and their difference. 

 

Construction 2.3. 

 

8. Construct the tangents from a given point to a given circle. 

 

Construction 4.4, or construction 2.2 if you are not a green belt yet. 

 

9. Construct the internal and external tangents of two given circles. 

 

Constructions 3.12 and 3.13. 

 

College Geometry begins (pp. 3-9) with five problems.  #5 and #6 test your ability to spot the two 

similar triangles and to divide a segment into a given ratio.  #7 is harder, but analogous.  #8 is      

P. 3.51, about parallelograms.  #9 is P. 3.52; easy once you think of the equal perpendiculars 

theorem.  Any orange belt can do these problems if he also knows the triangle similarity theorem. 
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Geometry Jokes and Puzzles 

 

  Q:  What is sad about Euclidean geometry?  (I mean, besides the F you got?) 

  A:  Parallel lines.  They have so much in common, yet they will never meet. 

 

Q: 
A: 
 
Q: 
A: 
 
Q: 
A: 
 
 
 
Q: 
 
A: 
 
Q: 
 
 
A: 
 
Q: 
 
A: 

Why are acute rectangles regarded with suspicion? 
They are just not right. 
 
Why is geometry so much more difficult than sociology? 
Because triangles have three sides; people have only one. 
 
What is funny about this newspaper article?123 
The remedial class is not because it has been “five to ten 
years” since the 28-year-old took a math class at the age 
of 16.  It’s because he’s a moron! 
 
What does a Common Core geometry student get when he 
adds a length and an angle? 
A lengle! 
 
David Conley boasts, “International comparisons also 
helped ensure the [Common Core] standards were set at a 
high level.”  In which country did he do his comparison? 
Lengle Land! 
 
How will a Common Core geometry student win the 
International Mathematical Olympiad? 
Pineapples don’t have sleeves. 

 
 
 
 
 

 

 

A Common Core geometry teacher must substitute for the science teacher.  He tells the students, 

“Remember, water boils at 90 degrees.”  But a student corrects him, “Teacher, you are mistaken!  

Water boils at 100 degrees.”  The geometry teacher consults his Common Core textbook and 

replies, “You are correct.  It is the right angle that boils at 90 degrees!” 

 

A Chukcha124 is hunting seals when an American submarine surfaces.  The captain asks, “Which 

way to Alaska?”  The Chukcha points with his finger and the captain shouts down into his 

submarine, “Bearing, south 22° east!”  They submerge.  An hour later, a Russian submarine 

surfaces.  The captain asks, “Which way did the Americans go?”  The Chukcha replies, “Bearing, 

south 22° east.”  The Russian captain pleads, “Don’t be a wise guy.  Just point with your finger!” 

 
123 Casa Grande Dispatch, 24 August 2016, front page; published in Casa Grande, Arizona, U.S.A. 
124 The Chukchi are the same race as the Inuit, but they live on the Russian side of the Bering Strait. 
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Photocopy the page, cut out the five pieces and assemble them into one big square. 

 
Cut out the colored pieces in the upper triangle and reassemble them into the lower triangle.  

There’s a hole!  Should we notify the Physics Department that we’ve discovered an exception to 

their so-called “law” of the conservation of mass?  Or is there a geometric explanation for this?  

 

 
 

In the following figure, is 𝐸𝐾 less than, equal to or greater than 𝐺𝐾? 
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From Secret Place to Crossbones Rock, 

Pace out what steps you may. 

Turn right at rock and pace the same, 

And you’ll have found point 𝐴. 

 

Return to Secret Place and count, 

Your steps to Hangman’s Tree. 

Turn left at tree and now count down, 

To take you to point 𝐵. 
 

Halfway between points 𝐴 and 𝐵, 

You’ll find my treasure case, 

But what a shame that you can’t know, 

About my Secret Place. 

 

When the young chieftain first married, he gave his bride a teepee made of buffalo hide.  When 

he took a second wife, he gave her a bearskin teepee.  Then, when he became Big Chief, he 

married the most beautiful maiden of all and gave her a two-story teepee of hippopotamus hide.  

But then he became ill and, realizing that he was dying, he told all the young braves that, if anyone 

could explain why his beautiful third wife got a two-story teepee of hippopotamus hide, he would 

make him the Big Chief.  One brave stepped forward with the explanation.  What was it?125 

 

Who says geometry is impractical?  You can make big money as a miniature golf hustler!        

 

 
 

125 The sum of the squaws of the two hides is equal to the squaw of the hippopotamus. 
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Index of Postulates, Theorems and Constructions 
 

Euclid’s Postulates Plus One More 

 

Segment           Two points fully define the segment between them. 

Line                      By extending it, a segment fully defines a line. 

Triangle           Three noncollinear points fully define a triangle. 

Circle            The center and the radius fully define a circle. 

Right Angle           All right angles are equal; equivalently, all straight angles are equal. 

Parallel           A line and a point not on it fully define the parallel through that point. 

 

Equivalence Relations and Total Orderings 

 

A relation is an operator, 𝑅, that returns either a “true” or a “false” when applied to an ordered 

pair of elements from a given set.  Relations must be applied to objects from the same set.  There 

are four ways that relations may be characterized:   
 

Transitive   𝑎 𝑅 𝑏  and  𝑏 𝑅 𝑐  implies  𝑎 𝑅 𝑐    

Reflexive    𝑎 𝑅 𝑎      

Symmetric   𝑎 𝑅 𝑏  implies  𝑏 𝑅 𝑎   

Anti-Symmetric  𝑎 𝑅 𝑏  and  𝑏 𝑅 𝑎  implies  𝑎 =  𝑏 
 

A relation that is reflexive, symmetric, and transitive is called an equivalence relation.  The 

equivalence relations considered in geometry are equality, =; congruence, ≅; similarity, ~; and, 

in Euclidean geometry but not in non-Euclidean geometry, parallelism, ∥. 
 

A relation that is reflexive, anti-symmetric and transitive is called an ordering.  Geometers only 

consider one: less than or equal to, ≤.  An ordering is total if 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, always.  A set with 

both an equivalence relation, =, and a total ordering, ≤, is called a magnitude.   
 

Additive Groups 

 

We define an additive group as a set that is closed under an operation that we will denote + and 

which has these properties: 
 

Associative property (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

Commutative property 𝑎 + 𝑏 = 𝑏 + 𝑎 

Existence and uniqueness of an identity 𝑎 + 0 = 𝑎 = 0 + 𝑎 

Existence of unique inverses (identity is its own) 𝑎 + (−𝑎) =  0 = (−𝑎) + 𝑎 
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The symbol MD denotes all the theorems and constructions in the 691-page Geometry by Moise 

and Downs ([1964] 1991).  The symbol WP denotes all the theorems and constructions in the 80-

page Chapter IX, Geometry, Practical Shop Mathematics by Wolfe and Phelps ([1935] 1958).  Both 

are a survey of basic geometry before the 1960s counterculture when geometry was dumbed 

down to keep kids in school; later, Common Core made it worse.  Wolfe and Phelps write (p. v): 
 

The authors have kept in mind its use not only in factory schools, trade schools, 

vocational high schools, etc., but also in all high schools to replace the usual 

geometry course for those students not intending to go to college…  [It is] of 

much greater value to the high school student who is not going to college than 

is the usual geometry course consisting of about 150 theorems. 

 

Replication Axiom               4 

Given 𝐸𝐹 and 𝐽𝐾⃗⃗⃗⃗ , there exists a unique point 𝐿 on 𝐽𝐾⃗⃗⃗⃗  such that 𝐸𝐹 = 𝐽𝐿. 

Given ∠𝐸𝐹𝐺 and 𝐾𝐽⃗⃗⃗⃗ , there exist rays 𝐾𝐿⃗⃗⃗⃗  ⃗ and 𝐾𝐿′′⃗⃗⃗⃗⃗⃗⃗⃗  such that ∠𝐸𝐹𝐺 = ∠𝐽𝐾𝐿 = ∠𝐽𝐾𝐿′′. 
 

Interior Segment Axiom              4 

If 𝑀 is between 𝐸 and 𝐹, then 𝐸𝑀 < 𝐸𝐹 and 𝑀𝐹 < 𝐸𝐹 and 𝐸𝑀 + 𝑀𝐹 = 𝐸𝐹. 
 

Interior Angle Axiom               4 
If 𝑃 is inside ∠𝐸𝐹𝐺, then ∠𝐸𝐹𝑃 < ∠𝐸𝐹𝐺 and ∠𝑃𝐹𝐺 < ∠𝐸𝐹𝐺 and ∠𝐸𝐹𝑃 + ∠𝑃𝐹𝐺 = ∠𝐸𝐹𝐺. 
 

Pasch’s Axiom                5 
If a line passes between two vertices of a triangle and does not go through the other vertex, then 
it passes between it and one of the two vertices. 
 

Triangle Inequality Theorem   (Euclid, Book I, Prop. 20, 22)          MD    5 
Three lengths can be of triangle sides if and only if the sum of the lengths of any two sides is 

greater than the length of the third side. 
 

Continuity Theorem                 MD    5 

1. A line that passes through a point inside a circle intersects the circle exactly twice. 

2. A circle that passes through points inside and outside a circle intersects it exactly twice. 

 

Archimedes’ Axiom               6 

Given any two segments 𝐸𝐹 < 𝐺𝐻, there exists a natural number, 𝑛, such that 𝑛|𝐸𝐹| > |𝐺𝐻|. 
 

Crossbar Theorem                 MD    7 
A ray from a triangle vertex that is inside this angle intersects the opposite side inside of it. 
 

Example Theorem               8   

The sum of quadrilateral diagonals exceeds the sum of either pair of opposite sides. 
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White Belt Instruction:  Foundations 
 

Side–Angle–Side (SAS) Theorem  (Euclid, Book I, Prop. 4)  WP MD  15 
Given two sides and the angle between them, a triangle is fully defined. 
 

Isosceles Triangle Theorem   (Euclid, Book I, Prop. 5)  WP MD  15 
If two sides of a triangle are equal, then their opposite angles are equal. 
 

Equilateral Triangle Theorem           16 
Given a triangle, the following are equivalent: (1) It is equilateral; (2) all interior angles are equal; 

(3) the medians, the altitudes, and the angle bisectors are pairwise coincident; (4) the three 

medians are equal; (5) the three altitudes are equal; (6) the three angle bisectors are equal. 

 

Half Equilateral Triangle Theorem               MD  16 

A triangle is half equilateral if and only if it is right and one leg is half of the hypotenuse. 
 

Lemma 1.1              16 
If a triangle is inside another triangle, it has less area. 
 

Side–Side–Side (SSS) Theorem  (Euclid, Book I, Prop. 8)          MD  16 
Given three sides that satisfy the triangle inequality theorem, a triangle is fully defined. 
 

Construction 1.1    (Euclid, Book I, Prop. 9)          MD  17 
Bisect an angle. 
 

Construction 1.2    (Euclid, Book I, Prop. 10)          MD  17 
Bisect a segment. 
 

Construction 1.3    (Euclid, Book I, Prop. 11)                   17 
Raise a perpendicular from a point on a line. 
 

Construction 1.4    (Euclid, Book I, Prop. 12)          MD  17 
Drop a perpendicular from a point to a line. 
 

Construction 1.5    (Euclid, Book I, Prop. 23)          MD  18 
Replicate an angle. 
 

Construction 1.6             18 
Given a ray and a point on the angle bisector, find the other ray of the angle.  
 

Center Line Theorem             18 
An angle bisector and a perpendicular bisector coincide if and only if the triangle is isosceles. 
 

Interior and Exterior Angles Theorem          19 
The bisectors of an interior and exterior angle of a triangle are perpendicular to each other. 
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Mediator Theorem         WP MD  19  
A point is on the perpendicular bisector iff it is equidistant from the endpoints of the segment. 
 

Problem 1.1              19 
Draw a line through a point so it cuts off equal segments from the sides of an angle. 
 

Problem 1.2              20 
Construct a Fink roof truss.  The boards need not have width. 
 

Problem 1.3              20   
Install a wall mirror given the girl’s height and the distance from her eyes to the top of her head. 
 

Problem 1.4              20 
Four questions about A-frames; i.e., if a triangle is isosceles, then two medians are equal. 
 

Saccheri Theorem I             21 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral, so ∠𝐸 = ∠𝐹 = 𝜌 and 𝐸𝐻 = 𝐹𝐺, (1) 𝐸𝐺 = 𝐹𝐻; (2) ∠𝐺 = ∠𝐻; 

(3) 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑀𝐸𝐹𝑀𝐺𝐻

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊥ 𝐺𝐻⃡⃗⃗⃗  ⃗; (4) The mediators of the base and the summit coincide. 
 

Rhombus Theorem                 MD  21 
Opposite angles are equal and bisected by the diagonals, which are perpendicular bisectors. 
 

Isosceles Triangle Theorem Converse (White Belt)         21 
If two angles of a triangle are equal, then their opposite sides are equal. 
 

Comparison with Common Core Geometry          24 
 

Problem 1.25              25   
If a triangle has base 14 cm and legs 13 cm and 15 cm, what is its apex height? 
 

First-Day Exam in Geometry            26 
 

White Belt Geometry for Construction Workers         27 
 

Problem 1.26              27   
Rip a board into equal-width slats.  (Three in this example.) 
 

Problem 1.27              28   
Square a house’s foundation before pouring the concrete floor. 
 

Egyptian Triangle Theorem            29 
A triangle with sides three, four and five times a unit length is right. 
 

Basic Principles for Design of Wood and Steel Structures        30 
 

Defense Positioning and Geometry           32 
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Yellow Belt Instruction:  Congruence 
 

Angle–Side–Angle (ASA) Theorem  (Euclid, Book I, Prop. 26)  WP MD  37 
Given two angles and the included side, a triangle is fully defined. 
 

Isosceles Triangle Theorem Converse (Euclid, Book I, Prop. 6)  WP MD  37 
If two angles of a triangle are equal, then their opposite sides are equal. 
 

Problem 2.1              37   

Draw a segment 5.8′′, raise perpendiculars at each endpoint and bisect the right angles to form 

a triangle with the angle bisectors meeting at the apex.  How long are the legs in 10th of an inch?  

Are you sure that they are equal?  Are they the same length in hyperbolic geometry? 

 

Vertical Angles Theorem   (Euclid, Book I, Prop. 15)  WP MD  37 

Given 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺, 𝐽 on opposite sides of it, 𝐺, 𝐸, 𝐽 are collinear iff a pair of vertical angles is equal. 
 

Problem 2.2              38   

Given 𝐸𝐹𝐺𝐻, if the diagonals bisect each other, prove that 𝐸𝐹 = 𝐺𝐻 and 𝐹𝐺 = 𝐻𝐸.   

 

Exterior Angle Inequality Theorem  (Euclid, Book I, Prop. 16)          MD  38 
An exterior angle of a triangle is greater than either remote interior angle. 
 

Exterior Angle Inequality Theorem Corollaries (Euclid, Book I, Prop. 21)     38 

1. The base angles of an isosceles triangle are acute. 

2. A right or obtuse triangle has two acute angles. 

3. Given 𝐸𝐹𝐺 and 𝑃 inside it, ∠𝐸𝐺𝐹 < ∠𝐸𝑃𝐹. 

 

Greater Angle Theorem   (Euclid, Book I, Prop. 18)          MD  38 
If two sides of a triangle are unequal, then their opposite angles are unequal, the shorter side 
opposite the smaller angle and the longer side opposite the larger angle. 
 

Greater Side Theorem   (Euclid, Book I, Prop. 19)  WP MD  38 
If two angles of a triangle are unequal, then their opposite sides are unequal, the smaller angle 
opposite the shorter side and the larger angle opposite the longer side. 
 

Problem 2.3              38   

Diameters are the greatest chords.  (They try not to let it go to their heads.)  Proof? 

 

Triangle Inequality Theorem Corollaries          39 

1. Any side of a triangle is greater than the difference of the other two sides. 

2. Given 𝐸𝐹𝐺 and 𝑃 inside it, 𝐸𝑃 + 𝑃𝐹 < 𝐸𝐺 + 𝐺𝐹. 

3. The sum of the medians is greater than the semiperimeter and less than the perimeter. 
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Hinge Theorem    (Euclid, Book I, Prop. 24, 25)          MD  39 
If two triangles have two corresponding sides equal, the included angle in one is smaller/larger 
than in the other if and only if the opposite side is shorter/longer in the former than in the latter. 
 
Perpendicular Length Theorem       WP MD  39 
The perpendicular is unique and is the shortest segment from a point to a line. 
 
Perpendicular Length Theorem Corollaries          39 

1. Distinct perpendiculars raised from a line never intersect. 

2. The hypotenuse is longer than either leg of a right triangle. 

 
Angle–Angle–Side (AAS) Theorem  (Euclid, Book I, Prop. 26)          MD  40 
Given two angles and a side opposite one of them, a triangle is fully defined. 
 
Isosceles Altitudes Theorem            40 
Two altitudes are equal if and only if the triangle is isosceles. 
 
Hypotenuse–Leg (HL) Theorem       WP MD  40 
Given the hypotenuse and one leg of a right triangle, it is fully defined. 
 
Viviani Midpoint Theorem            40 

A triangle is isosceles iff perpendiculars dropped from the base midpoint onto the sides are equal. 

 
Problem 2.4              42 
Without a laser rangefinder, measure the distance across a river to construct a cable ferry. 
 
Problem 2.5              42 
Use a transit to construct the corners of a house equidistant to a road concealed behind a fence. 
 
Lemma 2.1     (Euclid, Book I, Prop. 17)      42 
The sum of any two interior angles of a triangle is less than a straight angle. 
 
Angle–Side–Longer Side (ASL) Theorem          43   
Given an angle and the side opposite the angle not less than a near side, a triangle is fully defined. 
 
Obtuse Angle–Side–Side (OSS) Theorem          43 

Given an obtuse angle and two sides that are not bracketing it, an obtuse triangle is fully defined. 

 
Angle Bisector Theorem                MD  43  
A point is on an angle bisector if and only if it is equidistant from the sides of the angle. 
 
Mid–Term Exam             44 
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Intermission (Johnny Geometer’s Big Invention)         45 

 

Problem 2.6                45 

Johnny Geometer claims that an arbitrary angle can be trisected by making it the apex of an 

isosceles triangle and then trisecting the base!  Can you prove him wrong? 

 
Construction 2.1  Trisect an angle.            (This is not a real geometry construction!)    46 

 
Chord Inside Circle Theorem   (Euclid, Book III, Prop. 2)      47 
Given a circle and any two points on it, the chord between the points is entirely inside the circle. 
 
Diameter and Chord Theorem  (Euclid, Book III, Prop. 3)  WP    47 
A diameter bisects a chord if and only if the diameter is perpendicular to the chord. 
 
Diameter and Chord Theorem Corollaries (Euclid, Book III, Prop. 9, 10)      47 

1. Given a circle with center 𝑂 and 𝐸, 𝐹, 𝑇 on the circle such that 𝐸𝐹⃡⃗⃗⃗  ⃗ ⊥ 𝑂𝑇⃡⃗⃗⃗  ⃗, then 𝐸𝑇 = 𝐹𝑇. 

2. If more than two equal segments can be drawn to a circle from a point, it is its center. 

3. If two circles intersect more than twice, then they coincide and so intersect everywhere. 

4. If every possible mediator of segments with endpoints chosen from among three or more 

points are concurrent, then these points are all concyclic. 

 

Equal Chords Theorem   (Euclid, Book III, Prop. 14)          MD  47 
In the same or equal circles, equal chords are equally distant from the center, and the converse. 
 
Unequal Chords Theorem   (Euclid, Book III, Prop. 15)      47 

Of two chords in a circle, the one nearer the center is longer; and the longer is nearer the center. 

 

Shortest Chord Theorem            47 

The shortest chord through a point in a circle is perpendicular to the diameter through that point. 

 

Lemma 2.2              48 
A line intersects a circle in at most two points. 
 

Tangent Theorem    (Euclid, Book III, Prop. 18, 19) WP MD  48 
A line intersects a circle where it is perpendicular to the radius iff that is a touching point. 
 

Common Chord Theorem            48 
If two circles have a common chord, its mediator is the line of centers. 
 

Construction 2.2 (Yellow Belt Solution) (Euclid, Book III, Prop. 17)      48 
Through a point outside a circle, draw a line tangent to the circle. 
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Common Point Theorem   (Euclid, Book III, Prop. 11, 12) WP    49 
An intersection of two circles is a touching point if and only if it is on the line of centers. 
 

Two Tangents Theorem        WP MD  49 
Two tangents from an external point are equal and their angle bisector intersects the center. 
 

Tangent Bisection Theorem I            49 
If two circles touch, the perpendicular to the line of centers through the circles’ touching point 
cuts their common tangents in half. 
 

Mirror Problem             49 
Find the point on a mirror to shine a laser at a target. 
 

Problem 2.7              50 
Two towns are on the same side of a straight railroad track and some distance away.  Where 

should a railway station be built to minimize the sum of the roads to the two towns? 

 

Line Reflection Theorem            50 

Two lines are reflections across a point iff the perpendicular dropped from that point onto one 

line, if extended in the opposite direction an equal distance, meets the other line at a right angle. 

 

Problem 2.8              50   

There is a roughly circular lake, a straight highway, and an abandoned farm.  Pave a straight road 

to the lake so the farm is at its exact midpoint.  Discuss the possibility of this. 

 

Problem 2.9              51 
Given two circles on opposite sides of a line, construct an equilateral triangle with one vertex on 
the line and the other two vertices on each of the two circles. 
 
Problem 2.10              51  
Given ∠𝐸𝐹𝐺 acute and 𝑃 within it, find points on each ray such that the perimeter of the triangle 
they make with 𝑃 is minimal. 
 

Minimal Base Theorem            51 
Given the apex angle and the sum of the legs, the triangle with minimal base is isosceles. 
 

Problem 2.11              52 
Through one of the two points of intersection of two equal circles, draw two equal chords, one 
in each circle, forming a given angle. 
 

Problem 2.12              52   

Through one of the two points of intersection of two circles, draw a line that makes equal chords 

in the two circles. 
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Problem 2.13              52   

Through three concentric circles, draw a line that they cut into two equal segments. 

 

Construction 2.3             53 
Construct two segments given their sum and their difference. 
 

Problem 2.14              53 
If the horns of Poe’s pendulum are at points 𝐸 and 𝐹 one moment and then at points 𝐸′′ and 𝐹′′ 
a minute later, where is the axle from which the pendulum is suspended? 
 

Incenter Theorem    (Euclid, Book IV, Prop. 4)          MD  54 
The bisectors of a triangle’s interior angles are concurrent at an interior point, the incenter, 𝐼. 

 

Problem 2.15              54   
Given two points inside an angle, find a point equidistant from the points and from the rays. 
 

Incenter and Circumcenter Theorem          54 
A triangle is equilateral if and only if its incenter and its circumcenter coincide. 

 

Incircle Theorem                 MD  55 

Given 𝐸𝐹𝐺, then twice 𝐼𝐺𝑀𝐸𝐹 is the absolute difference of 𝐹𝐺 and 𝐺𝐸. 
 

Incircle Theorem Corollary            55 

Given 𝐸𝐹𝐺 such that 𝐸𝐹 < 𝐹𝐺 < 𝐺𝐸, then 𝐼𝐸𝑀𝐹𝐺 = 𝐼𝐺𝑀𝐸𝐹 + 𝐼𝐹𝑀𝐺𝐸 . 
 

Problem 2.16              55  

Given 𝐸𝐹𝐺 with 𝐼 the incenter, drop a perpendicular from 𝐸 onto 𝐺𝐼⃡⃗  ⃗ with foot 𝐽 and extend 𝐸𝐽⃗⃗⃗⃗  

to 𝐾 on 𝐺𝐹⃗⃗⃗⃗  ⃗.  Prove that 2𝐼𝐺𝑀𝐸𝐹 = 𝐹𝐾. 
 
Problem 2.17              55   
Given the base, how long must the legs of an isosceles triangle be if the incircle touches them at 
their trisection points?  
 
Side–Angle–Side–Angle–Side (SASAS) Theorem         56 

Given three sides and the two angles between them, a quadrilateral is fully defined. 

 

Problem 2.18              56 

Given a segment 𝐸𝐹 that is cut by a line, ℓ, find a point 𝐺 on ℓ such that ℓ bisects ∠𝐺 in 𝐸𝐹𝐺. 

 
Tangential Quadrilateral Theorem I           56 
A quadrilateral is tangential if and only if any three of its angle bisectors are concurrent. 
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Pitot Theorem              57 
In a tangential quadrilateral, the sums of each pair of opposite sides are equal. 
 
Lemma 2.3              57 
A rhombus is tangential. 
 
Pitot Theorem Converse (Euclidean Proof)          57 
If the sums of each pair of opposite sides of a quadrilateral are equal, it is tangential. 
 

Lemma 2.4              58 

In any quadrilateral 𝐸𝐹𝐺𝐻, three sides can be chosen such that a circle is tangent to all of them. 

 

Lemma 2.5              58 

Given 𝐸𝐹𝐺𝐻 with 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸, 𝐹 inside 𝐸𝐼𝐸𝐹  and 𝐺 inside 𝐻𝐼𝐺𝐻 are not both true. 

 
Pitot Theorem Converse (Neutral Geometry Proof)         58 
If the sums of each pair of opposite sides of a quadrilateral are equal, it is tangential. 
 
Tangential Quadrilateral Theorem II           60 
The incircles of a quadrilateral’s two triangles are tangent if and only if it is tangential. 
 
Tangential Quadrilateral Theorem III          60 

Let 𝑃𝐹 and 𝑃𝐻 be pedal triangle vertices of 𝐸𝐹𝐻, 𝑄𝐺 and 𝑄𝐸 be pedal triangle vertices of 𝐸𝐹𝐺, 

𝑅𝐻 and 𝑅𝐹 be pedal triangle vertices of 𝐺𝐻𝐹 and 𝑆𝐸 and 𝑆𝐺 be pedal triangle vertices of 𝐺𝐻𝐸.  

Then 𝐸𝐹 + 𝐺𝐻 = 𝐹𝐺 + 𝐻𝐸  if and only if  𝑃𝐻𝑄𝐺 + 𝑅𝐹𝑆𝐸 = 𝑄𝐸𝑅𝐻 + 𝑆𝐺𝑃𝐹. 
 
Tangential Quadrilateral Theorem IV          61 
If a quadrilateral is tangential and the midpoint of one diagonal is its bi-medial, then it is a kite. 

 
Mid–Segment and Mediator Theorem          62 
The mid-segment of a triangle’s sides is perpendicular to the mediator of its base. 
 
Steiner–Lehmus Theorem (Modern Proof)          62 
If a triangle has two angle bisectors equal, then it is isosceles. 
 
Isosceles Angle Bisectors Theorem           62 

Two angle bisectors are equal if and only if the triangle is isosceles. 

 
Isosceles Altitudes Theorem            63 

Two altitudes are equal if and only if the triangle is isosceles. 
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Isosceles Medians Theorem            63 
Two medians are equal if and only if the triangle is isosceles. 

 
Problem 2.19              64 
Given an isosceles right triangle, can you prove that the base angles are each half of a right angle? 
 
Construction 2.4    (Euclid, Book IV, Prop. 15)  WP     64 
Inscribe a regular (equilateral and equiangular) hexagon in a given circle. 
 
Conway Problem             66   
At each vertex, extend the sides of a triangle out by a distance equal to the opposite side.  Prove 
that the six endpoints are concyclic and find the circle center. 
 

Introductory Geometry the Year Before Geometry–Do Is Taught       69 

 
Off–the–Grid Cabins as an Application of Geometry         71 
 
Orange Belt Geometry for Construction Workers         72 
 
Fink and Asymetrical Fink Roof Trusses          72 
Construct roof trusses with 2′′ × 6′′ boards for 8′ or 12′ wide cabins. 
 
Ogee Arch              73 
Construct an ogee arch for use as a window in a Catholic church. 
 
Tudor Arch              74 
Construct a classic Tudor arch for use as an entrance to a big building. 
 
Construction 2.5             74 
Construct a Tudor arch given a height and width approximately that of the classic Tudor arch. 
 
Tudor Bridge              75 
Construct a Tudor bridge by using two saws to cut river boulders into isosceles triangle frustums. 
 
Generic Arch              76 
Construct an arch to an arbitrary height and width; squat arches look Gothic and others Tudorish. 
 
Problem 2.44              76 
Prove that, for any 𝑥 < ℎ, the generic arch’s haunch and crown arcs are tangent. 
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Problem 2.45              76   
A sewer pipe at a 1% downgrade is 1 m above the city line, which is 5 m away.  You will use two 

22.5° elbows and then enter the city line at a 1% downgrade.  If pipe is cut 3 cm from the bend 

in the elbow, how long is the hypotenuse pipe?  Then, how far to the city line? 

 
On the Importance of Not Neglecting the Third Dimension       77 
 
Advanced Yellow Belt Geometry:  Quadrilaterals         78 
 
Two Right Angles Quadrilateral Theorem          79 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = 𝜌, if 𝐻𝐸 < 𝐹𝐺, then ∠𝐺 < ∠𝐻. 
 
Two Right Angles Quadrilateral Theorem Converse         79 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = 𝜌, if ∠𝐺 < ∠𝐻, then 𝐻𝐸 < 𝐹𝐺. 
 
Saccheri and Lambert Theorem           79 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, then 𝑀𝐸𝐹𝑀𝐺𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ cuts it into two congruent 

Lambert quadrilaterals, 𝐸𝑀𝐸𝐹𝑀𝐺𝐻𝐻 ≅ 𝐹𝑀𝐸𝐹𝑀𝐺𝐻𝐺. 
 
Three Right Angles Quadrilateral Theorem          80 

Given 𝐸𝐹𝐺𝐻 such that ∠𝐸 = ∠𝐹 = ∠𝐺 = 𝜌, then 

1. If ∠𝐻 is right, then the opposite sides of 𝐸𝐹𝐺𝐻 are equal; 
2. If ∠𝐻 is acute, then each side of ∠𝐻 is greater than its opposite side. 

 
Lemma 2.6              81 

Given 𝐸𝐹𝐺, if ∠𝑀𝐹𝐺𝐸𝐹 ≤ ∠𝑀𝐹𝐺𝐸𝐺, then ∠𝑀𝐹𝐺𝐸𝐹 ≤
1

2
∠𝐸. 

 
Saccheri–Legendre Theorem            81 
Interior angles of a triangle sum to one straight angle or less; that is, 𝛼 + 𝛽 + 𝛾 ≤ 𝜎. 
 
Defect Addition Theorem            81 
The defect of a quadrilateral is the sum of the defects of its definitional triangles. 
 
Saccheri Theorem II             82 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, then 
1. ∠𝐺 = ∠𝐻 ≤ 𝜌 

2. 𝐸𝐹 ≤ 𝐺𝐻   

3. 𝑀𝐸𝐹𝑀𝐺𝐻 ≤ 𝐻𝐸  and  𝑀𝐸𝐹𝑀𝐺𝐻 ≤ 𝐹𝐺 
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Rectangle Theorem             83 

If 𝐸𝐹𝐺𝐻 is a Saccheri quadrilateral with base 𝐸𝐹, let 𝐺𝐸𝐹 and 𝐻𝐸𝐹 be reflections of 𝐺 and 𝐻 

around 𝐸𝐹⃡⃗⃗⃗  ⃗ so 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺𝐸𝐹𝐻𝐸𝐹.  Then the following holds true: 

1. 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹  is a rectangle. 

2. Both bimedians cut 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 into two congruent Saccheri quadrilaterals.   

3. Opposite sides of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹  are equal.   

4. Bimedians of 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are mediators of each other.   

5. Diagonals 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are equal and bisect each other.   

6. Perpendiculars dropped on diagonals from the vertices 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹 are equal. 

7. Bimedians 𝐻𝐺𝐺𝐸𝐹𝐻𝐸𝐹  are less than or equal to the sides they do not cut. 
 
Mid–Segment Theorem (Neutral Geometry)         84 

1. The mid-segment connecting the legs of a triangle is less than or equal to half the base. 
2. The extension of the mid-segment does not intersect the extension of the base. 

 
Thales’ Diameter Theorem (Neutral Geometry)         85 
A diameter subtends an angle less than or equal to a right angle. 
 
Inscribed Angle Theorem (Neutral Geometry)         85 
Two chords that share an endpoint make an angle less than or equal to half the central angle of 
their arc. 
 
Cyclic Quadrilateral Theorem (Neutral Geometry)         85 
If a quadrilateral is cyclic, then the sums of its opposite angles are equal. 
 
Problem 2.46              85 

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 = 𝜌, let 𝑀′𝐸𝐺  be the foot of a perpendicular dropped on 𝐹𝐺 from 𝑀𝐸𝐺 .  

Prove that 𝑀′𝐸𝐺𝐹 ≤ 𝑀′𝐸𝐺𝐺 and 𝑀𝐸𝐺𝐹 ≤
1

2
𝐸𝐺. 

 
Problem 2.47              85 
Given ∠𝐸𝑃𝐸1 and 𝑃, 𝐸, 𝐹, 𝐺 in that order on one ray and 𝑃, 𝐸1, 𝐹1, 𝐺1 in that order on the other 

ray and 𝐸𝐹 = 𝐸1𝐹1 and 𝐹𝐺 = 𝐹1𝐺1, prove that 𝑀𝐸𝐸1
, 𝑀𝐹𝐹1

, 𝑀𝐺𝐺1
 are collinear. 

 
Geometry Don’t  (Satire)            86 
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Orange Belt Instruction:  Parallelograms 
 
Parallels and Circle Theorem            87 
Parallel lines that intersect a circle cut off equal chords between the two lines. 
 
Circumcenter Theorem        WP MD  87 
The mediators of a triangle’s sides are concurrent at a point equidistant from the vertices. 
 
Circumcenter Theorem Corollary           87 
Any three noncollinear points fully define a circle.  
 
Construction 3.1    (Euclid, Book IV, Prop. 5)          MD  88 
Locate the center of a circle. 
 
Excenter Theorem             88 
The bisectors of a triangle’s interior angle and the angles exterior to the other two angles are 
concurrent at a point we will call the excenter. 
 
Excircle Theorem             88 

Given 𝐸𝐹𝐺, the semiperimeter is the distance from 𝐺 to either 𝑋𝐸 or 𝑋𝐹. 
 
Incircle and Excircle Theorem           89 
The incircle and excircle touch a triangle side equidistant from its opposite endpoints. 
 
Incircle and Excircle Theorem Corollary          89 

𝑀𝐸𝐹 is the midpoint of 𝐼𝐺𝑋𝐺. 
 
External Tangents Theorem            90 
The two external tangents to two circles are equal in length. 
 
Cut Tangents Theorem            90 
Cut tangents equal external tangents. 
 
Excircle Theorem Corollaries            90 

1. 𝑟𝑋 + 𝑟𝑌 + 𝑟𝑍 = 𝑟 + 4𝑅  The three exradii are the inradius and four circumradii. 

2. 𝐺𝐼𝐸 = 𝐺𝐼𝐹 = 𝑠 − 𝐸𝐹   The distance from 𝐺 to the touching points of 𝜔𝐼. 

3. 𝐼𝐺𝑋𝐺 = |𝐹𝐺 − 𝐸𝐺|  The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐹. 

4. 𝐼𝐹𝑋𝐸 = 𝐼𝐸𝑋𝐹 = 𝐸𝐹   The distance between where 𝜔𝐼 and 𝜔𝑋 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 

5. 𝑌𝐸𝑍𝐹 = 𝐸𝐺 + 𝐹𝐺   The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐹⃡⃗⃗⃗  ⃗. 

6. 𝑌𝐹𝑍𝐺 = 𝑍𝐸𝑌𝐺 = 𝐸𝐹   The distance between where 𝜔𝑌 and 𝜔𝑍 touch 𝐸𝐺⃡⃗⃗⃗  ⃗ or 𝐹𝐺⃡⃗⃗⃗  ⃗. 
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Construction 3.2             92   
Three highways intersect to make a triangle with sides of given lengths.  The highways are 
connected by arcs of their excircles.  Locate the exit ramps to these arcs. 
 
Problem 3.1              92 
Two country roads intersect at an arbitrary angle.  We wish to pave an arc connecting them and 
going around the corner of a farmer’s field, which is on the angle bisector of the two roads. 
 
Transversal Lemma    (Euclid, Book I, Prop. 27)  WP MD  92 
If alternate interior angles are equal, the two lines crossed by the transversal are parallel. 
 
Transversal Theorem    (Euclid, Book I, Prop. 29)  WP MD  93 
If the two lines crossed by a transversal are parallel, then alternate interior angles are equal. 
 
Transversal Theorem Corollary       WP MD  93 
Two lines are parallel if and only if a perpendicular to one is perpendicular to the other. 
 
Rectangle Bimedian Theorem           93 
A rectangle’s bimedians are equal to the sides they do not cut, and their extensions are parallel. 

 
Pairwise Parallels/Perpendiculars Theorem      WP    93 
If the rays of two angles are pairwise parallel or pairwise perpendicular, then the angles are equal; 

the only exception is for pairwise perpendicular angles with their vertices inside the other angle, 

so the angles are supplementary.  (This is called quadrilateral angle sum theorem corollary #1.) 

 
Equal Perpendiculars Theorem           93 

Perpendiculars through a point inside a square are equally cut by opposite sides of the square. 

 
Construction 3.3    (Euclid, Book I, Prop. 31)          MD  93 
Construct a line parallel to a given line through a point not on the line. 
 
Construction 3.4             94 
Construct a line through a point that meets a given line at a given angle. 
 
Problem 3.2                  MD  94   

Prove that, if two lines are parallel and a line cuts one of them, it also cuts the other. 

 
Problem 3.3              94   

Given 𝐸𝐹𝐺, draw a line through the incenter parallel to 𝐸𝐹⃡⃗⃗⃗  ⃗ that intersects 𝐸𝐺 and 𝐹𝐺 at 𝐽 and 

𝐾, respectively.  Prove that 𝐽𝐾 = 𝐸𝐽 + 𝐹𝐾. 
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Problem 3.4              94   

Given two parallel lines, draw a transversal that cuts one line at an angle such that it is twice (or 

three times or five times) one of the angles that the other line is cut at. 

 
Problem 3.5              94 
You are given two points, a circle, and a line.  Draw a circle that passes through the two points 
and whose common chord with the given circle is parallel to the given line. 
 
Angle Sum Theorem    (Euclid, Book I, Prop. 32)  WP MD  94 
Interior angles of a triangle sum to one straight angle; that is, 𝛼 + 𝛽 + 𝛾 = 𝜎. 
 
Exterior Angle Theorem   (Euclid, Book I, Prop. 32)  WP MD  95 
An exterior angle equals the sum of the remote interior angles. 
 
Isosceles Angle Theorem            95 

If 𝛼 is the apex angle of an isosceles triangle, a base angle is 𝜌 −
1

2
𝛼, which is also 

1

2
(𝜎 − 𝛼).   

The supplement of the base angle is 𝜌 +
1

2
𝛼, and double the base angle is 𝜎 − 𝛼. 

 
Quadrilateral Angle Sum Theorem           95 
Interior angles of a quadrilateral sum to two straight angles. 
 
Quadrilateral Angle Sum Theorem Corollaries         95 

1. If opposite quadrilateral angles are right, then the other two angles are supplementary. 

2. Let 𝐸𝐹𝐺𝐻 be tangential with incenter 𝐼.  Then, ∠𝐸𝐼𝐹 + ∠𝐺𝐼𝐻 = 𝜎 = ∠𝐹𝐼𝐺 + ∠𝐻𝐼𝐸. 

3. Let 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ be tangent to an 𝐼-circle and 𝐹𝐺⃡⃗⃗⃗  ⃗ also tangent.  Then, ∠𝐹𝐼𝐺 = 𝜌. 

 
Triangle Centers’ Angles Theorem                       95 

Let 𝐸𝐹𝐺 have orthocenter 𝐻, incenter 𝐼 and circumcenter 𝑂.   

1. If ∠𝐸 < 𝜌 and ∠𝐹 < 𝜌, then ∠𝐸𝐻𝐹 is supplementary to ∠𝐺. ∠𝐸𝐻𝐹 + ∠𝐺 = 𝜎 

2. ∠𝐸𝐼𝐹 is a right angle plus half of ∠𝐺.     ∠𝐸𝐼𝐹 = 𝜌 +
∠𝐺

2
 

3. If ∠G ≤ 𝜌, then ∠𝐸𝑂𝐹 is double it.     ∠𝐸𝑂𝐹 = 2∠𝐺 

 
Polygon Angle Sum Theorem        WP     95 

1. Interior angles of 𝑛 adjacent triangles sum to 𝑛 straight angles. 

2. Exterior angles of 𝑛 adjacent triangles with a convex union sum to two straight angles. 

 
Angle–Angle (AA) Similarity Theorem      WP     96 
Two corresponding angles equal is sufficient to prove the similarity of two triangles. 
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Problem 3.6              96   

From a house in the country, construct a dirt road to a straight paved road, the latter twice as 

fast as the former, to minimize travel time to a nearby town on the paved road. 

 
Pairwise Parallel/Perpendicular Similarity Theorem    WP    96 
If the side extensions of triangles are pairwise parallel or pairwise perpendicular, they are similar. 

 
Problem 3.7              96 

Given 𝐸𝐹𝐺 with incenter 𝐼 and excenter 𝑋, prove that 𝐼𝐺𝐸~𝐹𝐺𝑋. 
 
Problem 3.8              96   

Prove that, if the bisector of an exterior angle is parallel to the opposite side, then the triangle is 

isosceles.  Is the given angle the base or the apex angle of the isosceles triangle? 

 

Problem 3.9              96   

Two lines meet several centimeters off the paper.  Perform these constructions: 

1. Replicate the angle that they make; and  2.  Bisect the angle that they make. 

 

Problem 3.10              96   

Design a trucker’s triangular hazard reflector.  Draw an equilateral triangle and then another one 

with the same center and orientation, but with sides half of the outer lengths. 

 
Problem 3.11              97 
Through a point on a circle, draw a chord twice as long as it is from the center. 
 
Lambert Theorem             97 
Lambert quadrilaterals (three right angles) are right rectangles. 
 
Lambert Theorem Corollary                MD  97 
A parallelogram with at least one right angle is a right rectangle. 
 
Kite Theorem              98 
The diagonals of a kite are perpendicular, and the non-definitional diagonal is bisected. 
 
Kite Altitudes Theorem            98 

If 𝐸𝐹𝐺𝐻 is a kite, 𝐸𝐹𝐻 ≅ 𝐺𝐹𝐻 and 𝐻𝐺 , 𝐻𝐸 pedal triangle vertices in 𝐸𝐹𝐺, then 𝐻𝐺𝐹𝐻𝐸𝐻 is a kite. 
 
Viviani Sum Theorem             98 
The altitude to a leg of an isosceles triangle is equal to the sum of the distances to the legs from 
any point on the base. 
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Viviani Similarity Theorem            98 
Viviani triangles are similar. 
 

Viviani Difference Theorem            98 
The altitude to a leg of an isosceles triangle is equal to the difference of the distances to the legs 
from any point on the extension of the base. 
 

Viviani Equilateral Theorem            99 
The altitude of an equilateral triangle is equal to the sum of the distances to the sides from any 
point on or inside the triangle. 
 

Problem 3.12              99 
Find the locus of points such that the sum of distances to two non-parallel lines is a given length. 
 

Construction 3.5           100 
Given two circles with centers 𝑂1 and 𝑂2 that intersect at 𝐽, draw a line through 𝐽 so the distance 

between its other intersections with the two circles, 𝐽1𝐽2, is of a given length, 𝑥. 
 

Problem 3.13            101 
Draw a line parallel to a given line that cuts off equal chords in two given circles. 
 

Problem 3.14            101 
Draw a line parallel to a given line that cuts off chords in two given circles such that they have a 
given sum. 
 

Problem 3.15            101 
Draw a line parallel to a given line that cuts off chords in two circles with a given difference. 
 

Equal Segments on Parallels Theorem (Euclid, Book I, Prop. 33)  WP MD 102 
Connecting the ends of equal segments on two parallel lines forms a parallelogram. 
 

Problem 3.16            102 
A river with parallel banks passes between two towns.  Connect the towns with a minimal length 
road; the bridge must be perpendicular to the river. 
 

Parallelogram Theorem                 102 
A quadrilateral is a parallelogram if and only if both pairs of opposite side extensions are parallel. 
 

Subtend–at–Center Theorem  (Euclid, Book III, Prop. 29)    103 
Circles are the same or equal iff equal chords subtend at the center equal angles. 
 

Parallelogram Angles Theorem  (Euclid, Book I, Prop. 34)         MD 103 
1. A quadrilateral is a parallelogram iff both pairs of opposite interior angles are equal. 
2. A quadrilateral is a parallelogram iff both pairs of opposite exterior angles are equal. 
3. A quadrilateral is a parallelogram iff any two consecutive angles are supplementary. 
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Parallelogram Diagonals Theorem              MD 104 
A quadrilateral is a parallelogram if and only if the diagonals bisect each other. 
 
Right Triangle Median Theorem              MD 104 

The median to the hypotenuse of a right triangle is half of the hypotenuse. 

 
Mid–Segment Theorem               MD 104 

1. A mid-segment of a triangle is half the other side, and their extensions are parallel. 
2. A line parallel to the base of a triangle that bisects one side also bisects the other side. 

3. Given 𝐸𝐹𝐺, 𝐽 on the same side of 𝐺𝐸⃡⃗⃗⃗  ⃗ as 𝐹, 𝑀𝐺𝐸𝐽⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝑀𝐺𝐸𝐽 =
1

2
𝐸𝐹, then 𝐽 ≡ 𝑀𝐹𝐺 . 

 
Medial Triangle Theorem I          105 
The medial triangle is congruent to the three triangles around it and all five triangles are similar. 
 
Medial Triangle Theorem II          105 

The feet of perpendiculars dropped from a triangle’s apex onto its base angle bisectors define a 

line that is parallel to the base. 

 
Medial Triangle Theorem III          105 
Perpendiculars dropped on interior and exterior angle bisectors from the other vertices of a 
triangle have their feet on the extensions of the sides of its medial triangle. 
 
Problem 3.17            105   

Prove that the incenter of a triangle lies inside its medial triangle.   

 
Construction 3.6           105 
Construct a triangle given the legs and the median to the base. 
 
Construction 3.7           105 
Construct a triangle given the base, a base angle, and the median to the opposite leg. 
 
Construction 3.8           106 

Given 𝐺1𝐺2 = 𝐺2𝐺3 on line 𝑙1 and an arbitrary point 𝐸1 on line 𝑙2, find 𝐸2 and 𝐸3 so 𝐸1𝐸2 = 𝐸2𝐸3. 
 
Construction 3.9 (Euclid’s solution)  (Euclid, Book VI, Prop. 10)        MD  106 
Trisect a segment. 
 
Construction 3.10           106 
Construct a quadrilateral given the four sides and one bimedian. 
 
Triangle Frustum Mid–Segment Theorem             MD 107 
A triangle frustum’s mid-segment is the semisum of the base and the top, and parallel to them. 
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Triangle Frustum Mid–Segment Theorem Corollary      107 
Triangle frustum diagonals cut the mid-segment to the semidifference of the top and bottom. 
 
Two Transversals Theorem        WP MD 107 
Parallel lines that equally cut one transversal equally cut any transversal. 
 
Triangle Frustum Mid–Segment Theorem Converse      107 
A line parallel to the base of a triangle frustum that bisects one leg also bisects the other leg. 
 
Midpoints and One Altitude Foot Theorem        108 
Triangle side midpoints and the foot of one altitude form an isosceles triangle frustum. 
 
Side–Angle–Side (SAS) Half–Scale Triangle Theorem      108  
If a triangle has two sides that are half the corresponding sides in another triangle and the 
included angles are equal, then the other angles are equal and the other side also half. 
 
Angle–Side–Angle (ASA) Half–Scale Triangle Theorem      108  
If two pairs of angles are equal in two triangles and the included side of one triangle is half the 
included side in the other triangle, then the other sides are also half their corresponding sides. 
 
Angle–Angle–Side (AAS) Half–Scale Triangle Theorem      108  
If two pairs of angles are equal in two triangles and a side opposite one of them is half that side 
in the other triangle, then the other sides are also half their corresponding sides. 
 
Median and Mid–Segment Theorem         108 
The median bisects the mid-segment. 
 
Medial and Parent Triangle Theorem        108 
The medial triangle and its parent triangle have the same medial point. 
 
Two–to–One Medial Point Theorem              MD 108 
The medial point is unique; it divides each median so the distance from the medial point to the 
midpoint is half then distance from the medial point to the vertex. 
 
Problem 3.18            108   

Prove that the medians’ sum is greater than three quarters of the perimeter. 

 
Problem 3.19            108   

Given 𝐸𝐹𝐺 and 𝑄 the quartile point of 𝐸𝐺 near 𝐺, 𝑄𝑀𝐹𝐺  cuts 𝐺𝑀𝐸𝐹  in what ratio? 

 
Every Triangle a Medial Theorem         109 
Every triangle is medial to some other triangle. 
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Orthocenter Theorem               MD 109 
The altitudes are concurrent at a point that we will call the orthocenter. 
 

Medial Triangle Orthocenter Theorem        109 
The circumcenter of a triangle is the orthocenter of its medial triangle. 
 

Half–Scale Orthocenter to Vertex Theorem        109 
The distance from the orthocenter to a vertex of the medial triangle is half the corresponding 
length in its parent triangle. 
 

Problem 3.20            110   

Given 𝐸𝐹𝐺 with ∠𝐸 = 𝜌, let 𝐸′ be the foot of the perpendicular dropped on 𝐹𝐺 and 𝐹𝐸𝐺  be the 

reflection of 𝐹.  Prove that 𝐹𝐸𝐺𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊥ 𝐺𝑀𝐸𝐸′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 
 

Problem 3.21            110  

Given 𝐸𝐹𝐺𝐻 a rectangle and 𝐹′ the foot of the perpendicular dropped on 𝐸𝐺, prove that 

∠𝑀𝐺𝐻𝑀𝐸𝐹′𝐹 = 𝜌. 
 

Problem 3.22            110   

Given 𝐸𝐹𝐺, build squares on the exteriors of 𝐸𝐺 and 𝐹𝐺 with sides 𝐸𝐸′′ and 𝐹𝐹′′, respectively.  

Prove that 𝑃:= 𝐸𝐹′′ ∩ 𝐹𝐸′′ is on the altitude 𝐺𝐺′. 
 

Construction 3.11  (Three Modern Solutions)         111 
Trisect a segment. 
 

Isosceles Triangle Frustum Theorem              MD 112 
In an isosceles triangle frustum: (1) base angles are equal; (2) opposite angles are supplementary; 
(3) legs are equal; (4) diagonals are equal; and (5) the frustum is cyclic.  And the converses. 
 

Triangle Frustum Theorem I          112 

Given 𝐸𝐹 with midpoint 𝑀𝐸𝐹 and 𝐸′, 𝑀𝐸𝐹
′ , 𝐹′ the feet of perpendiculars dropped on a line that 

does not intersect 𝐸𝐹, then 2𝑀𝐸𝐹𝑀𝐸𝐹
′ = 𝐸𝐸′ + 𝐹𝐹′. 

 

Triangle Frustum Theorem II          112 

Let 𝐸, 𝐹, 𝐺 be collinear, 𝑀𝐹𝐺  the midpoint of 𝐹𝐺, 2𝐸𝐹 = 𝐹𝐺 and 𝐸′, 𝐹′, 𝑀𝐹𝐺
′ , 𝐺′ be the feet of 

perpendiculars dropped on a line that does not intersect 𝐸𝐺.  Then, 3𝐹𝐹′ = 2𝐸𝐸′ + 𝐺𝐺′. 
 

Problem 3.23            113   

Let 𝐸𝐹𝐺 be a right triangle with ∠𝐸𝐹𝐺 right and 𝐹′ the foot of the altitude to the hypotenuse.  

From 𝐹′ drop perpendiculars onto 𝐸𝐹 and 𝐹𝐺 with feet 𝐹𝐺
′  and 𝐹𝐸

′ , respectively.  From 𝐹𝐺
′  and 𝐹𝐸

′  

drop perpendiculars onto 𝐸𝐺 with feet 𝐹𝐺
′′ and 𝐹𝐸

′′, respectively.  Prove that (1)  𝐹′𝐹𝐺
′′ = 𝐹′𝐹𝐸

′′; 

and (2)  𝐹𝐹′ = 𝐹𝐺
′𝐹𝐺

′′ + 𝐹𝐸
′𝐹𝐸

′′. 
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Problem 3.24            113   

Given 𝐸𝐹𝐺 with midpoints 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  and medial point 𝐶, let 𝐸′, 𝐹′, 𝐺′, 𝑀𝐸𝐹
′ , 𝑀𝐹𝐺

′ , 𝑀𝐺𝐸
′ , 𝐶′ be 

the feet of perpendiculars dropped on a line external to 𝐸𝐹𝐺, respectively;  prove that              

𝐸𝐸′ + 𝐹𝐹′ + 𝐺𝐺′  =  𝑀𝐸𝐹𝑀𝐸𝐹
′ + 𝑀𝐹𝐺𝑀𝐹𝐺

′ + 𝑀𝐺𝐸𝑀𝐺𝐸
′  =  3𝐶𝐶′  

 
Problem 3.25            113   

Given 𝐸𝐹𝐺𝐻 a parallelogram and 𝐸′, 𝐹′, 𝐺′, 𝐻′ the feet of perpendiculars dropped onto a line 

exterior to the parallelogram, prove that 𝐸𝐸′ + 𝐺𝐺′ = 𝐹𝐹′ + 𝐻𝐻′. 
 
Problem 3.26            113   

Given 𝐸𝐹𝐺 and 𝐸′, 𝐹′, 𝐺′,𝑀𝐸𝐹
′  the feet of perpendiculars dropped from 𝐸, 𝐹, 𝐺,𝑀𝐸𝐹  onto a line 

through the medial point 𝐶 that does not cut 𝐸𝐹; prove 𝐺𝐺′ = 𝐸𝐸′ + 𝐹𝐹′. 
 
Parallel Lines Theorem               MD 114 
Two lines never intersect if and only if they are everywhere equidistant. 
 
Construction 3.12           114 
Construct the two external tangents to two circles of different radii. 
 
Construction 3.13           114 
Construct the two internal tangents to two disjoint circles of different radii. 
 
Medial Parallelogram Theorem I              MD 115 
Connecting the midpoints of consecutive sides in a quadrilateral form a parallelogram. 

 
Medial Parallelogram Diagonals Theorem        115 

1. Medial parallelogram side extensions are parallel to a diagonal of the parent quadrilateral. 
2. The perimeter of the medial parallelogram equals the sum of the parent diagonals. 

 
Medial Parallelogram Theorem II         115 

Given 𝐸𝐹𝐺𝐻 not a parallelogram or a triangle frustum, then 𝑀𝐹𝐺 , 𝑀𝐹𝐻 , 𝑀𝐻𝐸 , 𝑀𝐸𝐺  are the vertices 

of a parallelogram, as are 𝑀𝐸𝐹 , 𝑀𝐸𝐺 , 𝑀𝐺𝐻 , 𝑀𝐹𝐻.  (The order depends on the shape of 𝐸𝐹𝐺𝐻.) 

 
Varignon Theorem           115 
The bimedians of a quadrilateral bisect each other. 
 
Right Triangle Theorem   (Euclid, Book VI, Prop. 8)  WP   116 
The altitude to the hypotenuse of a right triangle forms two triangles similar to it and each other. 
 
Nested Triangle Theorem        WP   116 
Nested triangles (two transversals that intersect outside two parallel lines) are similar. 
 



Victor Aguilar  Geometry without Multiplication 

329 
 

Nested Triangle Theorem Corollary       WP  116 
Perpendiculars dropped from points on a ray onto the other ray of an angle form similar triangles. 
 
Crossed Triangle Theorem                 116 
Crossed triangles (two transversals that intersect between two parallel lines) are similar. 
 
Lemma 3.1            117 
A quadrilateral is a rhombus if and only if its diagonals are mediators of each other. 
 
Problem 3.27            117 

Given rhombus 𝐸𝐹𝐺𝐻 with center 𝐶, drop perpendiculars from 𝐻, 𝐶, 𝐺 to 𝐸𝐹⃡⃗⃗⃗  ⃗ at 𝐻′, 𝐶′, 𝐺′, 

respectively.  Prove that 𝐻𝐶′ is perpendicular to the median from 𝐸 in 𝐸𝐺′𝐺. 
 
Right Triangle Incircle Theorem       WP  118 
A right triangle’s indiameter is the sum of the legs minus the hypotenuse. 
 
Problem 3.28            118  

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right and altitude 𝐹𝐹′, prove that the sum of the inradii of the three 

triangles is 𝐹𝐹′. 
 
Right Kites in a Right Triangle Theorem        118 

Given 𝐸𝐹𝐺 with ∠𝐸𝐹𝐺 right and 𝐹′ the foot of the altitude to 𝐸𝐺, let 𝐽 and 𝐾 be the intersections 

of the bisectors of ∠𝐸𝐹𝐹′ and ∠𝐺𝐹𝐹′ with 𝐸𝐺, respectively, and let 𝐽′ and 𝐾′ be the feet of 

perpendiculars from 𝐽 and 𝐾 dropped onto 𝐸𝐹 and 𝐺𝐹.  𝐽𝐽′ + 𝐾𝐾′ is the indiameter of 𝐸𝐹𝐺. 
 
Parallelogram Centroid Theorem         119 
The bi-medial point of a parallelogram is its centroid. 
 
Construction 3.14           120 
Construct a triangle given its semiperimeter, its apex angle and its apex angle bisector. 
 
Construction 3.15           120 
Construct a triangle given its base, its apex angle and its inradius. 
 
Construction 3.16           121 
Construct a triangle given its inradius, its apex angle and the sum of its legs. 
 
Construction 3.17           121 
Construct a triangle given its inradius, a base angle, the difference of its legs, and which is longer. 
 
Construction 3.18           121 
Construct a triangle given its inradius, the altitude to one leg and the difference of its legs. 
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Four Feet on Angle Bisectors Theorem        122 
The feet of the perpendiculars dropped from the apex of a triangle onto the bisectors of the 
interior and exterior base angles are collinear. 
 
Inscribed Octagon Theorem          122 
Given a square with circles around each vertex of radii equal to half the diagonal, the circles cut 
the square at the vertices of a regular octagon. 
 
Parallelogram Angle Bisectors Theorem        122 

Given a parallelogram that is not a square, its angle bisectors form a rectangle. 

 
Orange Belt Geometry for Construction Workers, Revisited     125 
 
The Cocktail Party Explanation of Non-Euclidean Geometry     126 
 
What is Known of Triangles with an Inaccurate Apex?      128 
 
“Translate” and “Rotate” Are Not Magic Spells       129 
 
Squares on Rectangles Theorem         129 

On the sides of a rectangle, 𝐸𝐹𝐺𝐻, squares are constructed, lying exterior to it.  Their centers, 
𝐶𝐸𝐹 , 𝐶𝐹𝐺 , 𝐶𝐺𝐻, 𝐶𝐻𝐸, are themselves the vertices of a square. 
 
Lemma 3.2            129 

1. The bi-medial point of a square is the vertex of right angles to the corners. 
2. A rhombus with one right angle is a right square. 

 
Thébault Theorem           129 

On the sides of a parallelogram that is not a rectangle, 𝐸𝐹𝐺𝐻, squares are constructed, lying 
exterior to it.  Their centers, 𝐶𝐸𝐹 , 𝐶𝐹𝐺 , 𝐶𝐺𝐻, 𝐶𝐻𝐸, are themselves the vertices of a square. 
 
Advanced Orange–Belt Geometry         130 
 
Problem 3.53            130 

Given square 𝐸𝐹𝐺𝐻, build equilateral triangles on 𝐹𝐺 and 𝐺𝐻, either both inside or both outside 

𝐸𝐹𝐺𝐻, and with apexes 𝐽 and 𝐾, respectively.  Prove that 𝐸𝐽𝐾 is equilateral. 
 
Problem 3.54            130 

Let 𝐸𝐹 be the diameter of a circle with center 𝑂 and 𝐺 be a point on the circle such that     
∠𝐸𝑂𝐺 < 2𝜑.  Let 𝑀 be the intersection of the bisector of ∠𝐸𝑂𝐺 with the circle.  Let 𝐽 and 𝐾 be 

the intersections of the mediator of 𝑂𝐺 with the circle, with 𝐽 on the 𝑀 side.  From 𝑂 draw a line 

parallel to 𝑀𝐺⃡⃗⃗⃗⃗⃗  and let it intersect 𝐹𝐺 at 𝐼.  Prove that 𝐼 is the incenter of 𝐹𝐽𝐾. 
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Problem 3.55            130 

Given parallelogram 𝐸𝐹𝐺𝐻 and a circle centered at 𝐸 tangent to 𝐹𝐻⃡⃗⃗⃗  ⃗, let 𝐽 be the intersection of 

it and 𝐺𝐸⃗⃗⃗⃗  ⃗ extended past 𝐸.  Construct a circle centered at 𝐺 that is tangent to 𝐹𝐻⃡⃗⃗⃗  ⃗ and let 𝐾 be 

the intersection of it and 𝐸𝐺⃗⃗⃗⃗  ⃗ extended past 𝐺.  Prove that 𝐽𝐹𝐾𝐻 is a parallelogram. 
 
Elementary Quadrature Theory         131 
 
Parallelograms and Triangles Area Theorem       131 
All parallelograms with the same or congruent definitional triangles are of equal area. 
 
Lemma 3.3     (Euclid, Book I, Prop. 35)         MD 131 
Parallelograms with the same base and their opposite sides collinear are of equal area. 
 
Parallelogram Area Theorem   (Euclid, Book I, Prop. 36)         MD 132 
Parallelograms with equal collinear bases and their opposite sides collinear are of equal area. 
 
Triangle Area Theorem   (Euclid, Book I, Prop. 38)         MD 132 
Triangles with equal collinear bases and apexes on a line parallel to their bases are of equal area. 
 

Triangle Area Theorem Corollaries  (Euclid, Book I, Prop. 39, 40, 41)        MD 133 

1. Triangles with equal collinear bases and apexes on lines parallel to and equidistant from 

the base line are of equal area. 

2. Of triangles with equal and collinear bases on the same side of the base line, the locus of 

apexes such that the triangles are of a given area is a line parallel to the base line. 

3. If a triangle has the same base as a parallelogram and its apex is on the parallelogram side 

opposite the base, or its extension, then the triangle’s area is half the parallelogram’s. 

4. An orthodiagonal quadrilateral has half the area of the rectangle whose sides equal its 

diagonals. 

 

Triangle Area Theorem Converse         133 
Triangles of equal area with collinear bases and apexes parallel to them have equal bases. 
 
Two Triangles Area Theorem          133 
A median divides a triangle into two triangles of equal area. 
 
Three Triangles Area Theorem         133 
The three sides of a triangle as bases and the medial point as their apexes are of equal area. 
 
Six Triangles Area Theorem          133 
The three medians divide a triangle into six triangles of equal area. 
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Medial Triangle Area Theorem         133 

The medial triangle and the three triangles around it quarter the area of the parent triangle. 

 

Medial Parallelogram Area Theorem I        133 

The area of a medial parallelogram is half that of its parent quadrilateral. 

 

Carpet Theorem I           134 

Given square 𝐸𝐹𝐺𝐻, 𝐽 an arbitrary point on 𝐸𝐹 and 𝐾:= 𝐸𝐺 ∩ 𝐽𝐻, then |𝐸𝐾𝐻| = |𝐽𝐾𝐺|. 

 
Problem 3.56     (Euclid, Book I, Prop. 43)    134   

Given parallelogram 𝐸𝐹𝐺𝐻 and 𝑃 on 𝐹𝐻, (1) Prove that |𝐸𝑃𝐻| = |𝐺𝑃𝐻|; (2) Draw lines through 

𝑃 parallel to the sides of 𝐸𝐹𝐺𝐻 and prove that the parallelograms with opposite vertices 𝐸, 𝑃 

and opposite vertices 𝑃, 𝐺 are equal in area. 

 

Problem 3.57            134   

Given 𝐸𝐹𝐺𝐻, draw a line through 𝑀𝐹𝐻 parallel to 𝐸𝐺⃡⃗⃗⃗  ⃗ and let 𝐽 be where it cuts 𝐸𝐹 (If it cuts 𝐺𝐻, 

then change the labels.)  Prove that 𝐺𝐽 bisects 𝐸𝐹𝐺𝐻; that is, |𝐽𝐹𝐺| = |𝐸𝐽𝐺𝐻|. 

 
Lemma 3.4            134 
The square on the leg of a right triangle is equal in area to the rectangle whose sides are the 
hypotenuse and the projection of the leg on the hypotenuse. 
 
Pythagorean Theorem   (Euclid, Book I, Prop. 47)  WP MD 134  
The square on the hypotenuse is equal in area to the sum of the squares on the legs. 
 
Problem 3.58            134 

Prove that the squares on the diagonals of a parallelogram sum to the squares on the sides. 

 
Lemma 3.5            134 
Squares are congruent if and only if their sides are equal if and only if their areas are equal. 
 
Pythagorean Theorem Converse  (Euclid, Book I, Prop. 48)         MD 135 
A triangle is right if the square on one side is equal in area to the sum of the other two squares. 
 
Diagonal Bisection Theorem          135 
A diagonal divides a quadrilateral into two triangles of equal area iff it bisects the other diagonal. 
 
Projection Theorem (without proof)       WP  135 
The projection of a side of a triangle upon the base is equal to the square of this side plus the 
square of the base minus the square of the third side, divided by two times the base. 
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Intersecting Chords Theorem (without proof) (Euclid, Book III, Prop. 35) WP   135 
If two chords of a circle intersect inside the circle, the product of the two segments of one is 
equal to the product of the two segments of the other. 
 
Intersecting Secants Theorem (without proof) (Euclid, Book III, Prop. 36, 37)      MD 135 
If two secants of a circle intersect outside the circle, the product of the two segments of one, 
from the intersection to where the circle cuts it, is equal to the product of the two segments of 
the other, from the intersection to where the circle cuts it. 
 
Altitude and Diameter Theorem (without proof)     WP  135 
The product of two sides of a triangle is equal to the product of the altitude to the third side and 
the diameter of the circumcircle. 
 
Triangle Similarity Theorem (without proof) (Euclid, Book VI, Prop. 4, 5) WP MD 135 
If two triangles are similar, their corresponding sides are proportional. 
 
Side–Splitter Theorem (without proof)  (Euclid, Book VI, Prop. 2) WP MD 135 
A line through two sides of a triangle parallel to the third side divides those sides proportionally. 
 

Problem 3.59            135   

Any line through two circles’ touching point is cut in proportion to their diameters. 

 

First Law of Sines         WP   136 
𝑒

sin𝛼
=

𝑓

sin𝛽
=

𝑔

sin𝛾
= 2𝑅  

 

Second Law of Sines           136 
𝑒−𝑓

𝑒+𝑓
=

sin𝛼−sin𝛽

sin𝛼+sin𝛽
  

 

First Law of Cosines         WP   136 

𝑔2 = 𝑒2 + 𝑓2 − 2𝑒𝑓 cos 𝛾  

 

Second Law of Cosines          137 

𝑔 = 𝑒 cos𝛽 + 𝑓 cos 𝛼  

 
Surveying Techniques to Measure or Lay Off Lengths      138 
 
Basic Terminology Used in Surveying        143 
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Problem 3.60            144 
From your mortar, 𝑀, you extend a line 170 meters with an azimuth angle of 107° to 𝐹.  
Backsight and extend 170 meters to 𝐸.  If 𝐺 is an enemy gun to the north, ∠𝐸𝐹𝐺 = 67° and 
∠𝐹𝐸𝐺 = 76°, at what azimuth angle and range should the mortar gunner be instructed to fire 
his weapon?  (It is best if maps are scaled so 1 cm is 10 m.  Here, 5 mm equals 10 m fits on U.S. 
letter-size paper.) 
 
How Military Surveying Differs from Civilian Surveying      145 
 
How to Apply for a Job that Uses Geometry        147 
 
Squares and Rectangles and Rhombi!  Oh My!              148 
 
Squares, Rectangles and Rhombi Theorem      WP MD 149 

1. The diagonals of a rhombus bisect each other and the vertex angles. 
2. The diagonals of a rhombus are perpendicular.  (The converse is not necessarily true.) 
3. The diagonals of a rectangle are equal.  (The converse is not necessarily true.) 
4. A parallelogram is a rectangle if and only if its diagonals are equal. 
5. A parallelogram is a rhombus if and only if its diagonals bisect the vertex angles. 
6. In an isosceles triangle frustum: (1) base angles are equal; (2) opposite angles are 

supplementary; (3) legs are equal; and (4) diagonals are equal.  And the converses. 
7. The area of a square is half the area of the square built on the diagonal. 

 
Construction 3.19    (Euclid, Book IV, Prop. 11)    149   
Inscribe a regular (equilateral and equiangular) pentagon in a circle. 
 
Inscribed Octagon Theorem          150 
Given a square with circles around each vertex of radii equal to half the diagonal, the circles cut 
the square at the vertices of a regular octagon. 
 
Lemma 3.6            151 
Let 𝜌 be a right angle, 𝜎 be a straight angle and 𝜑 be the interior angle of an equilateral triangle.   

𝜑 trisects 𝜎 and 
1

2
𝜑 trisects 𝜌.  The exterior angle of an equilateral triangle is 𝜌 +

1

2
𝜑. 

 
Dakota Defense Problem          151 

Given a rectangle, 𝐸𝐹𝐺𝐻, find 𝐽 on 𝐹𝐺⃡⃗⃗⃗  ⃗ and 𝐾 on 𝐺𝐻⃡⃗⃗⃗  ⃗ such that 𝐸𝐽𝐾 is an equilateral triangle. 
 
A Brief Introduction to Linear Algebra        153 
 
How to Take Standardized Exams that Define Geometry in Terms of Motion   159 
 
Green Belt Entrance Exam          163 
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Green Belt Instruction:  Triangle Construction 
 
Problem 4.1             170 
Through a point, draw a line that is cut by two parallel lines equal to a segment. 
 
Problem 4.2             170 
Given three non-collinear points, draw a parallelogram with them as midpoints of three sides. 
 
Construction 4.1            173 
Construct a triangle given its perimeter and two of its angles. 
 
Construction 4.2            173 
Construct a triangle given its base, its apex angle and the sum of its legs. 
 
Thales’ Diameter Theorem   (Euclid, Book III, Prop. 31)  WP MD 173 
A chord subtends a right angle if and only if it is a diameter. 
 
Thales’ Diameter Theorem Corollaries         174 

1. The circumcenter is inside/outside a triangle if and only if the triangle is acute/obtuse. 
2. A kite is right if and only if it is cyclic. 

 
Problem 4.3             174   

Given a cyclic quadrilateral with sides 25, 39, 52, 60 long, find the circumdiameter. 

 
Eight–Point Circle Theorem           174 

A quadrilateral 𝐸𝐹𝐺𝐻 with bi-medial 𝑇 is orthodiagonal iff (1) the midpoints of its sides and the 

feet of its maltitudes are concyclic; or (2) the feet of perpendiculars dropped from 𝑇, 

𝑇𝐸𝐹 , 𝑇𝐹𝐺 , 𝑇𝐺𝐻, 𝑇𝐻𝐸, and the points 𝑇′′𝐸𝐹: = 𝑇𝐸𝐹𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺𝐻, 𝑇′′
𝐹𝐺: = 𝑇𝐹𝐺𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐻𝐸, 𝑇′′

𝐺𝐻: = 𝑇𝐺𝐻𝑇⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∩ 𝐸𝐹 

and 𝑇′′𝐻𝐸: = 𝑇𝐻𝐸𝑇⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∩ 𝐹𝐺 are concyclic.  The (1) and (2) circles coincide iff 𝐸𝐹𝐺𝐻 is cyclic. 

 

Inscribed Angle Theorem  (Euclid, Book III, Prop. 20, 21, 26, 27) WP MD 174 

1. Two chords that share an endpoint make an angle half the central angle of their arc. 

2. Angles with vertices on a circle on the same side of a chord and subtended by it are equal. 

3. Chords that subtend equal angles inscribed in the same or equal circles are equal. 

 
Dog ear this page.  The inscribed angle theorem is the most cited geometry theorem ever! 
 
Problem 4.4             174 

Given 𝐸𝐹𝐺, let 𝐸′, 𝐹′ be the feet of altitudes from 𝐸, 𝐹; and 𝐸′′, 𝐹′′ be the intersection of 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗  , 𝐹𝐹′⃗⃗ ⃗⃗ ⃗⃗   

with the circumcircle, respectively.  Prove that 𝐸′′𝐺 = 𝐹′′𝐺. 
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Triangle and Parallelogram Theorem         175 

Given 𝐸𝐹𝐺 and parallelogram 𝐸𝐽𝐿𝐾 with 𝐽 inside 𝐸𝐹, 𝐾 inside 𝐸𝐺 and 𝐿 long of ∠𝐸 but not on 

𝐹𝐺, let 𝑀:= 𝐹𝐺 ∩ 𝐽𝐿 and 𝑁:= 𝐹𝐺 ∩ 𝐾𝐿.  Let 𝜔1, 𝜔2, 𝜔3, 𝜔4 be the circumcircles of 𝐸𝐹𝐺, 𝐽𝐹𝑀,

𝐿𝑁𝑀, 𝐾𝑁𝐺, with centers 𝑂1, 𝑂2, 𝑂3, 𝑂4, respectively.   
 

1. 𝐸𝐹𝐺 ~ 𝐽𝐹𝑀 ~ 𝐿𝑁𝑀 ~ 𝐾𝑁𝐺  

2. 𝐸𝑂1
⃡⃗ ⃗⃗ ⃗⃗  ⃗  ∥ 𝐽𝑂2

⃡⃗ ⃗⃗⃗⃗  ∥ 𝐿𝑂3
⃡⃗ ⃗⃗⃗⃗  ⃗  ∥ 𝐾𝑂4

⃡⃗ ⃗⃗ ⃗⃗  ⃗ 

3. 𝜔1, 𝜔2 touch at 𝐹.  𝜔2, 𝜔3 touch at 𝑀.  𝜔3, 𝜔4 touch at 𝑁.  𝜔1, 𝜔4 touch at 𝐺. 

4. 𝑂1𝑂2𝑂3𝑂4 is a parallelogram. 

5. Let 𝜔1, 𝜔2, 𝜔3, 𝜔4 be incircles, not circumcircles; 𝑂1𝑂2𝑂3𝑂4 is a parallelogram. 
 
Problem 4.5             176 
Find the locus of possible vertices for a given angle subtended by a given chord. 
 
Construction 4.3            176 
Construct a triangle given the apex angle, base altitude and base median. 
 
Problem 4.6             176 
A navigation problem with the angle between the port and bow lighthouses as 80°, and the angle 
between the starboard and bow lighthouses as 120°.  Locate your ship on the map. 
 
Brahmagupta’s Bi–Medial Theorem          177 

Given 𝐸𝐹𝐺𝐻 cyclic with 𝐸𝐺 ⊥ 𝐹𝐻 at 𝑇, if 𝑇′ is the foot of the perpendicular dropped on 𝐸𝐹 from 

𝑇, then 𝑀:= 𝑇′𝑇⃗⃗⃗⃗ ⃗⃗ ∩ 𝐺𝐻 is the midpoint of 𝐺𝐻; that is, 𝑀 ≡ 𝑀𝐺𝐻. 
 
Anticenter Theorem            178 

1. A quadrilateral is cyclic if and only if the maltitudes are concurrent. 
2. The medial point is midway between the circumcenter and the anticenter. 

 
Lemma 4.1             178 

The bimedians of 𝐸𝐹𝐺𝐻 intersect at the bi-medials of 𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻 and 𝑀𝐹𝐺𝑀𝐹𝐻𝑀𝐻𝐸𝑀𝐸𝐺 .  
 
Anticenter–Orthocenter Theorem          178 

Given 𝐸𝐹𝐺𝐻 cyclic with 𝑇 its bi-medial and 𝑆 its anticenter, 𝑆 is the orthocenter of 𝑀𝐸𝐺𝑀𝐹𝐻𝑇. 
 
Problem 4.7             179 
Prove that, in a cyclic and orthodiagonal quadrilateral, the distance from the circumcenter to a 
side is half the opposite side. 
 
Construction 4.4 (Green Belt Solution)         179 
Through a point outside a circle, draw a line tangent to the circle. 
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Construction 4.5            179 
Given the hypotenuse and a leg of a right triangle, construct the other leg. 
 
Construction 4.6            179 
Construct a triangle given its base, its apex angle and a base angle. 
 
Construction 4.7            179 
Construct a triangle given its base, its apex angle and the difference of its legs. 
 
Construction 4.8            180 
Construct a triangle given its base, its apex angle and the sum of the altitudes to the legs. 
 
Construction 4.9            180 
Construct a triangle given its base, its apex angle and the difference of the altitudes to the legs. 
 
Construction 4.10            181 
Construct a triangle given its base, its apex angle and the altitude to its base. 
 
Problem 4.8             181 
Find the locus of the midpoints of chords in a given circle passing through a given point on or 
inside the circle. 
 
Construction 4.11            181 
Construct a triangle given its base, its circumradius, and the median to its base or to a leg. 
 
Construction 4.12            181 
Construct a triangle given its inradius, circumradius and an interior angle. 
 
Construction 4.13            182 
Construct a triangle given its inradius, circumradius and a side. 
 
Problem 4.9             182 
Find lengths 𝑒 and 𝑔 such that 𝑒 + 𝑔 = 𝑧 and 𝑒2 + 𝑔2 = 𝑓2 with 𝑧 and 𝑓 given. 
 
Problem 4.10             183  

Given 𝐸𝐹𝐺 and 𝐺𝑆⃡⃗⃗⃗ ∥ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐽: = 𝑀𝐸𝐹𝑀𝐹𝐺
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝐺𝑆⃡⃗⃗⃗ , prove that 𝐸𝑀𝐹𝐺 = 𝑀𝐺𝐸𝐽 and 𝑀𝐸𝐹𝐺 = 𝐽𝐹. 

 
Construction 4.14            184 
Construct a triangle given the lengths of the three medians. 
 
Side–Angle–Side (SAS) Third–Scale Triangle Theorem       184 
If a triangle has two sides that are a third the corresponding sides in another triangle and the 
included angles are equal, then the other angles are equal and the other side also a third. 
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Angle–Side–Angle (ASA) Third–Scale Triangle Theorem       184 
If two pairs of angles are equal in two triangles and the included side of one triangle is a third the 
included side in the other triangle, then the other sides are also a third their corresponding sides. 
 

Lemma 4.2             184 
A triangle’s medial point is a third of the way from the base to the apex. 
 

Construction 4.15            184 
Construct a triangle given the lengths of two medians and the altitude to the other side. 
 

Tangent and Chord Theorem   (Euclid, Book III, Prop. 32)     185 
A line intersects a circle where it makes an angle with a chord equal to the angle subtended by 
that chord if and only if that is a touching point. 
 

Construction 4.16    (Euclid, Book IV, Prop. 2)     185   
Given a circle and a triangle, inscribe a similar triangle in the circle. 
 

Intersecting Secant and Tangent Similarity Theorem       185 

If 𝑃 is the intersection of 𝐺𝐹⃗⃗⃗⃗  ⃗ and the tangent to the circumcircle of 𝐸𝐹𝐺 at 𝐸, then 𝑃𝐸𝐹~𝑃𝐺𝐸. 
 

Intersecting Secants Similarity Theorem         186 

Given 𝐸𝐹𝐺𝐻 cyclic, assume 𝑃:= 𝐹𝐸⃗⃗⃗⃗  ⃗ ∩ 𝐺𝐻⃗⃗⃗⃗⃗⃗  exists; then, (1) 𝑃𝐹𝐻~𝑃𝐺𝐸, and (2) 𝑃𝐹𝐺~𝑃𝐻𝐸. 
 

Intersecting Chords Similarity Theorem                186 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝑇 its bi-medial, then (1) 𝐸𝐹𝑇~𝐻𝐺𝑇, and (2) 𝐹𝐺𝑇~𝐸𝐻𝑇.  
 

Intersecting Chords Angle Theorem                 186 
The angle made by intersecting chords is the semisum of the two arcs they cut off. 
 

Intersecting Secants Angle Theorem       WP MD 186 
The angle made by intersecting secants is the semidifference of the far and near arc. 
 

Cyclic Quadrilateral Theorem  (Euclid, Book III, Prop. 22)            187 
If a quadrilateral is cyclic, then its opposite angles are supplementary.  
 

Cyclic Quadrilateral Theorem Corollary         187 

Given 𝐸𝐹𝐺, the circumcircles of exterior triangles 𝐸′′𝐹𝐺, 𝐸𝐹′′𝐺, 𝐸𝐹𝐺′′ are concurrent if and only 

if ∠𝐸′′ + ∠𝐹′′ + ∠𝐺′′ = 𝜎. 
 

Cyclic Quadrilateral Theorem Converse         187 
If a quadrilateral has two opposite angles that are supplementary, then it is cyclic. 
 

Right Cyclic Theorem            187 
If opposite quadrilateral angles are right, then the other two angles are supplementary. 
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Construction 4.17    (Euclid, Book IV, Prop. 3)     187   
Given a circle and a triangle, circumscribe a similar triangle around the circle. 
 
Napoleon Theorem (Circumcenter Proof)         188 

The centers of equilateral triangles external to triangle sides form an equilateral triangle. 

 

Lemma 4.3             188 

If 𝐸𝐹𝐺~𝐽𝐾𝐿 then 𝐸𝑀𝐸𝐹𝐺~𝐽𝑀𝐽𝐾𝐿. 

 

Butterfly Theorem (Green Belt Proof)         188 

Given 𝐸𝐹𝐺𝐻 cyclic with circumcenter 𝑂 and bi-medial 𝑇, 𝑇 is the midpoint of a chord 

perpendicular to 𝑂𝑇⃡⃗⃗⃗  ⃗; let it intersect 𝐸𝐹 at 𝐽 and 𝐺𝐻 at 𝐾.  Then, 𝑇𝐽 = 𝑇𝐾. 

 

Triangle Frustum Theorem III          189 

Given 𝐸𝐹𝐺𝐻 and its bi-medial 𝑇, 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐺𝐻⃡⃗ ⃗⃗  ⃗ if and only if the circumcircles of 𝐸𝐹𝑇 and 𝐺𝐻𝑇 touch. 
 

Spiral Similarity Theorem           189 

Given 𝐸𝐹𝐺𝐻 with bi-medial 𝑇 and 𝐸𝐹⃡⃗⃗⃗  ⃗ ∦ 𝐺𝐻⃡⃗⃗⃗  ⃗, if 𝑆 is the other intersection of the circumcircles of 

𝐸𝐹𝑇 and 𝐺𝐻𝑇, then 𝐸𝐹𝑆~𝐺𝐻𝑆. 
 
Spiral Similarity Theorem Converse          189 

Given 𝐸𝐹𝐺𝐻 and 𝑆 such that 𝐸𝐹𝑆~𝐺𝐻𝑆, if 𝑇 is another intersection of the circumcircles of 𝐸𝐹𝑆 

and 𝐺𝐻𝑆, then 𝐸𝐹⃡⃗⃗⃗  ⃗ ∦ 𝐺𝐻⃡⃗⃗⃗  ⃗ and 𝑇 is the bi-medial of 𝐸𝐹𝐺𝐻. 
 
Construction 4.18            190 
Construct a triangle given its circumradius, the sum of its legs and its skew angle. 
 
Construction 4.19            190 
Construct a triangle given its circumradius, the sum of its legs and the sum of its base angles. 
 
Skew Angle Theorem            191 
The angle between the altitude from the apex and the circumdiameter through the apex is equal 
to the skew angle.  It is bisected by the apex angle bisector and the difference of the angles that 
this bisector makes with the base is also the skew angle. 
 
Construction 4.20            191 
Construct a triangle given the apex angle bisector, the altitude, and the median to the base. 
 
Construction 4.21            192 
Construct a triangle given its circumradius, its skew angle and (1) the median to the base, (2) the 
apex altitude, or (3) the apex angle bisector. 
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Construction 4.22            192 
Construct a triangle given the apex angle bisector, the apex altitude and the base. 
 

Mediator and Angle Bisector Theorem         193 
The mediator of a chord and the bisector of an angle subtended by it meet on the circumcircle. 
 

Angle Bisectors and Circumdiameter Theorem        193 
The interior and exterior bisectors of a triangle’s apex angle cut its circumcircle at the ends of a 
diameter that mediates its base. 
 

Half the Skew Angle Theorem          193 
The exterior bisector of a triangle’s apex angle makes an angle with the extension of the base 
that is half the skew angle. 
 

Tangent and Exterior Bisector Theorem         193 

Given 𝐸𝐹𝐺, if the exterior bisector of ∠𝐺 cuts 𝐸𝐹⃡⃗⃗⃗  ⃗ at 𝑆 and the tangent to the circumcircle at 𝐺 

cuts 𝐸𝐹⃡⃗⃗⃗  ⃗ at 𝑇, then 𝑇 is the center of the circle through 𝑆, 𝐺 and 𝐺∗. 
 

Shoulder Width Stance Theorem          194 
For any point on the circumcircle of a rectangle, the distance between the feet of the 
perpendiculars dropped on the diagonals is the altitude of the rectangle’s definitional triangle. 
 

Inscribed Angle Theorem Converse          195 
If two equal angles with vertices on the same side of a segment are subtended by it, their vertices 
and the endpoints of the segment are corners of a cyclic quadrilateral. 
 

Problem 4.11             195 

Given 𝐸𝐹𝐺𝐻 cyclic, its center 𝑂, and its bi-medial 𝑇, assume 𝑃:= 𝐸𝐹⃗⃗⃗⃗  ⃗ ∩ 𝐻𝐺⃗⃗⃗⃗⃗⃗  exists.  Prove that 
the bisectors of ∠𝑃 = ∠𝐸𝑃𝐻 and ∠𝑇 = ∠𝐸𝑇𝐹 are perpendicular. 
 

Cyclic Quadrilateral Mediators Theorem         195 
A quadrilateral is cyclic if and only if the mediators of any three of its sides are concurrent. 
 

Problem 4.12             196 

𝐸𝐹𝐺𝐻 is cyclic.  There is also a circle that has its center, 𝑂1, on 𝐹𝐺 and touches 𝐸𝐹⃗⃗⃗⃗  ⃗, 𝐻𝐺⃗⃗⃗⃗⃗⃗  and 𝐸𝐻.  

Prove that 𝐹𝐺 = 𝐸𝐹 + 𝐺𝐻. 
 

Orthocenter and Circumcircle Theorem         196   

H is the orthocenter of 𝐸𝐹𝐺 if and only if its reflections around the sides are on the circumcircle. 
 

Orthocenter and Circumcenter Theorem         196 

Given 𝐸𝐹𝐺 with 𝐸𝐺 ≠ 𝐹𝐺, orthocenter 𝐻, and 𝐺′′ diametrically opposed to 𝐺 in the circumcircle, 

then 𝐸𝐹⃡⃗⃗⃗  ⃗ ∥ 𝐻𝐸𝐹𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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Problem 4.13             197   

Given 𝐸𝐹𝐺 and its orthocenter 𝐻, prove the following: 

1. Any one of 𝐸, 𝐹, 𝐺, 𝐻 is the orthocenter of the triangle whose vertices are the other three. 

2. The four triangles whose vertices are any three of 𝐸, 𝐹, 𝐺, 𝐻 all have equal circumcircles. 

3. If four equal circles intersect in four points, 𝐸, 𝐹, 𝐺, 𝐻, then 𝐻 is the orthocenter of 𝐸𝐹𝐺. 

4. 𝐸𝐹𝐺 ≅ 𝑂1𝑂2𝑂3 with 𝑂1, 𝑂2, 𝑂3 the circumcenters of 𝐹𝐻𝐺, 𝐺𝐻𝐸, 𝐸𝐻𝐹, respectively.  Also, 

if you swap 𝐻 with 𝐸, 𝐹 or 𝐺 and the circumcenter of 𝐸𝐹𝐺 with 𝑂1, 𝑂2 or 𝑂3, respectively. 

 

Problem 4.14             197 

Given 𝐸𝐹𝐺𝐻 cyclic and 𝐼𝐸 , 𝐼𝐹 , 𝐼𝐺 , 𝐼𝐻 the incenters of 𝐸𝐹𝐻, 𝐹𝐺𝐸, 𝐺𝐻𝐹,𝐻𝐸𝐺, respectively, prove 

that 𝐼𝐸𝐼𝐹𝐼𝐺𝐼𝐻 is a rectangle. 
 
Quadrilateral Angle Bisectors Theorem         197 
The bisectors of the external angles of a quadrilateral form a cyclic quadrilateral. 
 
Problem 4.15             198 
Using only a sextant, position a trebuchet so it fires directly at the citadel in the center of a square 
walled city; you cannot see over the wall and have no distance measurements. 
 
Problem 4.16             198 
You are sneaking up on the Pentagon with a trebuchet in what must be the most ill-conceived 
act of terrorism ever.  How do you use a sextant to aim for the facility’s center? 
 
Problem 4.17             198 

The enemy has three antiaircraft guns in an equilateral triangle with a munitions dump at the 

center.  Afraid to attack from the air, you are sneaking up on it with a self-propelled mortar.  But 

you are afraid to reveal your position with a laser rangefinder, so you plan to aim over the 

munitions dump and then walk your shells back until you hear a secondary explosion.  How? 

 
Johnson Theorem            199  
If three equal circles are concurrent, then their other three intersections define a circle of the 
same radius. 
 
Japanese Theorem            199  
The sum of the inradii are equal for a cyclic quadrilateral cut by either diagonal.  This is true for 
any cyclic polygon partitioned into triangles, but here we prove it only for quadrilaterals. 
 
Rules and Tactics for a Trebuchet and Paintball Battle       203 
 
Machine Gun Emplacement as an Application of Geometry      204 
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Surveying Techniques to Measure a Line Through an Obstacle      209 
 
The Green Belt’s Guide to Trigonometry         211 
 
First Law of Tangents            211 

𝑒−𝑓

𝑒+𝑓
=

tan(
𝛼−𝛽

2
)

tan(
𝛼+𝛽

2
)
  

 

Second Law of Tangents           211 

𝑒

𝑓
=

1+𝑇

1−𝑇
    with  𝑇 =

tan(
𝛼−𝛽

2
)

tan(
𝛼+𝛽

2
)
 

 
Tangential Quadrilaterals Revisited          213 
 
Problem 4.39             213   

Let 𝐸𝐹𝐺𝐻 be tangential but not a square with 𝐼 its incenter, 𝐼𝐸𝐹 , 𝐼𝐹𝐺 , 𝐼𝐺𝐻 , 𝐼𝐻𝐸  the incircle’s 

touching points and 𝑃 the intersection of 𝐼𝐸𝐹𝐼𝐺𝐻 and 𝐼𝐹𝐺𝐼𝐻𝐸.  Draw a line through 𝑃 perpendicular 

to 𝐼𝑃 and label its intersections with 𝐻𝐸 and 𝐹𝐺 as 𝐽 and 𝐾, respectively.  Prove 𝐼𝐻𝐸𝐽 = 𝐼𝐹𝐺𝐾. 

 

Problem 4.40             213 

Let 𝐸𝐹𝐺𝐻 be tangential with 𝐼 its incenter.  Draw lines through 𝐸, 𝐹, 𝐺, 𝐻 perpendicular to 

𝐼𝐸, 𝐼𝐹, 𝐼𝐺, 𝐼𝐻, respectively.  Let 𝐽, 𝐾, 𝐿,𝑀 be the intersections of these lines that are long of 

∠𝐸𝐼𝐹, ∠𝐹𝐼𝐺, ∠𝐺𝐼𝐻, ∠𝐻𝐼𝐸, respectively.  Prove that 𝐼 is the bi-medial of 𝐽𝐾𝐿𝑀. 

 

Problem 4.41             214 

Given cyclic quadrilateral 𝐸𝐹𝐺𝐻 such that ∠𝐸 ≠ ∠𝐺, let 𝐼 and 𝐽 be the incenters of 𝐸𝐺𝐻 and 

𝐸𝐹𝐺, respectively.  Prove that 𝐸𝐹𝐺𝐻 is tangential if and only if 𝐼𝐽𝐹𝐻 is cyclic. 

 
The Way Forward            215 
 
Orthogonal Circles Theorem           215 
Given two overlapping circles, they are orthogonal if and only if any of these conditions hold: 
 

1. Radii of the two circles to an intersection point are perpendicular. 
2. A radius of one circle to an intersection point is tangent to the other circle. 
3. The circle whose diameter is from center to center passes through their intersections. 

 
Construction 4.23            215   
Given a circle and a point, construct an orthogonal circle through the point. 



Victor Aguilar  Geometry without Multiplication 

343 
 

Problem 4.42             216   
Given three circles with three touching points, prove that the circle through the three touching 
points is orthogonal to all three given circles. 
 
Problem 4.43             216   
Given two orthogonal circles, prove that the two lines from their two intersections to a point on 
one circle meet the other circle at diametrically opposite points. 
 
Problem 4.44             216   

Given 𝐸𝐹𝐺𝐻 cyclic with 𝐸𝐹 a diameter and 𝑇 the bi-medial point, prove that a circle with 

common chord 𝐺𝐻 is orthogonal if and only if it passes through 𝑇. 
 
Problem 4.45             216   

Given 𝐸𝐹, a diameter of 𝜔, and 𝐺 any point on 𝜔, prove that the circles through 𝐸,𝑀𝐸𝐹 , 𝐺 and 
through 𝐹,𝑀𝐸𝐹 , 𝐺 are orthogonal. 
 
Long Circle Theorem Corollary          216 

Given 𝐸𝐹𝐺 with circumcircle 𝜔, then 𝐸, 𝐹 and 𝐼 are equidistant from the long center, 𝐿𝐺 . 

 

Problem 4.46             216   

Tangents to a circle at 𝐸, 𝐹 meet at 𝐺; prove that the 𝐸𝐹𝐺 incenter is on the circle. 

 
Problem 4.47             216   

Given 𝐸𝐹𝐺 with incenter 𝐼 and excenters 𝑋, 𝑌, 𝑍, prove that the circles with diameters 𝐼𝑋 and 𝑌𝑍 
are orthogonal. 
 
Problem 4.48             216   

Given 𝐸𝐹𝐺 with orthocenter 𝐻, prove that the circles with diameters 𝐸𝐻 and 𝐹𝐺 are orthogonal. 
 
Orthogonal Lens Area Theorem          216 

The overlap of orthogonal circles with radii 𝑅 and 𝑟 has area 𝐴 = (𝑅2 − 𝑟2) atan
𝑟

𝑅
+

𝜋

2
𝑟2 − 𝑅𝑟 

or 𝑟2 (
𝜋

2
− 1) if 𝑅 = 𝑟.  For general but equal circles, 𝐴 = 𝑟2(𝜃 − sin 𝜃) for 𝜃 not necessarily 

𝜋

2
. 
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Red Belt Instruction:  Famous Theorems 
 
Miquel Theorem            222 

Given 𝐸𝐹𝐺 and arbitrary points 𝐽, 𝐾, 𝐿 on 𝐸𝐹, 𝐹𝐺, 𝐺𝐸, respectively, the circumcircles of 𝐸𝐽𝐿, 𝐹𝐾𝐽 

and 𝐺𝐿𝐾 are concurrent.  The Miquel circles are 𝜔𝐸 , 𝜔𝐹, 𝜔𝐺 with centers 𝑂𝐸 , 𝑂𝐹 , 𝑂𝐺, respectively. 
 
Miquel Equal Angle Theorem          223 
Lines from the Miquel point to the Miquel circle intersections make equal angles with the sides. 
 
Reverse Miquel Construction          223 

Given 𝑀 inside 𝐸𝐹𝐺, find 𝐽, 𝐾, 𝐿 on 𝐸𝐹, 𝐹𝐺, 𝐺𝐸, respectively, such that 𝑀 is the Miquel point. 
 
Problem 5.1             223   

If three circles overlap in pairs, prove that their common chords are concurrent. 
 
Equal Miquel Circles Theorem          224 
The Miquel circles are equal if and only if the Miquel point is at the circumcenter of the triangle. 
 
Dakota Attack Problem           224 
Bomb an equilateral triangle with three equal-size bombs so every part is struck by shrapnel from 
at least one bomb and the incenter/circumcenter is struck by shrapnel from every bomb. 
 
Miquel Similarity Theorem           224 
The centers of the Miquel circles are vertices of a triangle similar to the given triangle. 
 
Long Circle Theorem            225 

Given 𝐸𝐹𝐺 with circumcircle 𝜔, then 𝐼, 𝐸, 𝑋, 𝐹 are concyclic and their center is 𝐿𝐺 . 
 
Largest Reverse Miquel Triangle Theorem         225 

For 𝐽, 𝐾, 𝐿 and Miquel point 𝑀, the largest 𝐸𝐹𝐺 such that 𝐽 ∈ 𝐸𝐹, 𝐾 ∈ 𝐹𝐺 and 𝐿 ∈ 𝐺𝐸 is the one 

for which 𝐸𝐹 ⊥ 𝑀𝐽, 𝐹𝐺 ⊥ 𝑀𝐾 and 𝐺𝐸 ⊥ 𝑀𝐿. 

 
Long Triangle Theorem           225 
The incenter of a triangle is the orthocenter of its long triangle. 
 
Carnot Theorem            225 
The sum of the perpendiculars dropped from the circumcenter onto the three sides of a not 
obtuse triangle is equal to the circumradius plus the inradius. 
 
Long Quadrilateral Theorem           226 

Given 𝐸𝐹𝐺𝐻 cyclic, the long quadrilateral, 𝐿𝐸𝐹𝐿𝐹𝐺𝐿𝐺𝐻𝐿𝐻𝐸 , is orthodiagonal.  
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Long Rhombus Theorem           227 

Given 𝐸𝐹𝐺 with incenter 𝐼 and long centers 𝐿𝐸 , 𝐿𝐹 , 𝐿𝐺 , let 𝐽: = 𝐿𝐸𝐿𝐹 ∩ 𝐺𝐸  and 𝐾:= 𝐿𝐸𝐿𝐹 ∩ 𝐺𝐹.  

Then, 𝐺𝐽𝐼𝐾 is a rhombus. 
 
Cyclic/Tangential Pairs Theorem          227 
A quadrilateral is cyclic if and only if the pedal quadrilateral of its bi-medial point is tangential. 
 
Lemma 5.1             227 
The medial (Varignon) parallelogram of an orthodiagonal quadrilateral is a rectangle. 

 
Cyclic and Orthodiagonal Theorem          228 
A cyclic quadrilateral is orthodiagonal iff the pedal quadrilateral of its bi-medial point is cyclic. 
 
Bi–Centric Quadrilateral Theorem          228 
A tangential quadrilateral is cyclic and thus bi-centric iff its contact quadrilateral is orthodiagonal. 
 
Construction 5.1            229 
Given a circle, construct (1) a bi-centric quadrilateral that it is incircle to; and (2) the quadrilateral 
to which the bi-centric quadrilateral is the pedal quadrilateral of its bi-medial. 
 
Lemma 5.2             229 

Given 𝐸𝐹𝐺 and 𝑃 long of ∠𝐺, let 𝑃𝐸 , 𝑃𝐹 , 𝑃𝐺  be the pedal vertices of 𝑃.   Then, 
1. ∠𝐺 and ∠𝑃𝐹𝑃𝑃𝐸 are supplementary. 
2. ∠𝐸𝑃𝑃𝐹 = ∠𝐸𝑃𝐺𝑃𝐹 and ∠𝐹𝑃𝑃𝐸 = ∠𝐹𝑃𝐺𝑃𝐸 . 

 
Wallace Theorem I            229 
A point is on the circumcircle of a triangle if and only if the feet of the perpendiculars dropped 
from it onto the sides or their extensions are collinear. 
 
2010 USAMO Problem           230 

Let 𝐸𝐹𝐺𝑃𝐻 be a pentagon inscribed in a semicircle with diameter 𝐸𝐹.  The feet of perpendiculars 

dropped on 𝐸𝐻⃡⃗⃗⃗  ⃗ and 𝐹𝐻⃡⃗⃗⃗  ⃗ from 𝑃 define a line, and the feet of perpendiculars dropped on 𝐸𝐺⃡⃗⃗⃗  ⃗ and 

𝐹𝐺⃡⃗⃗⃗  ⃗ from 𝑃 define a line.  Prove that these lines make an angle half that of ∠𝐺𝑂𝐻 with 𝑂 ≡ 𝑀𝐸𝐹. 

 
Isosceles Kite Problem           231 

Photocopy the image in the figure below.  Note that 𝐸𝐹𝐺𝐻 is a parallelogram; ∠𝐸 is bisected;      

𝑃 is the point on the circumcircle of 𝐹𝐺𝐻, 𝜔, such that 𝑃𝐺 ⊥ 𝐽𝐾;  𝑄 is diametrically opposed to 

𝑃 in 𝜔; and 𝑃𝐹𝑃𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the Wallace line of 𝑃 relative to 𝐹𝐺𝐻.  Prove the following: 

1. 𝐽𝐺𝐾𝑃 is an isosceles kite. 

2. 𝑄𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐽𝐾⃡⃗⃗⃗ ∥ 𝑃𝐹𝑃𝐻
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
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Wallace Theorem II            231 

Given 𝐸𝐹𝐺, 𝑃 on the circumcircle, 𝜔, long of ∠𝐺, let 𝑄:= 𝑃𝑃𝐸
⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝜔.  Then,  𝐸𝑄⃡⃗⃗⃗  ⃗ ∥ 𝑃𝐺𝑃𝐸

⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 
 
Wallace Theorem III             232 

Given 𝐸𝐹𝐺 and 𝑃 on the circumcircle, 𝜔, long of ∠𝐺; then, 𝑃𝐸𝐹~𝑃𝑃𝐹𝑃𝐸 . 
 
Wallace Theorem IV            232 

Given 𝐸𝐹𝐺 acute with circumcircle 𝜔, let 𝑃:= 𝐺𝐺′⃗⃗ ⃗⃗ ⃗⃗  ∩ 𝜔, so 𝑃𝐺  is 𝐺′, the foot of the altitude to 𝐸𝐹.  
The Wallace line determined by 𝑃 is parallel to the line tangent to 𝜔 at 𝐺. 
 
Wallace Theorem V            232 

Given 𝐸𝐹𝐺 and 𝑃, 𝑄 on the circumcircle, 𝜔, both long of ∠𝐺, the angle between the Wallace lines 

determined by 𝑃 and 𝑄 is equal to the angle subtended by 𝑃𝑄. 
 
Lemma 5.3             233 
An interior angle of one equilateral triangle is equal to an interior angle of any equilateral triangle. 
 
Torricelli Lemma            234   

The Torricelli segments are concurrent; this point is called the Torricelli point. 
 
Torricelli Problem            234 
Given a triangle that is not too obtuse (interior angles all less than 2𝜑), prove that the Torricelli 
point minimizes the sum of the distances to the triangle’s vertices. 
 
Torricelli Angles Theorem           234 

𝑈 is the Torricelli point of 𝐸𝐹𝐺 if and only if ∠𝐸𝑈𝐹 = ∠𝐹𝑈𝐺 = ∠𝐺𝑈𝐸 = 2𝜑. 

 
Torricelli Expansion Theorem          234 

𝐸𝐹𝐺 and 𝐸′′𝐹′′𝐺′′, with 𝐸′′, 𝐹′′, 𝐺′′ the Torricelli apexes of 𝐸𝐹𝐺, have the same Torricelli point. 
 
Torriceli Segments Theorem           234 
The Torricelli segments are of equal length. 
 
Torricelli Triangles Circumcircles Theorem         235 
The circumcircles of the three external equilateral triangles are concurrent at the Torricelli point. 
 
Tri–Segment Theorem           235 
A tri-segment of a triangle is parallel to the other side and a third of it, if it is the one close to the 
apex; or two-thirds of it, if it is the one close to the base. 
 
Tri–Segment Theorem Converse          235 
Two lines parallel to the base of a triangle that trisect one side also trisect the other side. 
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Napoleon Theorem (Medial Point Proof)         235 
Centers of equilateral triangles external to a not too obtuse triangle are an equilateral triangle. 

 
Moss Problem             235 

Construct the largest equilateral triangle, 𝐸𝐹𝐺, with given points 𝐽, 𝐾, 𝐿, each on a different side. 

 
Lemma 5.4             236 

Given 𝐸𝐹𝐺 equilateral with center 𝑂, then ∠𝐸𝑂𝐹 = ∠𝐹𝑂𝐺 = ∠𝐸𝑂𝐺 = 2𝜑 
 
Equilateral Sum Theorem           236 

Given 𝐸𝐹𝐺 equilateral and 𝑃 on its circumcircle long of ∠𝐺, then 𝐺𝑃 = 𝐹𝑃 + 𝐸𝑃. 
 
Reverse Torricelli Problem           236 

Given that 𝐸′′, 𝐹′′, 𝐺′′ are the Torricelli apexes of 𝐸𝐹𝐺, construct 𝐸𝐹𝐺. 
 
Lemma 5.5             237 
Of isosceles triangles with equal apex angles, the one with the shortest legs has the shortest base. 
 
Fagnano Problem            237 
Inscribe a triangle in an acute triangle with the smallest possible perimeter. 
 
Orthic Triangle Lemma           237 
Two triangle vertices and the feet of the altitudes from them are concyclic. 
 
Orthic Triangle Similarity Theorem          237 
The orthic triangle of an acute triangle cuts off three triangles from it that are similar to it. 
 
Orthic Circumradius Theorem          238 
The circumradii to a vertex and a side of the orthic triangle are perpendicular. 
 
Orthic Triangle Incenter Theorem          239 

1. The orthocenter of an acute triangle is the incenter of its orthic triangle. 
2. The obtuse vertex of an obtuse triangle is the incenter of its orthic triangle. 

 
Euler Segment Theorem           239 
The medial point is collinear with the orthocenter and the circumcenter and twice as far from the 
former as the latter. 
 
Guinand’s Theorem (without proof)          240 
For any non-equilateral triangle, the incenter lies strictly inside and the excenters lie strictly 
outside the circle whose diameter joins the medial point to the orthocenter. 
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Franzsen’s Theorem (without proof)          240 
Let 𝑑 be the distance from the incenter to the Euler segment, 𝑠 the semiperimeter, 𝜇 (Greek:  

mu) the longest side and 𝜈 (Greek:  nu) the longest median.  Then, 
𝑑

𝑠
<

𝑑

𝜇
<

𝑑

𝜈
<

1

3
. 

 
Orthocenter and Wallace Line Theorem         241 

The Wallace line determined by 𝑃 bisects 𝑃𝐻 if 𝐻 is the orthocenter. 
 
Euler Circle Lemma            241 

Given 𝐸𝐹𝐺 with 𝐸′, 𝐹′, 𝐺′ the feet of the altitudes, then 𝐸′, 𝐹′, 𝐺′, 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  are concyclic. 
 
Euler Circle Theorem            241 

Given 𝐸𝐹𝐺 with 𝐸′, 𝐹′, 𝐺′ the feet of the altitudes and 𝐻 the orthocenter, the following nine 
points are concyclic:  𝐸′, 𝐹′, 𝐺′ and 𝑀𝐸𝐹 , 𝑀𝐹𝐺 , 𝑀𝐺𝐸  and 𝑀𝐸𝐻 , 𝑀𝐹𝐻 , 𝑀𝐺𝐻. 
 
Euler Center Theorem           242 
The center of the Euler circle is the midpoint of the Euler segment. 
 
Euler Radius Theorem           242 
The radius of a triangle’s Euler circle is half its circumradius. 
 
Euler Diameter Theorem           242 

𝑀𝐸𝐻𝑀𝐹𝐻𝑀𝐺𝐻 ≅ 𝑀𝐹𝐺𝑀𝐺𝐸𝑀𝐸𝐹 and 𝑀𝐸𝐻𝑀𝐹𝐺 , 𝑀𝐹𝐻𝑀𝐺𝐸 , 𝑀𝐺𝐻𝑀𝐸𝐹 are diameters of the Euler circle. 
 
Euler Bisection Theorem           242 
The Euler circle bisects any segment from the orthocenter to the circumcircle. 
 
Problem 5.2             242 
Prove that the circumcircle of a triangle is the Euler circle of a triangle whose vertices are the 
given triangle’s incenter and two of its excenters. 
 
Problem 5.3             243   

Given 𝐸𝐹𝐺, prove that 𝑂,𝑀𝐸𝐹 , 𝐹,𝑀𝐹𝐺  are concyclic and that this circle is congruent to the Euler 

circle of 𝐸𝐹𝐺. 
 
Double–Long Triangle Theorem I          243 

𝐸𝐹𝐺 is the orthic triangle of its double-long triangle, 𝑋𝑌𝑍.   
 
Double–Long Triangle Theorem II          243 
The double-long triangle is a homothetic double of the long triangle. 
 
Double–Long Triangle Theorem III          243 
The circumcircle of a triangle is the Euler circle of its double-long triangle. 
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Double–Scale Chords Theorem          244 

Given a circle of radius 𝑟, center 𝑂1 and 𝑇𝑄1 a chord on it, the locus of points, 𝑄2, such that   

𝑇𝑄2 = 2𝑇𝑄1 and 𝑇, 𝑄1, 𝑄2 are collinear is a circle of radius 2𝑟 tangent to the given circle at 𝑇. 
 
Problem 5.4             244  
Through one of two points of intersection of two circles, draw a line so the circles cut off two 
chords, one double the length of the other. 
 
Problem 5.5             244   
Given an angle ∠𝐸𝐹𝐺 and a point 𝑃 not on either ray of the angle, draw a line through 𝑃 that 

intersects 𝐹𝐸⃗⃗⃗⃗  ⃗ at 𝐽 and 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾 so 𝑃𝐽 is double 𝑃𝐾. 
 
Problem 5.6             245   
Given an angle ∠𝐸𝐹𝐺 and a point 𝑃 not on either ray of the angle, draw a line through 𝑃 that 

intersects 𝐹𝐸⃗⃗⃗⃗  ⃗ at 𝐽 and 𝐹𝐺⃗⃗⃗⃗  ⃗ at 𝐾 so 𝑃𝐽 is triple 𝑃𝐾. 
 
Problem 5.7             245   
Inscribe a square inside an equilateral triangle. 
 
Lemma 5.6             246   

Given 𝐸𝐹𝐺 and P on the circumcircle, 𝜔, long of ∠𝐸, construct the Wallace line determined by 

𝑃.  Extend 𝑃𝑃𝐸
⃗⃗ ⃗⃗ ⃗⃗  ⃗ to intersect 𝜔 at 𝐾.  Then, ∠𝐾𝑃𝐸𝑃𝐹 = ∠𝑃𝐺𝐸. 

 
Lemma 5.7             246 

Onto the lemma 5.6 figure, construct the Steiner line; let 𝑆 be its intersection with 𝑃𝐾⃡⃗⃗⃗  ⃗.  Let the 

altitude from 𝐸 intersect the Steiner and Wallace lines at 𝐻 and 𝐿, respectively.  Extend 𝐸𝐸′⃗⃗ ⃗⃗ ⃗⃗   to 

intersect 𝜔 at 𝐻′′.  Then, H is the orthocenter of 𝐸𝐹𝐺 and 𝑀𝐻𝑃 is on the Wallace line. 
 
Wallace Lines and Euler Circle Theorem         246 
The two Wallace lines determined by the endpoints of a diameter of a triangle’s circumcircle are 
perpendicular and intersect on the Euler circle. 
 
Second Torricelli Lemma           247   

The 2nd Torricelli segments are concurrent at the 2nd Torricelli point. 

 

Second Torricelli Angles Theorem          247   

If 𝑉 is long of ∠𝐸𝐹𝐺, ∠𝐸𝑉𝐺 = 2𝜑 and ∠𝐸𝑉𝐹 = ∠𝐹𝑉𝐺 = 𝜑. 

 

Torricelli Points and Euler Circle Theorem         247 

The midpoint of the two Torricelli points is on the Euler circle.   
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Problem 5.8             248   
Let 𝜔1 and 𝜔2 with centers 𝑂1 and 𝑂2 have common point 𝐸.  Let 𝐹 and 𝐺 be points on 𝜔2.  Also, 

let 𝐹′′: = 𝜔1 ∩ 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺′′: = 𝜔1 ∩ 𝐸𝐺⃡⃗⃗⃗  ⃗.  Prove 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐹′′𝐺′′⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
 
Lemma 5.8             248 
Given the base and the orthocenter, if it is not on the base, a triangle is fully defined. 
 

Problem 5.9             248   

Let 𝜔1 and 𝜔2 with centers 𝑂1 and 𝑂2 have common chord 𝐸𝐹.  Let 𝐽: = 𝑂1𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔1 and                  

𝑀:= 𝑂1𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔2 and 𝐾:= 𝑂2𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔1 and 𝐿:= 𝑂2𝐹⃡⃗⃗⃗⃗⃗  ⃗ ∩ 𝜔2.  (Assuming 𝐽, 𝑀, 𝐾, 𝐿 exist.)  Prove: 

1. 𝐽𝐾⃗⃗⃗⃗ , 𝐸𝐹⃗⃗⃗⃗  ⃗, 𝐿𝑀⃗⃗⃗⃗⃗⃗  are concurrent at a point 𝑃. 
2. 𝐽, 𝐸,𝑀, 𝑃 are concyclic. 
3. 𝐿, 𝐸, 𝐾, 𝑃 are concyclic. 

 
Problem 5.10             249   
Prove that the orthocenter of a triangle is the incenter of the triangle whose vertices are where 
the given triangle’s altitudes cut its circumcircle. 
 
Problem 5.11             249   
Prove that the orthic triangle and the tangential triangle are homothetic and that their 
homothetic center is on the Euler line, but that it is not the orthocenter. 
 
Problem 5.12             250   

Prove that the parent triangle is antipedal if the orthocenter is the pedal point. 

 

Problem 5.13             250   

Prove that the double-long triangle is antipedal if the incenter is the pedal point. 

 
Problem 5.14             250   

Given 𝐸𝐹𝐺 with 𝐸, 𝐹, 𝐺 counterclockwise, find: 
1. 𝑃 such that ∠𝑃𝐸𝐹 = ∠𝑃𝐹𝐺 = ∠𝑃𝐺𝐸.  Call this angle 𝛼; 𝑃 is the first Brocard point. 
2. 𝑄 such that ∠𝑄𝐸𝐺 = ∠𝑄𝐹𝐸 = ∠𝑄𝐺𝐹.  Call this angle 𝛽; 𝑄 is the second Brocard point. 
3. Prove that 𝛼 = 𝛽.  This is called the Brocard angle. 

 
Isometric Transformations without Linear Algebra        254 
 
Problem 5.30             255 
Construct a nuclear power plant in an area where there are three parallel highways, so it is at the 
center of an equilateral triangle with a vertex on each highway, where military bases will be built.   
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Problem 5.31             255 
Given an angle, two lines, and a point between them, draw a circle around the point so the lines 
cut off a chord that subtends at the center the given angle. 
 

On the Difference Between Engineering and Competition Problems     256 

 
Problem 5.32             257   

In the figure shown, find points 𝐺 and 𝐻 on the circle such that the chord 𝐺𝐻 subtends at the 

center an angle of 𝜑 and such that 𝐹𝐺⃡⃗⃗⃗  ⃗ ∥ 𝐸𝐻⃡⃗⃗⃗  ⃗.   

 

On the Relation Between Geometry and Probability       258 

 

Problem 5.33             260   

Pick a number, any number, between 1 and 10.  What is the chance of it being 5? 

 

Problem 5.34             261   

If 𝑥 ∈ [0, 5], what is the probability of 𝑥 being closer to 1 than it is to 3? 

 

Problem 5.35             261   

Three points are at random on a circle.  What is the chance they are in a semicircle? 

 

Problem 5.36             261   

How many ways can you and your date choose from three appetizers, five entrées and four 

desserts?  You intend to share, so you do not want to both get the same of an item. 

 

Problem 5.37             262   

What is the chance of at least two aces in a five-card draw from a 52-card deck? 

 

Problem 5.38             263 

There is a rectangular skylight in my otherwise lead-sheathed laboratory.  If a cosmic ray passes 

through the skylight, what is the probability that it is closer to the center than to the edge? 

 

Problem 5.39             263 

Two points are randomly placed on a circle; they are connected to each other and to the center.  

What is the probability that these segments form an acute triangle? 
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Problem 5.40             263 

Two points are randomly placed inside a circle; they are connected to each other and to the 

center.  What is the probability that these segments form an acute triangle? 

 
Strategic Defense Applications of Geometry        264 
 
Note to Philosophers            267 
 
Note to Computer Programmers          272 
 
Geometry Informs the Numerical Analysis of Error in Computations     273 
 
A Reply to the Enemies of Deductive Logic         275 
 
On When to Use Algebra Instead of Geometry        278 
 
Pedagogic Instruction for North American Teachers       280 
 
Steiner–Lehmus Theorem (Classic Proof)         284 
 
Antiparallel Lines Should Be Called Supplementary Lines       286 
 
Foundations of Geometry Revisited          289 
 
A Look Ahead:  Blue Belt!!!           292 
 
Medial Parallelogram Area Theorem II         292 

1. |𝑀𝐸𝐹𝑀𝐸𝐺𝑀𝐺𝐻𝑀𝐹𝐻| =
1

2
||𝐸𝐹𝐺| − |𝐹𝐺𝐻|| =

1

2
||𝐸𝐹𝐻| − |𝐸𝐺𝐻|| 

2. |𝑀𝐹𝐺𝑀𝐹𝐻𝑀𝐻𝐸𝑀𝐸𝐺| =
1

2
||𝐸𝐹𝐺| − |𝐸𝐹𝐻|| =

1

2
||𝐹𝐺𝐻| − |𝐸𝐺𝐻|| 

 

Medial Parallelogram Area Theorem III         293 

Given 𝐸𝐹𝐺𝐻, assume 𝑃:= 𝐹𝐺⃗⃗⃗⃗  ⃗ ∩ 𝐸𝐻⃗⃗⃗⃗⃗⃗  exists; then |𝐸𝐹𝐺𝐻| = 4|𝑀𝐸𝐺𝑀𝐹𝐻𝑃|. 

 
Cramer–Castillon Problem   (Zlatanović Problem)      294 

Given three non-collinear points inside a circle, construct a triangle with vertices on the circle and 

with a different side through each point. 

 

Intersecting Chords Theorem  (Euclid, Book III, Prop. 35)     294 

If two chords of a circle intersect inside the circle, the product of the two segments of one is 

equal to the product of the two segments of the other. 
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Intersecting Secants Theorem  (Euclid, Book III, Prop. 36, 37)    295 

If two secants of a circle intersect outside the circle, the product of the two segments of one, 

from the intersection to where the circle cuts it, is equal to the product of the two segments of 

the other, from the intersection to where the circle cuts it. 

 
Lemma 5.9     (Euclid, Book II, Prop. 5)     295 

Given lengths 𝑦 < 𝑥, the rectangle of sides 𝑥 + 𝑦 and 𝑥 − 𝑦 is equal in area to the square of side 

𝑥 minus the square of side 𝑦. 

 
Construction 5.2    (Euclid, Book II, Prop. 14)     296 

Given two squares, construct a square equal in area to their difference. 

 

Construction 5.3            296   

Given an angle and a point inside a circle, draw a chord through the point that subtends the angle. 

 
Solution to the Cramer–Castillon Problem (The Zlatanović Solution)     297 
 
Needful Things            298 
 

Infoot Ratio Theorem    (Euclid, Book VI, Prop. 3)          MD 298 

The infoot cuts the base in the ratio of the legs, and the converse.  For infoot 𝐺∗ of 𝐸𝐹𝐺,            

𝐸𝐺∗

𝐹𝐺∗
=

𝐸𝐺

𝐹𝐺
. 

 

Exfoot Ratio Theorem           299 

The exfoot cuts the extension of the base in the ratio of the legs, and the converse.  For exfoot 

𝐺× of 𝐸𝐹𝐺, 
𝐸𝐺×

𝐹𝐺×
=

𝐸𝐺

𝐹𝐺
. 

 

Thales’ Proportionality Theorem               MD 299 

The sides of an angle cut by some parallel lines are divided into proportional segments. 

 

Thales’ Proportionality Theorem Corollary         296 

Parallel lines cut by some angles with the same vertex are divided into proportional segments. 

 

Pythagorean Theorem (Algebra Version)         300 

𝑢2 + 𝑣2 = 𝑤2  
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Right Triangle Theorem Corollaries  (Euclid, Book VI, Prop. 13)     300 

1. The altitude is the geometric mean of the projections; ℎ = √𝑢′𝑣′. 

2. Each leg is the geometric mean of the leg’s projection and the hypotenuse; 𝑢 = √𝑢′𝑤. 

3. The product of the altitude and the hypotenuse is the product of the legs; ℎ𝑤 = 𝑢𝑣. 

 

Incenter Ratio Theorem           301 

The incenter cuts the bisector of an angle as the sum of its adjacent sides is to its opposite side. 

 

Preparation for Altshiller-Court’s College Geometry       302 

 

Geometry Jokes and Puzzles           304 
 
Index of Postulates, Theorems and Constructions        307 
 
Cheat Sheet!!!             355 
 
Principal Results of Geometry–Do in Alphabetical Order       359 
 
Index of Names            363 
 
References             371 
 
Glossary             375 

 

Glosario ingles–español           385 

 

Das englisch–deutsche Glossar          398 

 

Англо–русский глоссарий           413 
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Cheat Sheet!!!   

 

I know that many of you are like, “Just show me the memorization sheet and I’ll memorize it!”  

You will never excel at geometry with that attitude, but the theorems here will at least allow you 

to stumble through beginning geometry with a “C.”  And you do not have to memorize it – 

Geometry–Do exams are all open-book.  Also, dog-ear the glossary so you can open to it quickly. 

 

If you cannot learn these few theorems, then buy a second-hand six-string and be a juke box 

hero, like Foreigner said you could be.  I hear the NBA is hiring!  Lots of financial opportunities in 

round ball!  I am not here just for the gifted students – I am also trying to help the bums! 

 

Triangle Inequality Theorem              5 
Three lengths can be of triangle sides if and only if the sum of the lengths of any two sides is 

greater than the length of the third side. 

 

Side–Angle–Side (SAS) Theorem           15 
Given two sides and the angle between them, a triangle is fully defined. 
 
Isosceles Triangle Theorem            15 
If two sides of a triangle are equal, then their opposite angles are equal. 
 
Side–Side–Side (SSS) Theorem           16 
Given three sides that satisfy the triangle inequality theorem, a triangle is fully defined. 

 
Center Line Theorem             18 
An angle bisector and a perpendicular bisector coincide if and only if the triangle is isosceles. 
 
Mediator Theorem             19  
A point is on the perpendicular bisector iff it is equidistant from the endpoints of the segment. 
 
Angle–Side–Angle (ASA) Theorem           37 
Given two angles and the included side, a triangle is fully defined. 
 
Isosceles Triangle Theorem Converse          37 
If two angles of a triangle are equal, then their opposite sides are equal. 
 
Vertical Angles Theorem            37 

Given 𝐸𝐹⃡⃗⃗⃗  ⃗ and 𝐺, 𝐽 on opposite sides of it, 𝐺, 𝐸, 𝐽 are collinear iff a pair of vertical angles is equal. 
 
Exterior Angle Inequality Theorem           38 
An exterior angle of a triangle is greater than either remote interior angle. 
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Perpendicular Length Theorem           39 
The perpendicular is unique and is the shortest segment from a point to a line. 
 
Angle–Angle–Side (AAS) Theorem           40 
Given two angles and a side opposite one of them, a triangle is fully defined. 
 
Hypotenuse–Leg (HL) Theorem           40 
Given the hypotenuse and one leg of a right triangle, it is fully defined. 
 
Diameter and Chord Theorem           47 
A diameter bisects a chord if and only if the diameter is perpendicular to the chord. 
 
Tangent Theorem             48 
A line intersects a circle where it is perpendicular to the radius iff that is a touching point. 
 
Two Tangents Theorem            49 
Two tangents from an external point are equal and their angle bisector intersects the center. 
 
Incenter Theorem             54 
The bisectors of a triangle’s interior angles are concurrent at an interior point, the incenter, 𝐼. 

 
Transversal Lemma             92 
If alternate interior angles are equal, the two lines crossed by the transversal are parallel. 
 

The following theorems are Euclidean – they do not hold in hyperbolic geometry! 
 
Circumcenter Theorem            87 
The mediators of a triangle’s sides are concurrent at a point equidistant from the vertices. 
 
Transversal Theorem             93 
If the two lines crossed by a transversal are parallel, then alternate interior angles are equal. 
 
Angle Sum Theorem             94 
Interior angles of a triangle sum to one straight angle; that is, 𝛼 + 𝛽 + 𝛾 = 𝜎. 
 
Exterior Angle Theorem            95 
An exterior angle equals the sum of the remote interior angles. 
 
Polygon Angle Sum Theorem            95 

Exterior angles of 𝑛 adjacent triangles with a convex union sum to two straight angles. 

 
Angle–Angle (AA) Similarity Theorem          96 
Two corresponding angles equal is sufficient to prove the similarity of two triangles. 
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Lambert Theorem             97 
Lambert quadrilaterals (three right angles) are right rectangles. 
 
Equal Segments on Parallels Theorem        102 
Connecting the ends of equal segments on two parallel lines forms a parallelogram. 
 
Parallelogram Theorem                 102 
A quadrilateral is a parallelogram if and only if both pairs of opposite side extensions are parallel. 
 
Parallelogram Diagonals Theorem         104 
A quadrilateral is a parallelogram if and only if the diagonals bisect each other. 
 
Mid–Segment Theorem          104 

1. A mid-segment of a triangle is half the other side, and their extensions are parallel. 
2. A line parallel to the base of a triangle that bisects one side also bisects the other side. 

 
Orthocenter Theorem          109 
The altitudes are concurrent at a point that we will call the orthocenter. 
 
Parallel Lines Theorem          114 
Two lines never intersect if and only if they are everywhere equidistant. 
 
Thales’ Diameter Theorem          173 
A chord subtends a right angle if and only if it is a diameter. 
 
Inscribed Angle Theorem          174 

1. Two chords that share an endpoint make an angle half the central angle of their arc. 

2. Angles with vertices on a circle on the same side of a chord and subtended by it are equal. 

3. Chords that subtend equal angles inscribed in the same or equal circles are equal. 

 
Tangent and Chord Theorem          185 
A line intersects a circle where it makes an angle with a chord equal to the angle subtended by 
that chord if and only if that is a touching point. 
 
Cyclic Quadrilateral Theorem          187 
If a quadrilateral is cyclic, then its opposite angles are supplementary.  
 
Cyclic Quadrilateral Theorem Converse         187 
If a quadrilateral has two opposite angles that are supplementary, then it is cyclic. 
 
Inscribed Angle Theorem Converse          195 
If two equal angles with vertices on the same side of a segment are subtended by it, their vertices 
and the endpoints of the segment are corners of a cyclic quadrilateral. 
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The first two pages are first-year geometry, and the third page is second-year geometry.  These 

are not the best or most interesting theorems; these are the ones most likely to be cited in proofs.  

SAS congruence is by far the most often cited theorem in geometry.  You should always be on 

the lookout for two triangles with two sides and the included angle in common.  As soon as you 

see that, just say “by SAS” and all the corresponding sides and angles are pairwise equal. 
 

 

 

Do not label all six of these equalities – that 

would clutter your figure – draw a rough oval 

shape inside the two triangles to indicate their 

congruence.  If you have two pairs of congruent 

triangles, then draw one pair with fat ovals and 

the other pair with skinny ovals.  This notation 

does not always work, especially if the triangles 

overlap, but it is good practice with most figures. 
 

Vertical angles are ubiquitous, but do not clutter your figure by labeling them all; just keep their 

equalities in mind.  Sides are labeled with lowercase letters, 𝑒, 𝑓, 𝑔, and angles with Greek letters, 

𝛼, 𝛽, 𝛾, but it is usually best not to use these labels.  Label two sides equal with little hash marks 

and label two angles equal with angle symbols with hash marks through them.  If you have a 

second pair of equal sides or equal angles in the same figure, use double hash marks.  It is their 

equality that you need, not their names.  This is especially clarifying for things that are equal by 

transitivity.  Labeling segments 𝑒, 𝑓, 𝑔 and then writing somewhere that 𝑒 = 𝑓 and somewhere 

else that 𝑓 = 𝑔 does not clarify that 𝑒 = 𝑔.  Always label right angles with a square angle symbol. 
 

 

 

Be on the lookout for isosceles triangles.  As soon as 

you see a triangle with two sides equal, immediately 

label the two base angles equal; or, if you see two 

angles in a triangle equal, label the two legs equal.  

Even if you do not yet know where you are going with 

this, assume that the triangle would not be given to 

be isosceles if these equalities were not important. 

 

The polygon angle sum theorem is included on this list because it often appears on Common Core 

exams.  If asked for the interior angle of a regular polygon, subtract the exterior angle from 180°.  

The only other Common Core theorems are the vertical angles and angle sum theorems.  

(Sometimes they use the intersecting chords theorem to create quadratic equations.)  Some 

angles will be linear functions of 𝑥.  The vertical angles theorem allows you to set them equal; 

the angle sum theorem allows you to set their sum equal to 180°.  Don’t ask what 𝑥 represents, 

it is there only to set up an algebra exercise.  Common Core “geometry” is just remedial algebra! 
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Principal Results of Geometry–Do in Alphabetical Order 
 

Angle–Angle (AA) Similarity Theorem    Orange    96 

Angle–Angle–Side (AAS) Theorem     Yellow     40 

Angle Bisector Theorem      Yellow     43 

Angle–Side–Angle (ASA) Theorem     Yellow     37 

Angle–Side–Longer Side (ASL) Theorem    Yellow     43 

Angle Sum Theorem       Orange    94 

Anticenter Theorem       Green   178 

Anticenter–Orthocenter Theorem     Green   178 

Bi–Centric Quadrilateral Theorem     Red   228 

Brahmagupta’s Bi–Medial Theorem     Green   177 

Butterfly Theorem       Green   188 

Carnot Theorem       Red   225 

Center Line Theorem       White     18 

Chord Inside Circle Theorem      Yellow     47 

Circumcenter Theorem      Orange    87 

Common Point Theorem      Yellow     49 

Common Chord Theorem      Yellow     48 

Construction 2.2, 4.4                                 (Tangent from a Point) Yellow, Green        48, 179 

Construction 2.4                      (Regular Hexagon in a Circle) Yellow     64   

Construction 3.1                                   (Locate Circle Center) Orange    88 

Construction 3.3                             (Parallel through a Point) Orange    93 

Construction 3.4                  (Angle through Point off a Line) Orange    94 

Construction 3.11                                        (Trisect a Segment) Orange  111 

Construction 3.19                     (Regular Pentagon in a Circle) Orange      149 

Conway Problem       Yellow     66 

Cramer–Castillon Problem                        (Zlatanović Problem) Blue      294, 297 

Cut Tangents Theorem      Orange    90 

Cyclic and Orthodiagonal Theorem     Red   228 

Cyclic Quadrilateral Theorem and Converse    Green   187 

Cyclic/Tangential Pairs Theorem     Red   227 

Diameter and Chord Theorem     Yellow     47 

Defect Addition Theorem      Yellow     81 

Double–Long Triangle Theorems I, II, III    Red   243 

Egyptian Triangle Theorem      White     29 

Eight–Point Circle Theorem      Green   174 

Equal Chords Theorem      Yellow     47 

Equal Segments on Parallels Theorem    Orange  102 
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Equilateral and Half Equilateral Triangle Theorems   White     16 

Euler Circle Lemma, Theorem      Red   241 

Euler Segment Theorem      Red   239 

Excenter, Excircle Theorems      Orange    88 

Excircle Theorem Corollaries      Orange    90 

Exterior Angle Inequality Theorem     Yellow     38 

Exterior Angle Theorem      Orange    95 

External Tangents Theorem      Orange    90 

Fagnano Problem       Red   237 

Greater Angle Theorem      Yellow     38 

Greater Side Theorem       Yellow     38 

Hinge Theorem       Yellow     39 

Hypotenuse–Leg (HL) Theorem     Yellow     40 

Incenter Theorem       Yellow     54 

Incenter and Circumcenter Theorem     Yellow     54 

Incircle Theorem       Yellow     55 

Incircle and Excircle Theorem      Orange    89 

Inscribed Angle Theorem      Green   174 

Inscribed Angle Theorem Converse     Green   195 

Inscribed Octagon Theorem      Orange  150 

Interior and Exterior Angles Theorem    White     19 

Intersecting Chords/Secants Theorems    Blue      294, 295 

Intersecting Chords/Secants Similarity/Angle Theorems  Green      185, 186 

Isosceles Altitudes Theorem      Yellow     40 

Isosceles Angle Bisectors Theorem     Yellow     62 

Isosceles Angle Theorem      Orange    95 

Isosceles Kite Theorem      Red   231 

Isosceles Medians Theorem      Yellow     63 

Isosceles Triangle Frustum Theorem     Orange  112 

Isosceles Triangle Theorem      White     15 

Isosceles Triangle Theorem Converse    Yellow     37 

Kite Theorem        Orange    98 

Kite Altitudes Theorem      Orange    98 

Lambert Theorem       Orange    97 

Lemma 2.1          (Two Interior Angles Are Less than 𝜎) Yellow     42 

Lemma 2.2         (Line Intersects Circle at Most Twice) Yellow     48 

Line Reflection Theorem      Yellow     50 

Long Circle Theorem       Red   225 
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Long Circle Theorem Corollary     Green   216 

Long Quadrilateral Theorem      Red   226 

Long Rhombus Theorem      Red   227 

Long Triangle Theorem      Red   225 

Medial Parallelogram Theorems I, II     Orange  115 

Medial Parallelogram Area Theorems I, II, III    Orange, Blue     133, 292 

Medial Triangle Theorems I, II, III     Orange  105 

Medial Triangle Orthocenter Theorem    Orange  109 

Mediator Theorem       White     19 

Mid–Segment Theorem      Orange  104 

Mid–Segment and Mediator Theorem    Yellow     62 

Minimal Base Theorem      Yellow     51 

Miquel Theorems       Red      222–224 

Mirror Problem       Yellow     49 

Moss Problem        Red       235, 266 

Napoleon Theorem           (Circumcenter, Medial Point Proofs) Green, Red      188, 235 

Obtuse Angle–Side–Side (OSS) Theorem    Yellow     43 

Orthocenter Theorem       Orange  109 

Orthocenter and Circumcircle Theorem    Green   196 

Orthocenter and Wallace Line Theorem    Red   241 

Pairwise Parallels/Perpendiculars Theorem    Orange          93, 96 

Parallel Lines Theorem      Orange  114 

Parallelogram Theorem      Orange  102 

Parallelogram Angles Theorem     Orange  103 

Parallelogram Area Theorem      Orange  132 

Parallelogram Diagonals Theorem     Orange  104 

Parallels and Circle Theorem      Orange    87 

Perpendicular Length Theorem     Yellow     39 

Pitot Theorem        Yellow     57 

Pitot Theorem Converse             (Euclidean, Neutral Proofs) Yellow           57, 58 

Problem 3.55                (Similar Parallelogram in Parallelogram) Orange  130 

Problem 4.5   (Locus of vertices for angle subtended by chord) Green   176 

Pythagorean Theorem      Orange  134 

Pythagorean Theorem Converse     Orange  135 

Quadrilateral Angle Sum Theorem     Orange    95 

Quadrilateral Angle Bisectors Theorem    Green   197 

Rectangle Bimedian Theorem     Orange    93 

Rhombus Theorem       White     21 
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Right Triangle Incircle Theorem     Orange  118 

Saccheri Theorems I, II      White, Yellow          21, 82 

Saccheri and Lambert Theorem     Yellow     79 

Saccheri–Legendre Theorem      Yellow     81 

Shortest Chord Theorem      Yellow     47 

Shoulder Width Stance Theorem     Green   194 

Side–Angle–Side (SAS) Theorem     White     15 

Side–Angle–Side–Angle–Side (SASAS) Theorem   Yellow     56 

Side–Side–Side (SSS) Theorem     White     16 

Similar Triangles (Right, Nested, Crossed) Theorems   Orange  116 

Skew Angle Theorem       Green   191 

Spiral Similarity Theorem      Green   189 

Squares, Rectangles and Rhombi Theorem    Orange  149 

Steiner–Lehmus Theorem                  (Modern, Classic Proofs) Yellow, Red        62, 282 

Subtend–at–Center Theorem      Orange  103 

Tangent Theorem       Yellow     48 

Tangent and Chord Theorem      Green   185 

Tangent Bisection Theorem I      Yellow     49 

Tangential Quadrilateral Theorem I, II, III, IV    Yellow    56, 60, 61 

Thales’ Diameter Theorem      Green   173 

Thébault Theorem       Orange  129 

Torricelli Points and Euler Circle Theorem    Red   247 

Torricelli Problem, and in Reverse     Red       234, 236 

Transversal Lemma, Theorem     Orange          92, 93 

Triangle Area Theorem      Orange  132 

Triangle Inequality Theorem      White                    5 

Triangle Frustum Mid–Segment Theorem    Orange  107 

Triangle and Parallelogram Theorem     Green   175 

Two–to–One Medial Point Theorem     Orange  108 

Two Tangents Theorem      Yellow     49 

Two Transversals Theorem      Orange  107 

Two, Three, Six Triangles Area Theorems    Orange  133 

Unequal Chords Theorem      Yellow     47 

Varignon Theorem       Orange  115 

Vertical Angles Theorem      Yellow     37 

Viviani Sum, Similarity, Difference, Equilateral Theorems  Orange            98, 99 

Wallace Lines and Euler Circle Theorem    Red   246 

Wallace Theorems I, II, III, IV, V     Red       229–232 
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Index of Names 

 

Boldface names are geometers.  Boldface pages have theorems named after the geometer. 

 

Aguilar   Victor Jacobo Aguilar   America  1966 –  

   245, 265, 268, 269, 270, 271 

Alexander  Daniel C. Alexander   America  extant 

   69 

Alhazen  Hasan Ibn al-Haytham   Iraq/Egypt  965 – 1040 

   279 

Altshiller–Court Nathan Altshiller-Court  Poland/America 1881 – 1968  

   ii, xi, 245, 246, 289, 302, 303 

Archimedes  Archimedes of Syracuse  Greece             – 212 BC 

   6, 13, 75, 81 

Ayer   Sir Alfred Jules Ayer   Britain   1910 – 1989 

   269 

Ballew   Pat Ballew    America  extant 

   286 

Beiser   Arthur Beiser    America  1931 –  

   127 

Benatar  Pat Benatar    America  1952 –  

   32 

Bernoulli  Daniel Bernoulli   Switzerland  1700 – 1782 

   221, 265 

Birkhoff  George David Birkhoff   America  1884 – 1944  

   27, 45, 46, 275, 285 

Bolyai   János (Johann) Bolyai   Hungary  1802 – 1860  

   iii, 42, 78, 267 

Bouchaud  Jean-Philippe Bouchaud  France   1962 –  

   221, 222, 265, 266 

Brahmagupta  Brahmagupta    India             – 670 

   118, 177, 228 

Brianchon  Charles Julien Brianchon  France   1783 – 1864  

   229 

Brocard  Pierre René Jean Baptiste Henri Brocard France  1845 – 1922  

   115, 250, 251 

Buchanan  Mark Buchanan   America  1961 – 

   220, 221 
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Callahan  Daniel Callahan   America  extant 

   375 

Cantor   Georg Ferdinand Ludwig Philipp Cantor Germany 1845 – 1918 

   5 

Carnot   Nicholas Léonard Sadi Carnot  France   1796 – 1832 

   217, 218, 219, 225, 252 

Casey   John Casey    Ireland   1820 – 1891  

   369 

Castillon  Giovanni Francesco Melchiore Salvemini Italy  1708 – 1791  

   Johann Castillon (changed his name)  Switzerland 

   ii, 294, 295, 297 

Catalfo   Benjamin Catalfo   America  extant 

   43 

Cavendish  Henry Cavendish   Britain   1731 – 1810  

   131 

Ceva   Giovanni Ceva    Italy   1647 – 1734  

   x, 98, 218, 276, 301 

Chandrasekhar Subrahmanyan Chandrasekhar India/America  1910 – 1995  

   252 

Chebyshev  Pafnuty Lvovich Chebyshev  Russia   1821 – 1894  

   80, 273, 274 

Coleman  David Coleman   America  1969 – 

   24 

Columbus  Christopher Columbus  Italy/Spain  1451 – 1506  

   126 

Conley   David T. Conley   America  extant 

   xiii, xiv, 168, 277, 304 

Conway  John Horton Conway   Britain/America 1937 – 2020 

   66 

Coxeter  Harold Scott MacDonald Coxeter Britain/Canada 1907 – 2003  

   ii, 235 

Cramer  Gabriel Cramer   Switzerland  1704 – 1752  

   ii, 153, 154, 155, 156, 158, 285, 304, 305, 297 

Debreu  Gérard Debreu   France/America 1921 – 2004  

   iii, 115, 130, 169, 170, 270 

Descartes  René Descartes   France/Netherlands 1596 – 1650  

   33, 64, 65, 84, 103, 275 
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Dieudonné  Dieudonné M’bala M’bala  France   1966 – 

   115, 130, 276 

Downs   Floyd L. Downs, Jr.   America  1931 – 2021  

   45 

Dubnov   Jakov Semenovich Dubnov  Russia   1887 – 1957  

   366 

Einstein  Albert Einstein    Germany/America 1879 – 1955  

   iii 

Epicurus  Epicurus    Greece             – 270 BC 

   5, 267 

Euclid   Euclid of Alexandria   Greece             – 285 BC 

iii, iv, 1, 5, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 28, 29, 35, 37, 38, 39, 42, 45, 

47, 48, 49, 57, 70, 75, 78, 92, 93, 94, 95, 111, 128, 131, 132, 133, 134, 135, 

157, 173, 185, 187, 218, 219, 240, 245, 259, 275, 294, 295, 296, 297, 299, 

300 

Euler   Leonhard Euler (oi’ lər like oiler) Switzerland  1707 – 1783  

i, iii, xvii, 98, 216, 219, 220, 221, 239, 240, 241, 242, 243, 245, 246, 247, 

248, 249, 253, 264, 265 

Fagnano  Giovanni Francesco Fagnano dei Toschi Italy  1715 – 1797  

   i, xvii, 218, 237, 267 

Fermat   Pierre de Fermat   France   1607 – 1665  

   115, 233, 377 

Ferrari   Lodovico de Ferrari   Italy   1522 – 1565 

   279 

Fetisov   Antonin Ivanovich Fetisov  Russia   1891 – 1979  

   57, 213, 372 

Feuerbach  Karl Wilhelm Feuerbach  Germany  1800 – 1834  

   248 

Fink   Albert Fink    Germany/America 1827 – 1897 

   19, 71, 72 

Fraleigh  John B. Fraleigh   America  extant  

   8 

Franzsen  William N. Franzsen   Australia  extant 

   240, 275 

Galois   Évariste Galois  (Gal’-wa)  France   1811 – 1832  

   6 

Galileo   Galileo Galilei     Italy   1564 – 1642  

98, 218, 219 
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Gates   Bill Gates    America  1955 – 

   vix, xiii, xviii, 15, 40, 86, 160, 186, 254, 272 

Gauss   Carl Friedrich Gauss   Germany  1777 – 1855  

   82, 91, 125, 126, 127, 128, 153, 156, 233 

Gergonne  Joseph Diez Gergonne  France   1771 – 1859  

   301 

Glagolev   Neal Alexandrovich Glagolev  Russia   1888 – 1945  

   57, 213, 372 

Givental  Alexander Givental   Russia/America 1958 –  

   41, 373 

Godfrey  Thomas Godfrey   America  1704 – 1749  

   176 

Goodall  Jane Morris Goodall   Britain   1934 – 

   267 

Gram   Jørgen Pederson Gram  Denmark  1850 – 1916  

   274 

Guinand  Andrew Guinand   Australia  1912 – 1987  

   240 

Gupta   Raj Gupta    India/America  extant 

   33, 36, 220, 221, 222 

Hadley   John Hadley    Britain   1682 – 1744  

   176 

Hall   Henry Sinclair Hall   Britain   1848 – 1934  

   ii, 69, 375 

Hartshorne  Robin Hartshorne   America  1938 – 

   iv, 15 

Heron   Heron [Hero] of Alexandria  Greece   circa. 0 A.D. 

   134 

Heath   Thomas Little Heath   Britain   1861 – 1940  

   69, 299 

Hicks   Sir John Richard Hicks   Britain   1904 – 1989  

   77   

Hilbert   David Hilbert    Germany  1862 – 1943  

   1, 9, 10, 11, 12, 13, 27, 275  

Hume   David Hume    Scotland  1711 – 1776 

   265, 266 

Johnson  Roger Authur Johnson  America  1890 – 1954 

   ii, xi, 199, 245, 246 
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Kant   Immanuel Kant   Germany  1724 – 1804  

   171, 267, 268, 284 

Keen   Steve Keen    Australia  1953 – 

   270 

Kirman   Alan Kirman    Britain/France  1939 – 

   iii 

Kiselev   Andrei Petrovich Kiselev  Russia   1852 – 1940  

   11, 12 

Koeberlein  Geralyn M. Koeberlein  America  extant 

   69 

Kolmogorov  Andrei Nikolaevich Kolmogorov Russia   1903 – 1987 

   258, 260 

Lambert  Johann Heinrich Lambert  Switzerland/Germany 1728 – 1777   

78, 79, 82, 83, 84, 85, 97, 98, 99, 100, 101, 105, 116, 118, 127, 174, 180, 

194, 196, 227, 233, 236, 239 

Lebesgue  Henri Léon Lebesgue   France   1875 – 1941 

   258 

Legendre  Adrien-Marie Legendre  France   1752 – 1833  

   80, 81, 84 

Lehmus  Daniel Christian Ludolph Lehmus Germany  1780 – 1863  

   62, 284 

Lobachevski  Nikolai Ivanovich Lobachevsky Russia   1792 – 1856  

   iii, 12, 63, 84, 128, 233, 267 

Lowry-Duda  David Lowry-Duda   Britain/America extant 

   240, 275 

McKellar  Danica Mae McKellar   America  1975 –  

   viii 

Melville  Herman Melville   America  1819 – 1891  

   8 

Menelaus  Menelaus of Alexandria  Greece        70 – 140  

   ii, 301 

Menger  Carl Menger    Austria   1840 – 1921 

   10 

Mihalescu  Constantin Mihalescu   Romania  1912 – 1988  

   6, 216, 251 

Miquel   Auguste Miquel   France   1816 – 1851  

   i, xvii, 115, 188, 202, 215, 217, 222, 223, 224, 225, 243 
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Moise   Edwin Evariste Moise   America  1918 – 1998  

   17, 24, 45 

Moss   Thomas Moss    Britain   circa. 1755 

   235, 265, 266 

Napoleon  Napoleon Bonaparte   France   1769 – 1821  

   i, xvii, 115, 188, 217, 233, 235, 245, 298 

Neumann  Peter Michael Neumann  Britain   1940 –  

   279 

Newton  Isaac Newton    Britain   1643 – 1727  

   iii, 69, 116, 127, 176, 251, 252 

Nietzsche  Friedrich Wilhelm Nietzsche  Germany  1844 – 1900 

   10 

Opitz   Edward Allen Opitz   America  1966 –  

   245 

Pasch   Moritz Pasch    Germany  1843 – 1930  

   4, 7, 11, 38, 62 

Penrose  Roger Penrose    Britain   1931 – 

   117 

Phelps   Everett Russell Phelps   America  1894 – ? 

   v, 11, 118, 135, 308 

Pitot   Henri Pitot    France   1695 – 1771  

   57, 58, 60, 68, 115, 116, 213, 372 

Playfair  John Playfair    Scotland  1748 – 1819  

   1, 3, 218 

Poe   Edgar Allan Poe   America  1809 – 1849  

   53, 77 

Pogorelov  Aleksei Vasil’evich Pogorelov  Russia   1919 – 2002  

   57, 277 

Poisson  Siméon Denis Poisson   France   1781 – 1840  

   262 

Prástaro  Agostino Prástaro   Italy   extant 

   28, 240, 275 

Ptolemy  Claudius Ptolemy   Greece/Rome  100 – 170  

   279, 301 

Pythagoras  Pythagoras of Samos   Greece             – 495 BC 

25, 28, 29, 66, 70, 73, 134, 135, 136, 137, 140, 146, 157, 158, 164, 238,  

298, 300 

 



Victor Aguilar  Geometry without Multiplication 

369 
 

Quine   Willard Van Orman Quine  America  1908 – 2000 

   268, 269 

Richardson  Lewis Fry Richardson   Britain   1881 – 1953  

   iii, 221, 251 

Riemann  Georg Friedrich Bernhard Riemann Germany  1826 – 1866  

   iii, 126, 258, 267 

Rusczyk  Richard Rusczyk   Poland/America 1971 –  

   69, 93, 157, 158 

Ryan   Mark Ryan    America  extant 

   169 

Saccheri  Giovanni Girolamo Saccheri  Italy   1667 – 1733  

   x, 21, 56, 61, 62, 66, 68, 78, 79, 80, 81, 82, 83, 84, 85, 93, 98, 218 

Schmid   Christoph Schmid   Switzerland  extant 

   252 

Schmidt  Erhard Schmidt   Germany  1876 – 1959  

   274 

Scholl   Duane Scholl    America  extant 

   iv 

Service   Robert William Service  Britain/Canada 1874 – 1958  

   159 

Shaka   Shaka Zulu    South Africa  1787 – 1828 

   36 

Simson  Robert Simson    Scotland  1687 – 1768  

   229, 299, 385 

Smith   David Eugene Smith   America  1860 – 1944 

   152 

Spring   Joel Spring    America  extant 

   xiv 

Steiner   Jakob Steiner    Switzerland  1796 – 1863  

   62, 246, 283, 284 

Stevens  Frederick Haller Stevens  Britain   1853 – 1933 

   ii, 69, 375 

Stewart  Matthew Stewart   Scotland  1717 – 1785  

   301 

Taylor   Traci Taylor    America  extant 

   xii, xv 

Tesla   Nikola Tesla    Serbia/America 1856 – 1943  

   301 
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Thales   Thales of Miletus (Thay’-lees)  Greece             – 546 BC 

28, 85, 124, 141, 161, 173, 174, 179, 181, 182, 191, 193, 194, 215, 228, 

231, 232, 237, 241, 246, 247, 249, 255, 263, 273, 296, 299, 300 

Thébault  Victor Michael Jean-Marie Thébault France   1882 – 1960   

   50, 129, 130 

Torricelli  Evangelista Torricelli   Italy   1608 – 1647  

   i, x, xvii, 98, 116, 218, 219, 233, 234, 235, 236, 240, 247, 248, 266, 267, 280 

Varignon  Pierre Varignon   France   1654 – 1722  

   115, 116, 170, 178, 227 

Várilly   Anthony Várilly   America  extant 

   240 

Victorio  Victorio (Apache chief)  America  c. 1880 

   205 

Viviani   Vincenzo Viviani   Italy   1622 – 1703  

   x, 40, 98, 99, 218, 266 

Voke   Heather Voke    America  extant 

   xiv 

Wallace  William Wallace   Scotland  1768 – 1843  

   i, xvii, 218, 221, 229, 230, 231, 232, 241, 246, 247, 248, 253, 298 

Washington  George Washington   America  1732 – 1799 

   265 

Wentworth  George Albert Wentworth  America  1835 – 1906  

   xi, xii, xiii, xiv, 11, 12, 272, 299, 375 

Wolfe   John H. Wolfe    America  circa. 1935 

   v, 11, 118, 135, 308 

Wright   Orville Wright    America  1871 – 1948 

   221, 265 

Wright   Wilbur Wright    America  1867 – 1912 

   221, 265 

Xing    Xing Zhou    China/Scotland extant 

   220 

Yiu   Paul Yiu    America  extant 

   152 

Zimba   Jason Zimba    America  extant 

   153, 154, 155 

Zlatanović  Milan Zlatanović   Serbia   extant 

   ii, 293, 294, 295 
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Glossary 

 

If a student looks up “rectangle” in the index of Glencoe Geometry, he finds that the word appears 

on pages 24, 58 and 423–429.  Pages 23 and 58 are no help because Glencoe assumes students 

already knows what a rectangle is, and they just state the formulas for perimeter and area.  Note 

the complete lack of foundations; Glencoe is multiplying base times height without having ever 

defined multiplication and division of lengths.  Suppose I construct an isosceles right triangle and 

then attempt to divide the hypotenuse by the leg.  Is this quotient a length?  We will never find 

out by reading Glencoe!  Also, note that it took over four hundred pages to get around to a formal 

definition of a rectangle.  What were they doing in the meantime?  Opening the book at random 

to page 93, we find a photo of a man cutting a girl’s hair and learn that stylists must attend 

cosmetology school and obtain a license.  Colorful charts and graphs display how many customers 

a salon is seeing on the weekends over a six-month period.  Glencoe concludes, “Survey data 

supports a conjecture that the amount of business on the weekends has increased, so the owner 

should schedule more stylists to work on those days.”  Ahem!  Getting back to rectangles, let us 

see what Glencoe Geometry writes on page 423: 

 

By definition, a rectangle has the following properties. 

•  All four angles are right angles. 

•  Opposite sides are parallel and congruent. 

•  Consecutive angles are supplementary. 

•  Diagonals bisect each other. 

 

By definition???  Quack!  These are easy theorems that any 12-year-old in Russia could prove.  

But debunking mountebanks is not my job.  The textbooks that I recommend are Casey’s 

Redux129, Hall & Stevens’ A School Geometry and Wentworth’s Plane Geometry.   

 

Students beware!  A common cause of falling behind one’s mates is that you made no effort to 

learn the terminology before a lecture and then spent much of the lecture with your head down 

thumbing through your textbook looking for definitions.  A common cause of the entire class 

failing the final exam is that they had an accommodating teacher who spent half of every lecture 

defining words and consequently did not cover all the material needed to take the final exam. 

 

The Note to Teachers states, “The terms in the glossary are color coded to the chapters where 

they are introduced.  New terms are in boldface, but I do not pause to define them.  It is your job 

to tell students at the end of each day which terms to look up in the glossary for the next lecture.”  

If your teacher is not following these instructions, then ask him or her to do so! 

 
129 Daniel Callahan translated and edited a 19th century textbook by the Irish mathematician John Casey. 
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Adjacent Two disjoint triangles with a common side (common for its full length), or two 
angles with a common ray (common vertex and direction) 

 

Altitude  The perpendicular from a triangle vertex to the opposite side’s extension 
 

Analytic  Knowledge contained in the given information 
 

Angle   Two rays, called the sides, sharing a common endpoint, called the vertex. 

∠𝐹 if there is one angle at 𝐹 or ∠𝐸𝐹𝐺 for the angle between 𝐹𝐸⃗⃗⃗⃗  ⃗ and 𝐹𝐺⃗⃗⃗⃗  ⃗. 
   Acute   An angle that is less than a right angle 

Alternate Interior Angles on opposite sides of a transversal and between 
the two given lines 

Apex   The angle opposite the base of a triangle 
   Base   In a triangle with a base, the angles at either end 

Central   An angle whose vertex is the center of a circle 
Complementary Two angles that sum to one right angle 
Conjugate  Angles that sum to two straight angles 
Consecutive  Angles both interior (exterior) on the ends of a side 
Elevation  One ray is on level ground and the other is above it 
Exterior  The angle supplementary to an interior angle 

   Inscribed  An angle inside a circle with its vertex on the circle 
   Interior   An angle inside a triangle or quadrilateral at a vertex 
   Obtuse   An angle greater than right and less than straight 
   Parallelism  In hyperbolic geometry; 2 atan(𝑒−𝑥) with 𝑥 height 
   Right   The bisection of a straight angle 
   Skew   The difference of the base angles of a triangle 

Straight     An angle whose rays are collinear and opposed 
   Supplementary  Two angles that sum to one straight angle 

Vertical   Angles across from each other at an intersection 
 

Anticenter  The point of concurrency of the maltitudes; it exists for cyclic quadrilaterals 
 

Apex   The triangle vertex opposite the base 
 

Arc Part of a circle; within equal circles, angles at the center and the arcs they cut off 
  are a transformation of each other.   
 

Area The measure of the size of a triangle or a union of disjoint triangles 
 

Auxiliary Lines or arcs not given whose intersection goes beyond analytic 
 

Axiom A proposition that is assumed without proof for the sake of studying the 
  consequences that follow from it 
 

Base   The side of an isosceles triangle bracketed by the equal angles 
The side of a triangle designated as such, or the one that it is built on 
 

Between 1. If 𝐹 is between 𝐸 and 𝐺, then 𝐹 is also between 𝐺 and 𝐸 and there exists a line 
containing the points 𝐸, 𝐹, 𝐺.  (Between implies that the three points are distinct.) 



Victor Aguilar  Geometry without Multiplication 

377 
 

 2. If 𝐸 and 𝐺 are two points on a line, then there exists at least one point 𝐹 lying 
between 𝐸 and 𝐺 and at least one point 𝐻 such that 𝐺 lies between 𝐸 and 𝐻. 

 3. Of any three collinear points, there is exactly one between the other two. 
 

Bi–Conditional A statement of the form 𝑝 if and only if 𝑞.  It is true if both 𝑝 and 𝑞 are true or 
both 𝑝 and 𝑞 are false.  𝑝 implies 𝑞; also, 𝑞 implies 𝑝.  Proof of neither implication 
can cite the other implication.  If and only if is abbreviated iff. 

 

Bi–Medial  The intersection of the diagonals of a quadrilateral 
 

Bimedian  A segment joining the midpoints of opposite sides of a quadrilateral 
   

Bisect  
1

2
  To divide a segment or an angle into two equal parts, called halves 

 

Center Line  The mediator of the base of an isosceles triangle or a semicircle 
 

Centroid The balance point of a uniform plate.  Proving that a triangle’s medial point is its 
centroid requires calculus, so these terms are not interchangeable. 

 

Chord   The segment between two points on a circle 
   Common  The segment between the intersection points of two 
       circles 
 

Circle   All the points equidistant from a point, which is called the center 
 

Circum   circle   A circle that intersects a figure at its vertices  
center   The center of the circumcircle 

   radius   The radius of the circumcircle;  𝑅 
 

Closing the Horizon All the angles around a point must sum to 2𝜎. 
 

Collinear  A set of points that are all on the same line 
 

Concentric Two or more circles with the same center but different radii 
 

Concurrent  Three or more lines or arcs that intersect at the same point 
 

Concyclic  Four or more points on the same circle 
 

Condition  Constraints that a figure either conforms to or not 
 

Conformal  A transformation that preserves angles; e.g., scaling and circle inversion 
 

Congruent  ≅ Two triangles whose areas and whose sides and whose interior angles are equal 
 

Contradiction, Proof by To prove that statement 𝑝 implies statement 𝑞, assume that 𝑝 is true and 𝑞 is not 
    true and show that this is impossible.   
 

Converse  Given the statement that 𝑝 implies 𝑞, the statement that 𝑞 implies 𝑝 
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Convex   Any segment between two points interior to two sides is inside the figure 
 

Defect   In hyperbolic geometry; 𝜎 − (𝛼 + 𝛽 + 𝛾) for a triangle of a given size 
 

Diagonal  Segments connecting non-consecutive quadrilateral vertices 
   Definitional  The adjacent side of the two triangles in a quadrilateral 
 

Diameter  A chord that crosses the center of a circle 
   Diametrically Opposed The endpoints of a diameter 
 

Dichotomy  Proof by contradiction when there are two alternatives 
 

Discussion  The necessary and sufficient conditions for a solution, and how many solutions 
 

Disjoint   Figures that do not overlap; their areas form an additive group 
(This includes touching circles and adjacent triangles, if outside each other.) 

 

Disjoint    There is zero probability of any points being inside both figures. 

 

Edubabble  Ridiculously fluffy words and silly sloganeering intended to obfuscate and confuse 
(American high-school teachers do not study their subject in college – they will 

pick that up from their students’ textbook – they get education babble instead.) 

 

Endpoint  A point at the end of a segment, arc, or ray 
 

Equal  =  Comparable magnitudes that are not less than nor greater than each other 
 

Equidistant  Two pairs of points that define two segments of equal length 
   Lines   Any two perpendiculars between them are of equal 
       length 
 

Equivalence  Class   A set of objects that are equal, congruent, similar, or 
       parallel  

Relation    A set and a reflexive, symmetric and transitive relation 
 

Equivalent  Conditions, any two of which are bi-conditional 
 

Euler  Center   The center of the Euler circle  
Circle  Of a triangle, the circle through the side midpoints, 
   altitude feet, and midpoints from the orthocenter to the 
   vertices.  This is the nine-point circle in some textbooks. 
Segment  The segment from the orthocenter to the circumcenter 

 

Ex circle   A circle tangent to a side of a triangle and to the 
     extensions of the adjacent sides 
  center   A center of an excircle 

foot Where an exterior angle bisector cuts the extension of 
the opposite side; 𝐸×, 𝐹×, 𝐺× 

  radii   The radii of the excircles; 𝑟𝑋, 𝑟𝑌, 𝑟𝑍 are of 𝜔𝑋, 𝜔𝑌, 𝜔𝑍 
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Extend   Given 𝐸𝐹, construct 𝐸𝐺 such that 𝐹 is inside 𝐸𝐺 or 𝐸 is inside 𝐹𝐺. 
 

Field of Fire  All the points interior to the top traverse of a machine gun 
 

Figure   A set of points.  They may be alone or joined in lines, segments, and arcs. 
 

Foot   The intersection when one drops a perpendicular from a point to a line 
 

Frustum, Triangle The part of a triangle between the base and a cut parallel to the base 
 

Fully Defined  A figure with the given characteristics exists, and it is unique. 
 

Geometric Mean If 
𝑎

𝑏
=

𝑏

𝑐
 for real numbers 𝑎, 𝑏, 𝑐, then 𝑏 is the geometric mean of 𝑎 and 𝑐 

 

Half–Scale  A triangle whose sides are half the corresponding sides in another triangle 
 

Harmonic Division To cut a segment 𝐸𝐹 internally and externally in the same ratio; 
𝐸𝐺∗

𝐹𝐺∗
=

𝐸𝐺×

𝐹𝐺×
 

 

Homothetic  Center   𝐸′′𝐸⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹′′𝐹⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺′′𝐺⃡⃗ ⃗⃗ ⃗⃗  ⃗  for  𝐸′′𝐹′′𝐺′′  homothetically double 

        𝐸𝐹𝐺 
Double  A triangle whose sides are twice the lengths of another  

triangle’s sides, and whose side extensions are pairwise 
parallel to that triangle’s side extensions 

Triple  Analogous to a homothetic double, but of triple length 
 

Hypotenuse  The side of a right triangle opposite the right angle 
 

In   circle   A circle that touches each side of a figure  
center   The center of the incircle 
diameter  The diameter of the incircle;  𝑑 
foot   Where an angle bisector cuts the opposite side; 
    𝐸∗, 𝐹∗, 𝐺∗ 
radius   The radius of the incircle;  𝑟 

 

Inside Segment  A member of the set of segment points, but not an 

     endpoint  

Figure A point such that any line through it intersects the figure 

  at exactly two points and the point is between them 

Triangles A triangle whose every point is inside of or on a side of 

another triangle, but the triangles do not coincide 

 

Isometric  A transformation that preserves lengths; by SSS, it also preserves angles 
 

Kill  Chord   A segment from one side of an angle to the other  
   Circle   The circle of largest radius touching or inside two angles 
 

Legs   Triangle  The sides other than the base or the hypotenuse 
   Triangle Frustum  The sides that are not parallel 
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Lemma   A theorem used for proving other more important theorems 
 

Length   The measure of the size of a segment; the distance between its endpoints   
 

Line   A segment extended past both endpoints; denoted 𝐸𝐹⃡⃗⃗⃗  ⃗ if 𝐸𝐹 is the segment 
 

Line of Centers  The line that passes through the centers of two circles 
 

Lines, Supplementary If alternate interior angles are supplementary, the two lines crossed by the 
transversal are supplementary relative to that transversal. 

 

Locus   All the points that satisfy a condition; the plural is loci (lō’ sī) 
 

Long   Inside an interior angle of a triangle, but outside the triangle 
Inside a machine gun’s field of fire, but past its kill chord 
Center   The intersection of an angle bisector and the circumcircle 

   Circle   Around a long center through the incenter and excenter 
 

Magnitude  A set with both an equivalence relation, =, and a total ordering, ≤ 
 

Maltitude Midpoint-altitude; the perpendicular dropped from the midpoint of a side of a 
  quadrilateral onto the opposite side  
 

Measure The size of sets; counts of discrete points, lengths of segments, or areas of 

  triangles or unions of disjoint triangles.   

 

Medial Point  The point where the medians or the bimedians are concurrent 
 

Median   A segment from a vertex of a triangle to the midpoint of the opposite side 
 

Mediator  The perpendicular bisector of a segment 
 

Midpoint  The point where a segment is bisected 
 

Mirror Property Light bouncing off a mirror to a point goes as far as it would to its reflection 
 

Mid–Segment Triangle  A segment connecting the midpoints of two sides  
Triangle Frustum A segment connecting the midpoints of the legs  

 

Miquel    Point   The point defined by the Miquel theorem  
   Circles   The circumcircles defined by the Miquel theorem 
 

Napoleon Point  First   The center of the equilateral triangle defined in the 
       Napoleon theorem for external equilateral triangles 
   Second   The same, but for the internal equilateral triangles 
 

Neutral Geometry A postulate set that does not mention parallel lines; absolute geometry 
 

Non–Euclidean A postulate set that contains one that contradicts the parallel postulate 
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Opposite In a Triangle  An angle and a side across from each other 
 Of a Line  Endpoints of a segment cut by the line 
 In a Quadrilateral Two sides or two angles across from each other 
 

Ordering, Total A set and a relation, ≤, that is not symmetric, but is reflexive, anti-symmetric and 
transitive 

 

Orthic Reflection The reflection of the orthocenter around a side of the triangle 
 

Orthocenter  The point where the altitudes of a triangle are concurrent 
 

Orthogonal Two arcs such that the tangents at their intersection are perpendicular  
  
Parallel   Two lines that do not intersect  
 

Pedal Point A point from which perpendiculars are dropped onto the sides or the extensions 
of the sides of either a triangle or a quadrilateral 

 

Pencil A triangle with the base infoot and the base exfoot connected to the apex   
(Pencil is a big word in advanced geometry, but we are not there yet.  Just drawing 
this figure and calling it pencil is enough for high-school students.) 

 

Perimeter  The sum of the lengths of the sides of a triangle or quadrilateral 
 

Perpendicular  A line whose intersection with another line makes a right angle 
 

Polygon  The union of multiple triangles adjacent on their sides such that it is convex 
 

Postulate The axioms that are specific to geometry, not to other branches of math 
 

Power of the Point For a point 𝑃 and a circle with center 𝑂 and radius 𝑟; if 𝑧 = |𝑂𝑃|, then the power 

of the point is |𝑃| = |𝑟2 − 𝑧2|.  If 𝑃 is 𝑥 and 𝑦 distant from the circle on a chord 
or a secant, then 𝑥𝑦 = |𝑃|. 

 

Probability  The ratio of the measure of a subset to the measure of the whole set 
 

Projection  In 𝐸𝐹𝐺, the projection of 𝐸𝐺 and 𝐹𝐺 onto 𝐸𝐹 is 𝐸𝐺′ and 𝐹𝐺′, respectively 
 

Quadrature  Theorems proving equality of the areas of triangles or unions of triangles 
 

Quadrilateral  The union of two triangles adjacent on a side such that it is convex; 𝐸𝐹𝐺𝐻 
   Bi–Centric  A quadrilateral that is both cyclic and tangential 

Contact The touching points of a tangential quadrilateral’s 
  incircle connected to each other consecutively 
Cyclic   A quadrilateral for which a circumcircle exists 
Isosceles Kite  A kite with one pair of equal sides equal the diagonal 
Kite The union of two congruent triangles; the uncommon 

sides that are equal are also consecutive. 
Lambert A quadrilateral with three right angles 
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Long The quadrilateral whose vertices are long centers 
Medial Parallelogram The midpoints of consecutive sides of a 
  quadrilateral connected  
Orthodiagonal A quadrilateral whose diagonals are perpendicular 
Parallelogram The union of two congruent triangles; the uncommon 

sides that are equal are also opposite. 
Parent The quadrilateral around a medial parallelogram 
Pedal The connected feet of perpendiculars dropped from the 

pedal point 
   Rectangle  A quadrilateral with equal angles 
   Rhombus  A quadrilateral with all equal sides; plural, rhombi 
   Right Kite  A kite whose two congruent triangles are right 
   Right Rectangle  A rectangle with right angles 
   Right Square  A right rectangle with equal sides 

Saccheri A quadrilateral with two opposite sides equal and 
  perpendicular to the base  
Square   A rectangle with equal sides 
Tangential  A quadrilateral for which an incircle exists 
 

Radius   A segment from the center of a circle to the circle; plural, radii 
 

Random The points in a segment or inside a triangle or circle are uniformly distributed 
 

Ray   A segment extended in one direction; denoted 𝐸𝐹⃗⃗⃗⃗  ⃗ if 𝐸𝐹 is the segment  
 

Reflection  From a point, draw a line through a point and extend it an equal distance 
From a point, reflect it across the foot of a perpendicular dropped on a line 

   From a line, reflect two points across a point and draw a line through them 
   From a circle, reflect its center across a point and draw an equal circle 
 

Reflexive Relation A binary relationship over a set such that every element is related to itself  
 

Relation  A true/false operator on an ordered pair of elements from a given set  
 

Secant   A line that intersects a circle at exactly two points 
 

Segment  All the points along the shortest path between two points; 𝐸𝐹 
 

Semi   Difference  Half the difference of two lengths or of two angles 
Perimeter   Half the perimeter of a triangle 

   Sum   Half the sum of two lengths or of two angles 
 

Side   Triangle  One of the three segments that form a triangle 
Quadrilateral  An uncommon segment of one of its triangles 
Consecutive  Quadrilateral sides that share an endpoint  
 

Similar  ~  Two triangles with all corresponding angles equal 
 

Steiner Line A line parallel to the Wallace line such that the Wallace line is halfway between it 
and the Wallace line’s pedal point; also called the ortholine or orthocentric line. 
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Subtend A chord creating an equivalence class of inscribed angles to one side of it. 
 

Subtend at Center A chord creating an angle with its vertex at the circle center. 
 

Summit   The side of a Saccheri quadrilateral that is opposite the base 
 

Symmetric Relation A relation that can be stated of two things in either order 
 

Synthetic Knowledge that remains after the auxiliary lines and arcs are erased 
 

T & V The transversal and vertical angles theorems, used in some combination 
 

Tangent A line that touches a circle; if length is mentioned, this means the length of the 
segment between the touching point and the point that defines the tangent line. 
Cut The segment of an internal tangent that is between the 

external tangents 
External A line tangent to two circles that does not go between 

their centers, or the segment between touching points 
Internal A line tangent to two disjoint circles that goes between 

their centers, or the segment between touching points  
 

Theorem  A statement requiring proof using postulates or already proven theorems 
 

Torricelli These terms apply only to triangles with angles less than 2𝜑. 
 Apex The apex of an equilateral triangle built on the exterior of 

a side of a triangle; given 𝐸𝐹𝐺, 𝐸′′ is across from 𝐸. 
 2nd Apex The apex of an equilateral triangle built on the interior of 

a side of a triangle; in this book, it is not labeled. 
 Point The point of concurrency of the Torricelli segments; 𝑈 
 2nd Point The point of concurrency of the 2nd Torricelli segments; 𝑉 
 Segment Connect a vertex of a triangle to the Torricelli apex across 

from it; e.g., 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′ 
 2nd Segment Connect a vertex of a triangle to the 2nd Torricelli apex 
 (In the literature, these things are often named after Pierre de Fermat.) 
 

Touch A line and a circle or two circles intersecting each other at exactly one point; that 
is, they do not cut through each other 

   Touching Point  the point where a line and a circle or two circles touch 
 

Transformation A relation between two sets of points that is one-to-one and onto; that is, every 
point in one set is associated with exactly one point in the other set. 

 

Transitive Relation If a relation is true for 𝑎 and 𝑏 and for 𝑏 and 𝑐, then it is true for 𝑎 and 𝑐 
 

Transversal A line that is not parallel to either of two given lines  
 

Traverse  Lateral rotation of a machine gun on its tripod 
Top The maximum angle that a gun can traverse 
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Triangle Segments connecting three noncollinear points, called vertices; e.g., 𝐸𝐹𝐺.   
   Acute   A triangle with all angles acute 

Antipedal The triangle that a given triangle is pedal to relative to a 
given pedal point 

   Contact   The pedal triangle if the incenter is the pedal point 
   Crossed   Two transversals that intersect between two 

parallel lines; cut off the tails to see the triangles 
   Degenerate  The vertices are collinear; this is not a triangle 
   Double–Long  The triangle whose vertices are excenters; excentral 
   Egyptian  A triangle with sides 3, 4 and 5 units long 
   Equilateral  A triangle with all sides equal 
   Half Equilateral  An equilateral triangle cut at its center line 

Isosceles  A triangle with two sides equal 
Long   The triangle whose vertices are long centers 
Medial   The three mid-segments of a triangle as its sides 
Nested Two transversals that intersect outside two parallel lines; 

cut off the tails to see the triangles 
   Obtuse   A triangle with one angle obtuse 
   Orthic   Connect the feet of a triangle’s altitudes 
   Parent   The triangle from which a medial triangle is derived 

Pedal The connected feet of perpendiculars dropped from the 
pedal point 

   Right   A triangle with one angle right 
   Scalene   A triangle with all unequal sides 

   Tangential  Sides tangent to the circumcircle at the vertices of 𝐸𝐹𝐺 
   Too Obtuse  A triangle with one angle equal to or greater than 2𝜑 

Viviani 𝐸𝑃𝑃𝐹 and 𝐹𝑃𝑃𝐸 given 𝐸𝐹𝐺 isosceles with base 𝐸𝐹 and 
pedal point 𝑃 anywhere between 𝐸 and 𝐹 

 

Trichotomy  Proof by contradiction when there are three alternatives 
 

Tri–Segment   Triangle  A segment connecting the trisection points, either 
both close to the base or both close to the apex  

 

Undefined Terms  Intuitive concepts:  plane, point, shortest path, straight  
 

Under Defined Not enough given information; the solutions are infinite in number 
 

Vertex   The intersection of two lines, rays, or sides of a triangle or quadrilateral 
 

Visible Under an Angle All of the points interior to an angle; field of fire 
 

Wallace Line The pedal triangle is a line if the pedal point is on the circumcircle 
 (In the literature, this is often called the Simson line.) 
 

Width  Given two parallel lines, the length of a perpendicular between them 
 Shoulder  The altitude of a rectangle’s definitional triangle  
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Glosario inglés–español 
 

Adjacent 
(Adyacente) 

Dos triángulos disjuntos con un lado común (común para su longitud completa), 
o dos ángulos con una semirrecta común (vértice y dirección comunes) 

  

Altitude (Altura)  La perpendicular desde un vértice de un triángulo hasta la extensión del lado 
opuesto 

  

Analytic (Analítico) Conocimiento contenido en la información dada 
  

Angle (Ángulo) Dos semirrectas, denominadas lados, que comparten un punto final común, 
denominado vértice.  ∠𝐹 si hay un ángulo en 𝐹 o ∠𝐸𝐹𝐺 para el ángulo 

entre 𝐹𝐸⃗⃗⃗⃗  ⃗ y 𝐹𝐺⃗⃗⃗⃗  ⃗ 
 Acute (Agudo) Un ángulo que es menor que un ángulo recto 
 Alternate Interior 

(Alterno interno) 
Ángulos en lados opuestos de una transversal y entre 
las dos rectas dadas 

 Apex (Ápice) El ángulo opuesto a la base de un triángulo 
 Base (Base) En un triángulo con una base, los ángulos en cada 

extremo 
 Central (Central) Un ángulo cuyo vértice es el centro de una 

circunferencia 
 Complementary 

(Complementario) 
Dos ángulos que sumados forman un ángulo recto 

 Conjugate (Conjugado) Ángulos que sumados forman dos ángulos llanos 
 Consecutive 

(Consecutivo) 
Ángulos interiores (exteriores) en los extremos de un 
lado 

 Elevation (Elevación) Una semirrecta está en una superficie plana y la otra 
está por encima de ésta 

 Exterior (Exterior) El ángulo suplementario a un ángulo interior 

 
Inscribed (Inscrito) Un ángulo dentro de una circunferencia con su 

vértice en la circunferencia 
 Interior (Interior) Un ángulo dentro de un triángulo o cuadrilátero en 

un vértice 
 Obtuse (Obtuso) Un ángulo mayor que un ángulo recto y menor que 

un ángulo llano 
 Parallelism 

(Paralelismo) 
En geometría hiperbólica; 2 atan(𝑒−𝑥) con altura 𝑥  

 Right (Recto) La bisección de un ángulo llano 
 Skew (Sesgo) La diferencia de los ángulos base de un triángulo 
 Straight (Llano) Un ángulo cuyas semirrectas son colineales y 

opuestas 
 Supplementary 

(Suplementario) 
Dos ángulos que sumados forman un ángulo llano 

 Vertical (Opuestos por 
el vértice)   

Ángulos opuestos el uno al otro en una intersección 

   

Anticenter 
(Anticentro) 

El punto de concurrencia de las m-alturas; existe para cuadriláteros cíclicos 
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Apex (Ápice) 
 

El vértice opuesto a la base de un triángulo 

Arc (Arco) Parte de una circunferencia; dentro de circunferencias iguales, los ángulos en el 
centro y los arcos que cortan son transformaciones los unos de los otros.   

  

Area (Área) La medida del tamaño de un triángulo o de una unión de triángulos disjuntos 
   

Auxiliary (Auxiliar) Rectas o arcos no dados cuya intersección va más allá de lo analítico 
  

Axiom (Axioma) Una proposición que se asume sin pruebas para estudiar las consecuencias que 
se derivan de ella 

   

Base (Base) El lado de un triángulo isósceles entre los ángulos iguales 
El lado de un triángulo designado como tal, o sobre el que está construido 

  

Between (Entre)  1. Si 𝐹 está entre 𝐸 y 𝐺, entonces 𝐹 también está entre 𝐺 y 𝐸 y existe una 
recta que contiene los puntos 𝐸, 𝐹, 𝐺.  (Entre implica que los tres puntos 
son distintos.) 

2. Si 𝐸 y 𝐺 son dos puntos de una recta, entonces existe al menos un punto 𝐹 
entre 𝐸 y 𝐺, y al menos un punto 𝐻 tal que 𝐺 queda entre 𝐸 y 𝐻. 

3. De cualesquiera tres puntos colineales, hay exactamente uno entre los 
otros dos. 

 

Bi–Conditional 
(Bicondicional) 

Un enunciado de la forma 𝑝 si y solo si 𝑞.  Es verdadero si ambas 𝑝 y 𝑞 son 
verdaderas o ambas 𝑝 y 𝑞 son falsas.  𝑝 implica 𝑞; también, 𝑞 implica 𝑝. La 
prueba de ninguna de las implicaciones puede citar la otra implicación.  Si y solo 
si se abrevia sii. 

   

Bi–Medial (Bimedial) La intersección de las diagonales de un cuadrilátero 
   

Bimedian 
(Bimediana) 

Un segmento que une los puntos medios de los lados opuestos de un 
cuadrilátero 

  

Bisect (Bisectriz)  
1

2
 Divide un segmento o un ángulo en dos partes iguales, denominadas mitades 

   

Center Line (Línea 
central) 

La mediatriz de la base de un triángulo isósceles o de un semicírculo 

   

Centroid (Centroide) El punto de equilibrio de una placa uniforme.  Probar que el punto medial de un 
triángulo es su centroide requiere cálculo, por lo que estos términos no son 
intercambiables. 

   

Chord (Cuerda) El segmento entre dos puntos de una circunferencia 
 Common (Común) El segmento entre los puntos de intersección de dos 

circunferencias 
   

Circle 
(Circunferencia)  

Todos los puntos equidistantes de un punto, que se denomina centro 
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Circum circle (Circunferencia 
circunscrita)    

Una circunferencia que interseca una figura en sus 
vértices 

 center (Circuncentro)  El centro de una circunferencia circunscrita 
 radius (Circunradio)  El radio de una circunferencia circunscrita; 𝑅 
 

Closing the Horizon 
(Cierre del horizonte)  
 

Collinear (Colineal) 

 

La suma de todos los ángulos alrededor de un punto debe ser 2𝜎. 
 
 
Un conjunto de puntos que están todos en la misma recta 

   

Concentric 
(Concéntrico) 

Dos o más circunferencias con el mismo centro, pero con diferentes radios 

   

Concurrent 
(Concurrente) 

Tres o más rectas o arcos que se cruzan en el mismo punto 

   

Concyclic (Cocíclico)  Cuatro o más puntos en la misma circunferencia 
   

Condition 
(Condición) 

Restricciones que una figura cumple o no 

  

Conformal 
(Conforme)  

Una transformación que conserva los ángulos; p. ej., escalado e inversión de la 
circunferencia  

   

Congruent 
(Congruente)  ≅ 

Dos triángulos cuyas áreas, lados y ángulos interiores son iguales 

   

Contradiction, Proof 
by (Contradicción, 
Prueba por)  

Para probar que el enunciado 𝑝 implica el enunciado 𝑞, se asume que 𝑝 es 
verdadero y que 𝑞 no es verdadero, y se demuestra que esto es imposible. 

   

Converse (Opuesto) Dado el argumento que 𝑝 implica 𝑞, el argumento que 𝑞 implica 𝑝 
  

Convex (Convexo) Cualquier segmento entre dos puntos interiores a dos lados está dentro de la 
figura 

   

Defect (Defecto) En geometría hiperbólica; 𝜎 − (𝛼 + 𝛽 + 𝛾) para un triángulo de un tamaño 
dado 

   

Diagonal (Diagonal) Segmentos que conectan vértices no consecutivos de cuadriláteros 
 Definitional 

(Definitiva)  
El lado adyacente de los dos triángulos de un 
cuadrilátero 

   

Diameter (Diámetro) Una cuerda que cruza el centro de una circunferencia 
 Diametrically Opposed 

(Diametralmente 
opuesto) 

Los extremos de un diámetro 
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Dichotomy 
(Dicotomía) 
 

Discussion 
(Discusión) 

Prueba por contradicción cuando hay dos alternativas 
 
 

Las condiciones necesarias y suficientes para una solución, y cuántas soluciones 

 

Disjoint (Disjunto) 
 

Figuras que no se superponen; sus áreas forman un grupo aditivo 
 (Incluye circunferencias que se tocan y triángulos adyacentes, si están fuera el 

uno del otro). 
 

Disjoint (Disjunto) 
 

La probabilidad de que algún punto esté dentro de ambas figuras es cero 
 

Edubabble 
(Balbuceos 
Educativos) 

Palabras ridículamente esponjosas y consignas tontas destinadas a ofuscar y 
confundir (los profesores estadounidenses de secundaria no estudian su 
materia en la universidad – ellos seleccionan de los libros de texto de sus 
estudiantes – en su lugar, reciben balbuceos educativos).    
 

Endpoint (Extremo) Un punto al final de un segmento, arco o semirrecta 
   

Equal (Igual)  = Magnitudes comparables que no son ni menores ni mayores la una que la otra 
   

Equidistant 
(Equidistante) 

Dos pares de puntos que definen dos segmentos de igual longitud 

 Lines (Rectas)  Cualesquiera dos perpendiculares entre ellas son de 
igual longitud 

   

Equivalence 
(Equivalencia) 

Class (Clase de)  Un conjunto de objetos que son iguales, congruentes, 
semejantes o paralelos  

 Relation (Relación de)  Un conjunto y una relación reflexiva, simétrica y 
transitiva 

   

Equivalent 
(Equivalente) 

Cualesquiera dos condiciones que son bicondicionales 

   

Euler (Euler)  Center (Centro)  El centro de la circunferencia de Euler  
 Circle (Circunferencia 

de)  
De un triángulo, la circunferencia a través de los 
puntos medios de los lados, los pies de las alturas y 
los puntos medios desde el ortocentro a los vértices. 
En algunos libros de texto, es llamada circunferencia 
de los nueve puntos. 

 Segment (Segmento 
de)  

El segmento desde el ortocentro hasta el 
circuncentro 

   

Ex circle (Circunferencia 
exinscrita)  

Una circunferencia tangente a un lado de un 
triángulo y a las extensiones de los lados adyacentes 

 center (Exicentro)  Un centro de una circunferencia exinscrita 
 foot (Pie bisector 

exterior)  
Donde una bisectriz de un ángulo exterior corta la 
extensión del lado opuesto; 𝐸×, 𝐹×, 𝐺× 
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 radii (Exradios)  Los radios de las circunferencias exinscritas; 𝑟𝑋, 𝑟𝑌, 𝑟𝑍 
son de 𝜔𝑋, 𝜔𝑌, 𝜔𝑍 

   

Extend (Extiende)   Dado 𝐸𝐹, construye 𝐸𝐺 de modo que 𝐹 esté dentro de 𝐸𝐺 o 𝐸 esté dentro de 

𝐹𝐺. 
   

Field of Fire (Campo 
de tiro) 

Todos los puntos interiores al ángulo de tiro horizontal de una ametralladora 

   

Figure (Figura) Un conjunto de puntos.  Pueden estar solos o unidos en rectas, segmentos o 
arcos. 

Foot (Pie) 
 

La intersección cuando se traza una perpendicular desde un punto a una recta 
 

Frustum, Triangle 
(Tronco del 
triángulo)  

La parte de un triángulo entre la base y un corte paralelo a la base 

  

Fully Defined 
(Completamente 
definido)  

Una figura con las características dadas existe y es única 

   

Geometric Mean 
(Media geométrica) 

Si 
𝑎

𝑏
=

𝑏

𝑐
 para números reales 𝑎, 𝑏, 𝑐, entonces 𝑏 es la media geométrica de 𝑎 y 𝑐  

   

Half–Scale (A media 
escala)  

Un triángulo cuyos lados son la mitad de los lados correspondientes de otro 
triángulo  

   

Harmonic Division 
(División armónica) 

Corta un segmento 𝐸𝐹 interna y externamente en la misma proporción;     
𝐸𝐺∗

𝐹𝐺∗
=

𝐸𝐺×

𝐹𝐺×
 

   

Homothetic Center (Centro de 
homotecia)  

𝐸′′𝐸⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹′′𝐹⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺′′𝐺⃡⃗ ⃗⃗ ⃗⃗  ⃗  para  𝐸′′𝐹′′𝐺′′ doble homotético 

de  𝐸𝐹𝐺  
 Double (Doble 

homotético)  
Un triángulo cuyos lados miden el doble de la longitud 
de los lados de otro triángulo y cuyas extensiones 
laterales son paralelas por pares a las extensiones 
laterales de ese triángulo 

 Triple (Triple 
homotético)  

Análogo a un doble homotético, pero de longitud 
triple 

   

Hypotenuse 
(Hipotenusa) 

El lado opuesto al ángulo recto de un triángulo rectángulo 

   

In circle (Circunferencia 
inscrita)  

Una circunferencia que toca cada lado de una figura  

 center (Incentro)  El centro de la circunferencia inscrita 
 diameter (Diámetro) El diámetro de la circunferencia inscrita;  𝑑   
 foot (Pie bisector 

interior)  
Donde la bisectriz de un ángulo corta el lado opuesto; 
𝐸∗, 𝐹∗, 𝐺∗  
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 Radius (Inradio)  El radio de una circunferencia inscrita;  𝑟 
 
Inside (Interior a)  

 
Segment (Segmento)  
 

 
Un miembro del conjunto de puntos de un segmento, 
pero no un extremo 
 

 
 

 

Figure (Figura) 
 

 
 
 
Triangles (Triángulos) 

Un punto tal que cualquier recta que lo atraviese 
corta la figura exactamente en dos puntos, y el punto 
está entre ellos 
 

Un triángulo cuyos puntos están dentro o sobre un 
lado de otro triangulo, pero los triángulos no 
coinciden 

   

Isometric 
(Isométrica)  

Una transformación que conserva las longitudes; por LLL, también conserva los 
ángulos 

   
Kill (Muerte)   Chord (Cuerda de la 

muerte)  
Un segmento desde un lado de un ángulo hasta el 
otro 

 Circle (Círculo de la 
muerte)  

La circunferencia de mayor radio que toca o está en 
el interior de dos ángulos 

   

Legs (Patas o 
catetos)  

Triangle (de un 
triángulo)  

Los lados que no son la base o la hipotenusa 

 Triangle Frustum (del 
tronco de un triángulo)  

Los lados que no son paralelos 

   

Lemma (Lema) 
 

Length (Longitud) 

Un teorema usado para probar otros teoremas más importantes 
 

La medida del tamaño de un segmento; la distancia entre sus extremos 
  

Line (Recta)  Un segmento extendido más allá de ambos extremos; denotado  𝐸𝐹⃡⃗⃗⃗  ⃗  si  𝐸𝐹  es 
el segmento 

   

Line of Centers 
(Recta de centros)  
 

Lines, 
Supplementary 
(Rectas 
suplementarias) 
 

La recta que pasa por los centros de dos circunferencias  
 
 

Si los ángulos alternos internos son suplementarios, las dos rectas cruzadas por 
la transversal son suplementarias con relación a esa transversal. 

Locus (Lugar 
geométrico) 

Todos los puntos que satisfacen una condición; el plural es loci, en inglés 

   

Long (Distante)  Dentro de un ángulo interior de un triángulo, pero fuera del triángulo 
Dentro del campo de tiro de una ametralladora, pero más allá de su cuerda de 
la muerte 

 Center (Centro) La intersección de una bisectriz de un ángulo y la 
circunferencia circunscrita 



Victor Aguilar  Geometry without Multiplication 

391 
 

 Circle (Circunferencia)  Alrededor de un centro distante a través del incentro 
y el exicentro 

Magnitude 
(Magnitud) 

Un conjunto con una relación de equivalencia entre sus miembros, =, y un 
orden total, ≤ 

   

Maltitude (M-altura)  Punto medio-altura; la perpendicular trazada desde el punto medio de un lado 
de un cuadrilátero hasta el lado opuesto 

 

Measure (Medida) 
 

El tamaño de los conjuntos; número de puntos discretos, longitud de 
segmentos, o áreas de triángulos o de la unión de triángulos disjuntos.  

   

Medial Point (Punto 
medial)  

El punto donde las medianas o las bimedianas concurren 

 

Median (Mediana) 
 

Un segmento desde un vértice de un triángulo hasta el punto medio del lado 
opuesto 

   

Mediator (Mediatriz)  La bisectriz perpendicular de un segmento 
  

Midpoint (Punto 
medio) 

El punto donde se divide un segmento en dos partes iguales 

  
Mirror Property 
(Propiedad del 
espejo) 

La luz que rebota de un espejo a un punto va tan lejos como lo haría a su reflejo 

   

Mid–Segment 
(Segmento medio)  

Triangle (de un 
triángulo) 

Un segmento que conecta los puntos medios de dos 
lados 

 Triangle Frustum (del 
tronco de un triángulo)  

Un segmento que conecta los puntos medios de las 
patas 

   

Miquel (Miquel) Point (Punto de)  El punto definido por el teorema de Miquel   
 Circles (Circunferencias 

de)  
Las circunferencias circunscritas definidas por el 
teorema de Miquel 

   

Napoleon Point 
(Punto de Napoleón) 

First (Primer punto de 
Napoleón)  

El centro del triángulo equilátero definido en el 
teorema de Napoleón para triángulos equiláteros 
externos 

 Second (Segundo 
punto de Napoleón)  

Igual, pero para los triángulos equiláteros internos 

  

Neutral Geometry 
(Geometría Neutra) 

Un conjunto de postulados que no hace referencia a rectas paralelas; geometría 
absoluta 

  

Non–Euclidean (No 
euclidiano) 

Un conjunto de postulados que contiene uno que contradice el postulado de las 
paralelas 

 

Opposite (Opuesto) 
 

In a Triangle (En un 
tríangulo) 

 

Un ángulo y un lado opuestos el uno al otro 
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 Of a Line (De una 
recta)  

Extremos de un segmento cruzado por la recta  

 In a Quadrilateral (En 
un cuadrilátero) 

Dos lados o dos ángulos opuestos 

  

Ordering (Orden) Un conjunto y una relación, ≤, que es reflexiva, antisimétrica y transitiva 
 Total (Total) 𝑎 ≤ 𝑏 o 𝑏 ≤ 𝑎 para cada 𝑎, 𝑏 en el conjunto 
  

Orthic Reflection 
(Reflexión del 
ortocentro)  

La reflexión del ortocentro alrededor de un lado del triángulo 

  

Orthocenter 
(Ortocentro)  

El punto donde las alturas de un triángulo son concurrentes 

  

Orthogonal 
(Ortogonal) 

Dos arcos cuyas tangentes en su intersección son perpendiculares   

  

Parallel (Paralelo) Dos rectas que no se cruzan  
  

Pedal Point (Punto 
podal)  

Un punto desde el cual se trazan perpendiculares a los lados o las extensiones 
de los lados de un triángulo o un cuadrilátero 

  

Pencil (Lápiz) Un triángulo con los pies bisector interior y bisector exterior de la base 
conectados al ápice. (Lápiz es una gran palabra en geometría avanzada, pero 
todavía no hemos llegado allí. Solamente dibujar esta figura y llamarla lápiz es 
suficiente para un estudiante de secundaria). 

 
Perimeter 
(Perímetro) 
 

 
La suma de las longitudes de los lados de un triángulo o cuadrilátero 

Perpendicular 
(Perpendicular) 

Una recta cuya intersección con otra recta forma un ángulo recto 
 

 
Polygon (Polígono) 

 
La unión de varios triángulos adyacentes en sus lados de modo que sea convexa 

 

Postulate 
(Postulado) 

 

Los axiomas que son específicos de la geometría, no de otras ramas de la 
matemática 

  

Power of the Point 
(Potencia de un 
punto) 

Para un punto 𝑃 y una circunferencia con centro 𝑂 y radio 𝑟; si 𝑧 = |𝑂𝑃|, 

entonces la potencia del punto es |𝑃| = |𝑟2 − 𝑧2|.  Si las distancias de 𝑃 a la 
circunferencia a través de una cuerda o una secante son 𝑥 e 𝑦, entonces     
𝑥𝑦 = |𝑃|. 

 

Probability 
(Probabilidad) 

 
La razón de la medida de un subconjunto a la medida de todo el conjunto 

 

Projection 
(Proyección) 

 

En 𝐸𝐹𝐺, la proyección de 𝐸𝐺 y 𝐹𝐺 hacia 𝐸𝐹 es 𝐸𝐺′ y 𝐹𝐺′, respectivamente 
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Quadrature 
(Cuadratura) 
 

 

Teoremas que demuestran la igualdad de las áreas de triángulos o de uniones 
de triángulos 
 

Quadrilateral 
(Cuadrilátero) 

La unión de dos triángulos adyacentes en un lado de modo que sea convexa; 

𝐸𝐹𝐺𝐻 
 Bi–Centric (Bicéntrico) Un cuadrilátero que es tanto cíclico como tangencial 
 Contact (de contacto)  Los puntos de contacto de la circunferencia inscrita 

de un cuadrilátero tangencial conectados entre sí 
consecutivamente  

 Cyclic (Cíclico) Un cuadrilátero para el cual existe una circunferencia 
circunscrita  

 Isosceles Kite (Deltoide 
isósceles)  

Un deltoide con un par de lados iguales a la diagonal 

 Kite (Deltoide)  La unión de dos triángulos congruentes; los lados no 
comunes que son iguales también son consecutivos. 

 Lambert (de Lambert)  Un cuadrilátero con tres ángulos rectos 
 Long (Distante)  El cuadrilátero cuyos vértices son centros distantes 
 Medial Parallelogram 

(Paralelogramo 
medial) 

Los puntos medios conectados de los lados 
consecutivos de un cuadrilátero 

 Orthodiagonal 
(Ortodiagonal) 

Un cuadrilátero cuyas diagonales son perpendiculares 

 Parallelogram 
(Paralelogramo) 

La unión de dos triángulos congruentes; los lados no 
comunes que son iguales también son opuestos. 

 Parent (Padre) El cuadrilátero alrededor de un paralelogramo medial 
 Pedal (Podal)  La conexión de los pies de las perpendiculares 

trazadas desde el punto podal 
 Rectangle (Rectángulo) Un cuadrilátero con ángulos iguales 
 Rhombus (Rombo) Un cuadrilátero con todos los lados iguales; plural, 

rhombi, en ingles 
 Right Kite (Deltoide 

recto)  
Un deltoide cuyos dos triángulos congruentes son 
rectángulos 

 Right Rectangle 
(Rectángulo recto) 

Un rectángulo con ángulos rectos 

 Right Square 
(Cuadrado recto) 

Un rectángulo recto con lados iguales 

 Saccheri (de Saccheri)  Un cuadrilátero con dos lados opuestos iguales y 
perpendiculares a la base  

 Square (Cuadrado) Un rectángulo con lados iguales 
 Tangential 

(Tangencial) 
Un cuadrilátero para el cual existe una circunferencia 
inscrita 

   

Radius (Radio) Un segmento desde el centro de la circunferencia hasta la circunferencia; 
plural, radii, en inglés 

  

Random (Aleatorio) Los puntos en un segmento o dentro de un triángulo o circunferencia están 
distribuidos uniformemente 
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Ray (Semirrecta)  Un segmento extendido en una dirección; denotado 𝐸𝐹⃗⃗⃗⃗  ⃗ si 𝐸𝐹 es el segmento  
   

Reflection 
(Reflexión) 

Desde un punto, dibuja una recta a través de un punto y la extiende hasta una 
distancia igual 

 Desde un punto, lo refleja a través del pie de una perpendicular trazada en una 
recta 

 Desde una recta, refleja dos puntos a través de un punto y dibuja una línea a 
través de ellos 

 Desde una circunferencia, refleja su centro a través de un punto y dibuja una 
circunferencia idéntica 

  

Reflexive Relation 
(Relación reflexiva) 

Una relación binaria sobre un conjunto tal que cada elemento está relacionado 
consigo mismo 

  

Relation (Relación) Un operador de verdadero/falso en un par ordenado de elementos de un 
conjunto dado  

  

Secant (Secante) Una recta que corta una circunferencia en exactamente dos puntos 
  

Segment (Segmento) Todos los puntos a lo largo del camino más corto entre dos puntos; 𝐸𝐹 
  

Semi (Semi) Difference 
(Semidiferencia) 

La mitad de la diferencia entre dos longitudes o 
entre dos ángulos 

 Perimeter 
(Semiperímetro)  

La mitad del perímetro de un triángulo 

 Sum (Semisuma)  La mitad de la suma de dos longitudes o de dos 
ángulos 

   

Side (Lado) Triangle (de un triángulo)  Uno de los tres segmentos que forman un 
triángulo 

 Quadrilateral (de un 
cuadrilátero)  

Un segmento no común de uno de sus triángulos 

 Consecutive 
(Consecutivo)  

Los lados de un cuadrilátero que comparten un 
extremo  

   

Similar (Semejante)  
~   

Dos triángulos con todos sus ángulos correspondientes iguales 

  

Steiner Line (Recta 
de Steiner)  

Una recta paralela a la recta de Wallace tal que la recta de Wallace está en la 
mitad entre aquella y el punto podal de la recta de Wallace; también llamada 
recta ortocéntrica. 

  

Subtend (Subtender) Crear una cuerda una clase de equivalencia de todos los ángulos inscritos a un 
lado de esta 

  

Subtend at Center 
(Subtender en el 
centro) 

Formar una cuerda un ángulo con su vértice en el centro de la circunferencia 
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Summit (Cumbre) El lado opuesto a la base de un cuadrilátero de Saccheri  
  

Symmetric Relation 
(Relación simétrica) 

Una relación que puede establecerse entre dos cosas en cualquier orden 

  

Synthetic (Sintético) Conocimiento que permanece después de que se borran las rectas y los arcos 
auxiliares 

  

T & V (T y O)  Los teoremas de las transversales y los ángulos opuestos por el vértice, 
utilizados en alguna combinación  

  

Tangent (Tangente) Una recta que toca una circunferencia; si se hace referencia a su longitud, esta 
significa la longitud del segmento entre el punto de contacto y el punto que 
define la recta tangente. 

 Cut (Corte) El segmento de una tangente interna que está entre 
las tangentes externas 

 External (Externa) Una recta tangente a dos circunferencias que no pasa 
entre sus centros, o el segmento entre los puntos de 
contacto 

 Internal (Interna) Una recta tangente a dos circunferencias disjuntas 
que pasa entre sus centros, o el segmento entre los 
puntos de contacto 

   

Theorem (Teorema) Un enunciado que requiere pruebas utilizando postulados o teoremas ya 
probados 

 

Torricelli (Torricelli)  
 

Estos términos se aplican solo a triángulos con ángulos menores que 2𝜑. 
 Apex (Ápice de) El ápice de un triángulo equilátero construido sobre 

el exterior de un lado de un triángulo; dado 𝐸𝐹𝐺, 𝐸′′ 
es opuesto a 𝐸. 

 2nd Apex (2.º ápice 
de) 

El ápice de un triángulo equilátero construido sobre 
el interior de un lado de un triángulo; en este libro, 
no está etiquetado. 

 Point (Punto de) El punto de concurrencia de los segmentos de 
Torricelli; 𝑈 

 2nd Point (2.º punto 
de) 

El punto de concurrencia de los 2.os segmentos de 
Torricelli; 𝑉 

 Segment (Segmento 
de) 

Conecta un vértice de un triángulo con el ápice de 

Torricelli opuesto a este; p. ej. 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′ 
 2nd Segment (2.º 

segment de) 
Conecta un vértice de un triángulo con el 2.º ápice de 
Torricelli 

 (En las publicaciones, a estos elementos a menudo se les da el nombre de 
Pierre de Fermat). 

   

Touch (Tocar)   Intersecarse una recta y una circunferencia o dos circunferencias exactamente 
en un punto, es decir, sin cruzarse 
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 Touching Point (Punto 
de contacto)  

El punto en el que una recta y una circunferencia o 
dos circunferencias se tocan 

  

Transformation 
(Transformación) 

Una relación entre dos conjuntos de puntos que es uno a uno y sobreyectiva; es 
decir, cada punto de un conjunto está asociado con exactamente un punto del 
otro conjunto. 

  

Transitive Relation 
(Relación transitiva) 

Si una relación es verdadera para 𝑎 y 𝑏 y para 𝑏 y 𝑐, entonces es verdadera para 
𝑎 y 𝑐 

  

Transversal 
(Transversal) 

Una recta que no es paralela a ninguna de las dos rectas dadas 

  

Traverse (Rotación 
horizontal)  

Rotación lateral de una ametralladora sobre su trípode 

 Top (Ángulo de tiro 
horizontal)  

El ángulo máximo en que puede rotar una 
ametralladora 

   

Triangle (Triángulo) Segmentos que conectan tres puntos no colineales, denominados vértices;       

p. ej. 𝐸𝐹𝐺.   
 Acute (Agudo) Un triángulo con todos los ángulos agudos 
 Antipedal (Antipodal) El triángulo con el que un triángulo dado es podal en 

relación con un punto podal dado 
 Contact (de contacto)  El triángulo podal si el incentro es el punto podal 
 Crossed (Cruzado)  Dos transversales que se cruzan entre dos rectas 

paralelas; cortar las colas para ver los triángulos 
 Degenerate 

(Degenerado) 
Los vértices son colineales; esto no es un triangulo 

 Double–Long (Doble 
distante)  

El triángulo cuyos vértices son exicentros; excéntrico 

 Egyptian (Egipcio) Un triángulo con lados de 3, 4 y 5 unidades de largo 
 Equilateral (Equilátero) Un triángulo con todos los lados iguales 
 Half Equilateral (Medio 

equilátero) 
Un triángulo equilátero cortado por su línea central 

 Isosceles (Isósceles) Un triángulo con dos lados iguales 
 Long (Distante)  El triángulo cuyos vértices son centros distantes 
 Medial (Medial) Los tres segmentos medios de un triángulo como sus 

lados 
 Nested (Anidado) Dos transversales que se intersecan fuera de dos 

rectas paralelas; cortar las colas para ver los 
triángulos  

 Obtuse (Obtuso) Un triángulo con un ángulo obtuso 
 Orthic (Órtico) Conecta los pies de las alturas de un triángulo 
 Parent (Padre) El triángulo desde el cual se deriva un triángulo 

medial 
 Pedal (Podal)  La conexión de los pies de las perpendiculares 

trazadas desde el punto podal 
 Right (Rectángulo)  Un triángulo con un ángulo recto 
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 Scalene (Escaleno) Un triángulo con todos los lados desiguales 
 Tangential 

(Tangencial) 
Lados tangentes a la circunferencia circunscrita en los 

vértices de 𝐸𝐹𝐺 
 Too Obtuse 

(Demasiado obtuso) 
Un triángulo con un ángulo igual o mayor que 2𝜑 

 Viviani (Viviani) 𝐸𝑃𝑃𝐹 y 𝐹𝑃𝑃𝐸 dado 𝐸𝐹𝐺 isósceles con base 𝐸𝐹 y 
punto podal 𝑃 en cualquier lugar entre 𝐸 y 𝐹 

  

Trichotomy 
(Tricotomía) 

Prueba por contradicción cuando hay tres alternativas 

  

Tri–Segment 
(Trisegmento)  

Triangle (de un 
triángulo)  

Un segmento que conecta los puntos de una 
trisección, ambos cerca de la base o ambos cerca del 
ápice  

   

Undefined Terms 
(Términos no 
definidos)  

Conceptos intuitivos:  plano, punto, camino más corto, llano  

   

Under Defined (Mal 
definidos)  

No hay suficiente información dada; las soluciones son infinitas en número 

   

Vertex (Vértice) La intersección de dos rectas, semirrectas o lados de un triángulo o cuadrilátero 
   

Visible Under an 
Angle (Visible bajo 
un ángulo) 

Todos los puntos interiores a un ángulo; campo de tiro 

   

Wallace Line (Recta 
de Wallace)  

El triángulo podal es una recta si el punto podal está sobre la circunferencia 
circunscrita 
(En las publicaciones, esto a menudo se denomina la recta de Simson) 

   

Width (Ancho) Dadas dos rectas paralelas, la longitud de una perpendicular entre ellas 
 Shoulder (de hombro)  La altura del triángulo de definición de un rectángulo 
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Das englisch–deutsche Glossar 

 

Adjacent (Adjazent) Zwei disjunkte Dreiecke mit einer gemeinsamen Seite (gemeinsam für 
volle Länge) oder zwei Winkel mit einem gemeinsamen Strahl 
(gemeinsame Scheitel  und Richtung) 

  

Altitude (Höhe) Die Senkrechte von einer Dreiecksecke auf die Verlängerung der 
gegenüberliegenden Dreiecksseite 

  

Analytic (Analytisch) In der gegebenen Informationen enthaltenes Wissen 
  

Angle 
(Winkel) 

Zwei Strahlen, die Schenkel des Winkels heißen, haben einen 
gemeinsamen Anfangspunkt und bilden einen Scheitel.  ∠𝐹, wenn 𝐹 ein 

Winkel ist, oder ∠𝐸𝐹𝐺 für einen Winkel zwischen 𝐹𝐸⃗⃗⃗⃗  ⃗, 𝐹𝐺⃗⃗⃗⃗  ⃗ 
 Acute (Spitzer) Ein Winkel kleiner als ein rechter 

Winkel 
Alternate Interior 
(Wechselwinkel) 

Ein Winkel auf den unterschiedlichen 
Seiten von einer Geraden, die zwei 
Parallelen schneidet 

Apex (Spitze) Ein Winkel, der der Basis eines Dreiecks 
gegenüber steht 

Base (Basis) Beide Winkel, die an der Basis eines 
Dreiecks anliegen 

Central (Mittelpunktswinkel) Ein Winkel, dessen Spitze im 
Mittelpunkt des Kreises sich befindet 

Complementary 
(Komplementwinkel oder 
Komplementärwinkel) 

Zwei Winkel, die sich zu einem rechten 
Winkel ergänzen 

Conjugate (Ergänzungswinkel) Winkel, die sich zu zwei gestreckten 
Winkel ergänzen 

Consecutive (Nachbarwinkel) Innen- oder Außenwinkel, die auf 
derselben Seite liegen 

Elevation (Höhenwinkel) Ein Winkel zwischen einer Strahl auf 
der Bodenebene und der anderen 
darüberligenden Strahl. 

Exterior (Außenwinkel) Ein Nebenwinkel eines Innenwinkels 
Inscribed (Kreiswinkel) Ein Winkel innerhalb eines Kreises mit 

seinem Eckpunkt auf dem Kreis 
Interior (Innenwinkel) Ein Winkel innerhalb eines Dreiecks 

oder Vierecks an einem Scheitel 

Obtuse (Stumpfer) Ein Winkel größer als ein rechter 
Winkel und kleiner als ein gestreckter 
Winkel 

Parallelism (Parallelität) In hyperbolischer Geometrie; 
2 atan(𝑒−𝑥), wo 𝑥 eine Höhe ist 

Right (Rechter) Ein Winkel, der durch Halbierung des 
gestreckten Winkels entsteht 
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Skew (Schräg) Eine Differenz zwischen Basiswinkeln 
eines Dreiecks 

Straight (Gestreckter) Ein Winkel, dessen Schenkel kollinear 
sind und eine Gerade bilden 

Supplementary 
(Supplement) 

Zwei Winkel, die sich zu einem 
gestreckten Winkel ergänzen 

Vertical 
(Scheitelwinkel 
oder Gegenwinkel) 

Die sich gegenüber liegenden Winkel, 
die entstehen, wenn sich zwei Geraden 
schneiden 

  

Anticenter (Antizentrum) Der Punkt, an dem sich die Mittellinien treffen; es gibt für zyklische 
Vierecke 

 

Apex (Spitze) 
 

 

Der Basis gegenüberliegende Eckpunkt des Dreiecks     

Arc (Kreisbogen) Teil eines Kreises; innerhalb gleicher Kreise sind die Mittelpunktswinkel 
und die von ihnen abgeschnittenen Bögen eine Transformation 
voneinander. 

  

Area (Fläche) Das Maß für die Größe eines Dreiecks oder einer Vereinigung der 
disjunkten Dreiecke 

  

Auxiliary (Zusätzlich) Nicht vorgegebene Linien oder Bögen, deren Schnittpunkt über die 
Grenzen der Analytik hinausgeht 

  

Axiom (Axiom) Ein Satz, der beweislos vorausgesetzt wird um die Folgen daraus 
abzuleiten 

  

Base (Basis oder 
Grundseite) 

Die Seite eines gleichschenkligen Dreiecks, die zwischen den gleichgroßen 
Basiswinkeln liegt 
Die Seite eines Dreiecks, die als solche bezeichnete 
oder die Seite, auf der das Dreieck aufgebaut wird. 

  

Between (Zwischen) 1. Wenn F zwischen E und G liegt, liegt F auch zwischen G und E, und es 
existiert eine Gerade, die die Punkte E, F, G enthält.  (Zwischen 
impliziert, dass die drei Punkte getrennt voneinander sind.) 

2. Wenn E und G zwei Punkte auf einer Gerade sind, existiert es 
mindestens ein Punkt F, der zwischen E und G liegt, und mindestens 
ein Punkt H, der so angeordnet ist, dass G zwischen E und H liegt. 

3. Von etwaigen drei kollinearen Punkten befindet sich genau einer 
zwischen den beiden anderen. 

  

Bi–Conditional 
(Bikonditional) 

Eine Aussage in der Form 𝑝 dann und nur dann 𝑞. Sie ist genau dann 
wahr, wenn sowohl 𝑝 als auch 𝑞 wahr sind oder beide falsch sind. 𝑞 folgt 
aus 𝑝; also, 𝑝 folgt aus 𝑞.  Im Beweis einer Implikation kann man nicht die 
andere verwenden und umgekehrt. Dann und nur dann wird als iff 
abgekürzt. 

Bi–Medial 
(Diagonalenschnittpunk) 

Der Schnittpunkt der Diagonalen eines Vierecks 
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Bimedian (Bimedian) Eine Strecke, die die Mittelpunkte der gegenüberliegenden Seiten eines 
Vierecks verbindet  

  

Bisect (Halbieren)  
1

2
 Ein Abschnitt oder ein Winkel in zwei gleich große Teile wird zerlegt, die 

man Hälften nennt  
  

Center Line (Schwerlinie) Die Seitenhalbierende der Basis eines gleichschenkligen Dreiecks oder ein 
Halbkreis 

  

Centroid (Zentroid oder 
Schwerpunkt) 

Der Gleichgewichtspunkt einer einheitlichen Fläche. Wenn man 
behauptet, dass der Mittelpunkt eines Dreiecks sein Schwerpunkt ist, ist 
Kalkül erforderlich, d.h. diese Ausdrücke sind nicht austauschbar. 

  

Chord (Sehne) Die Strecke, die zwei Punkte eines Kreises verbindet 
 Common (Potenzlinie oder 

Chordale) 
Die Strecke zwischen den 
Schnittpunkten zweier Kreise  

  

Circle (Kreis) Die Menge aller Punkte, die einen konstanten Abstand zu einem Punkt 
haben, der Mittelpunkt heißt 

  

Circum (Um) circle (Umkreis) Ein Kreis, der durch alle Eckpunkte 
einer Figur geht 

 center (Umkreismittelpunkt) Das Zentrum des Umkreises 
 radius (Halbmesser) Der Radius des Umkreises;  𝑅 

 

Closing the Horizon 
(Schließung des 
Horizonts) 
 

Die Summe aller Winkel muss um einen Punkt gleich 2𝜎 sein.  
 

Collinear (Kollinear) Eine Menge von Punkten, die alle auf ein und derselben Geraden liegen 
  

Concentric 
(Konzentrisch) 

Zwei oder mehr Kreise, die sich ein und denselben Schwerpunkt besitzen, 
jedoch unterschiedliche Radien (Halbmesser) aufweisen 

  

Concurrent (Kopunktal) Drei oder mehr Geraden oder Bögen, die durch einen gemeinsamen 
Punkt gehen 

  

Concyclic (Konzyklisch) Vier oder mehr Punkte, die auf dem Rand eines Kreises liegen 

  

Condition (Kondition) Die Voraussetzungen, die eine Figur entweder erfüllt oder nicht 
  

Conformal (Konform) Eine winkeltreue Abbildung; z.B. Skalierung und Kreisspiegelung 
  

Congruent (Kongruent) 
≅ 

Zwei Dreiecke, deren Flächen, Seiten und Innenwinkel gleich sind 

  

Contradiction, Proof by 
(Beweis durch 
Widerspruch) 

Wir beweisen, dass aus 𝑝 𝑞 folgt, indem wir annehmen, dass 𝑝 wahr und 
𝑞 falsch ist, dass zu einem Widerspruch führt. 
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Converse (Gegenteilig) Wenn 𝑝 𝑞 impliziert, gibt es die Aussage, dass 𝑞 𝑝 impliziert 
  

Convex (Konvex) Ein beliebiger Abschnitt zwischen zwei Punkten, die sich innerhalb von 
zwei Seiten befinden, liegt innerhalb der Figur 

  

Defect (Defekt) In hyperbolischer Geometrie; 𝜎 − (𝛼 + 𝛽 + 𝛾) für ein Dreieck einer 
bestimmten Größe 

  

Diagonal (Diagonale) Die Verbindungslinien zwischen nicht benachbarten Ecken eines  Vierecks 
 Definitional (Definierende) Die benachbarte Seite der beiden 

Dreiecke in einem Viereck 
  

Diameter (Durchmesser) Eine Sehne, die durch den Mittelpunkt verläuft 
 Diametrically Opposed (Genau 

entgegengesetzt) 
Die Endpunkte eines Durchmesser 

  

Dichotomy (Dichotomie) Beweis durch Widerspruch, wenn es zwei Ausweichmöglichkeiten gibt 
 

Discussion (Diskussion) 
 

 

Die notwendigen und hinreichenden Bedingungen für eine Lösung, und 
die Anzahl solcher Lösungen  
 

Disjoint (Disjunkt) Die Figuren, die sich nicht überlappen; Ihre Fläche bilden eine additive 
Gruppe.  Dies beinhaltet die Berührungskreise und benachbarte 
Dreiecken. 

  

Disjoint (Disjunkt) Es besteht keine Wahrscheinlichkeit, dass einige Punkte innerhalb beider 
Figuren liegen. 

  

Edubabble (Bildungs-
Geschwurbel) 

Lächerlich luftige Worte und alberne Abfassung von Lösungen, die dazu 
bestimmt sind, in die Irre zu führen und zu verwirren.  (Amerikanische 
Oberlehrern studieren nicht ihr Fach in der Universität- Sie werden es 
vom Lehrbuch für ihre Schülern lernen - Anstatt erhalten sie sich fachliche 
Ausbildung.) 
 

Endpoint (Endpunkt) Ein Punkt am Ende einer Gerade, eines Bogens oder Strahls 
 

Equal (Gleich)  = Vergleichbare Maße, die nicht kleiner oder größer als einander sind 
  

Equidistant (Längentreu 
oder Abstandstreu) 

Zwei Paare von Punkten, die zwei gleich lange Segmente bestimmen 

 Lines (Geraden) Jedes Paar der Senkrechten zwischen 
ihnen sind gleich lang 

   

Equivalence (Equivalenz) Class (Klasse) Eine Menge von Objekten, die gleich, 
kongruent, ähnlich oder parallel sind 

 Relation (Relation) Eine Menge und eine Relation, die 
reflexiv, symmetrisch und transitiv ist 
 

Equivalent (äquivalent) Bedingungen, von denen zwei bikonditional sind 
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Euler (Euler) Center (Mittelpunkt) Der Mittelpunkt eines Eulerkreises 
 Circle (Eulerkreis) Der Kreis, der die Mittelpunkte der 

Seiten, die Höhe fußen und die 
Mittelpunkte zwischen das Ortho-
Zentrum und die Eckpunkte um einen 
Dreieck schneidet. Er ist auch genannt 
als neun-punkte-kreis in einigen 
Lehrbuchen. 

 Segment (Euler-Gerade) Eine Gerade, die den 
Höhenschnittpunkt mit dem 
Umkreismittelpunkt verbindet  

   

Ex (Auß) circle (Ankreis) Der Kreis, der von einer Dreiecksseite 
von außen und von den 
Verlängerungen der beiden anderen 
Dreiecksseiten tangential berührt wird 

 center (Ankreismittelpunkt) Der Mittelpunkt des Ankreises 
 foot (Äußere 

Winkelhalbierende) 
Wenn die Winkelhalbierende die 
Verlängerung der gegenüberliegenden 
Seite schneidet; 𝐸×, 𝐹×, 𝐺× 

 radii (Ankreishalbmesser) Die Halbmesser der Ankreise; 𝑟𝑋, 𝑟𝑌, 𝑟𝑍 
jeweils von 𝜔𝑋, 𝜔𝑌, 𝜔𝑍 

  

Extend (Verlängern) Wenn 𝐸𝐹 gegeben ist, konstruieren Sie 𝐸𝐺 so, dass 𝐹 innerhalb von 𝐸𝐺 

liegt oder 𝐸 innerhalb von 𝐹𝐺 liegt 
  

Field of Fire (Schießfeld) Alle Punkte, die innerhalb der maximalen Querdrehung des 
Maschinengewehrs liegen 
Geometer sagen “sichtbar unter einem Winkel”, ohne dass sie auf Waffen 
verweisen. 

  

Figure (Figur) Eine Menge von Punkten. Sie können alleine sein oder in Linien, 
Abschnitten oder Bögen gruppiert werden. 

  

Foot (Fußpunkt) Der Schnittpunkt einer Senkrechten von einem Punkt mit einer Geraden 
  

Frustum, Triangle 
(abgeschnittenes 
Dreieck) 

Der Teil eines Dreiecks zwischen der Basis und dem Schnitt parallel zur 
Basis 

  

Fully Defined (Voll 
definiert) 

Eine Figur mit den gegebenen Eigenschaften existiert und sie ist 

einzigartig. 

  

Geometric Mean 
(Geometrisches Mittel) 

Wenn 
𝑎

𝑏
=

𝑏

𝑐
 für reelle Zahlen 𝑎, 𝑏, 𝑐 gilt, dann ist 𝑏 das geometrische 

Mittel von 𝑎 und 𝑐. 
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Half–Scale (Halbe 
Skalierung) 

Ein Dreieck, dessen Seiten halber Länge der entsprechenden Seiten eines 
anderen Dreieck entsprechen 
 

Harmonic Division 
(Harmonische Teilung) 

Teilt eine Strecke 𝐸𝐹 auf zwei Teile, sodass das Teilverhältnis vom 
kleineren Teil zum größeren Teil den gleichen Betrag hat, wie das größere 

Teil zur ganzen Strecke 𝐸𝐹; 
𝐸𝐺∗

𝐹𝐺∗
=

𝐸𝐺×

𝐹𝐺×
 

  

Homothetic 
(Homothetisch) 

Center (Ähnlichkeitspunkt) 𝐸′′𝐸⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹′′𝐹⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺′′𝐺⃡⃗ ⃗⃗ ⃗⃗  ⃗  für   𝐸′′𝐹′′𝐺′′  ist ein 

homothetisches Doppel 𝐸𝐹𝐺 
Double (Doppel) Ein Dreieck, dessen Seitenlängen 

zweimal langer als die Seitenlänge 
anderes Dreiecks sind, und dessen 
seitliche Erweiterungen paarweise 
parallel zu seitlichen Erweiterungen 
entsprechendes Dreiecks sind.  

Triple (Tripel) Analog zu einem homothetischen 
Doppel, aber dreifach so lang 

  

Hypotenuse 
(Hypotenuse) 

Eine Seite eines rechtwinkligen Dreiecks, die dem Rechtwinkel gegenüber 
liegt 

  

In (Inn) 
 
 
 
 
 
 
 
 

Inside (Innerhalb) 

circle (Inkreis) Ein Kreis, der jede Seite einer Figur in 
ihrem Inneren berührt 

center (Inkreismittelpunkt) Das Zentrum des Inkreises 
diameter (Inkreisdurchmesser) Der Durchmesser des Inkreises;  𝑑 
foot (Innere 
Winkelhalbierende) 

Wenn die Winkelhalbierende die 
gegenüberliegende Seite schneidet; 
𝐸∗, 𝐹∗, 𝐺∗ 

radius (Inkreishalbmesser) 
 

Segment (Segment) 
 
 
Figure (Figur) 
 
 
 
Triangle (Dreiecke) 

Der Halbmesser des Inkreises;  𝑟 
 

Eine Komponente der Menge von 
Segmentpunkten außer den 
Endpunkten 
Ein Punkt so dass, jede Zeile dadurch 
die Figur an genau zwei Punkten 
schneidet und der Punkt liegt zwischen 
ihnen 
Ein Dreieck, dessen jeder Punkt 
entweder innerhalb oder auf eine Seite 
des anderen Dreiecks ist. Aber die 
Dreiecke nicht übereinstimmen. 

  

Isometric (Isometrisch) Eine Transformation, bei der Längen erhalten bleiben; nach dem 
Kongruenzsatz SSS bleiben Winkel auch erhalten. 
 

Kill (Niederlage) Chord (Sehne der Niederlage) Eine Strecke von einer Seite eines 
Winkels zu der anderen  
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Circle (Kreis der Niederlage) Ein Kreis mit dem größten Halbmesser, 
der zwei Winkel berührt oder innerhalb 
von denen liegt 

  

Legs 
(Seiten oder Katheten) 

Triangle (Dreiecks) Die Seiten die keine Basis und keine 
Hypotenuse sind 

 Triangle Frustum 
(Dreieckstumpfes) 

Die Seiten sind nicht parallel 

 

Lemma (Hilfsatz oder 
Lemma) 
 

Length (Länge) 

 

Eine Aussage, die verwendet wird, um andere wichtigere Sätze zu 
beweisen; im Plural heißt Lemmata 
 

Das Maß für die Größe eines Segments; der Abstand zwischen seinen 
Endpunkten 

  

Line (Gerade) Ein Abschnitt, der von beiden Endpunkten verlängert wird; man 

bezeichnet sie als  𝐸𝐹⃡⃗⃗⃗  ⃗, wenn 𝐸𝐹  ein Abschnitt ist 
  

Line of Centers 
(Zentralle) 

Die Linie, die durch die Mittelpunkte zweier Kreise geht 

 

Lines, Supplementary 
(Linien, Supplementär) 
 

 

Wenn internen alternativen Winkel Supplementwinkel sind, die zwei 
Linien, die von der Querlinie geschnitten werden, sind ergänzend nach 
solcher Querlinie.  
 

Locus (Lokus) Alle Punkte, die eine Bedingung erfüllen; im Plural heißt Lokus 
  

Long (Lang) Innerhalb eines Innenwinkels eines Dreiecks, aber außerhalb des Dreiecks 
In der Reichweite eines Maschinengewehrs, aber hinter seiner Sehne der 
Niederlage 

 Center (Mittelpunkt) Der Schnittpunkt einer 
Winkelhalbierenden und des Umkreises 

Circle (Kreis) Um den Mittelpunkt herum durch den 
Inkreis und Umkreis 

   

Magnitude 
(Größenordnung) 

Eine Menge sowohl mit einer Äquivalenzrelation, =, als auch einer 
Totalordnung, ≤ 

  

Maltitude 
(Mittelpunkthöhe) 

Mittelpunkthöhe; das Lot fällt vom Mittelpunkt einer Vierecksseite auf 
die gegenüberliegende Seite  

  

Measure (Maß) Die Größe der Mengen; Anzahlen diskreter Punkte, Längen der 
Abschnitte, sowie Flächen von Dreiecken oder von Vereinigungen der 
disjunkten Dreiecke.  

  

Medial Point (Medialer 
Punkt) 

Der Punkt, an dem die Seitenhalbierenden oder die Bimediane 
zusammenfallen 
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Median 
(Seitenhalbierende oder 
Schwerlinie) 

Eine Strecke von einem Eckpunkt eines Dreiecks zum Mittelpunkt der 
gegenüberliegenden Seite 

  

Mediator (Halbierende) Eine Senkrechte, die einen Abschnitt halbiert 
  

Midpoint (Mittelpunkt) Der Punkt, an dem eine Figur halbiert wird 
  

Mirror Property 
(Spiegeleigenschaft) 

Das Licht, das ein Spiegel auf einen Punkt widerspiegelt, hat die gleiche 
Länge, die es vor seiner Widerspiegelung hätte 

  

Mid–Segment 
(Mittelparallele oder 
Mittellinie) 

 
Triangle (Dreieck) 
 

 
Eine Strecke, die die Mittelpunkte von 
zwei Seiten verbindet 

Triangle Frustum 
(abgeschnittenes Dreieck) 

Ein Abschnitt, der die Mittelpunkte der 
Seiten verbindet 

   

Miquel (Miquel) Miquel point (Miquel-Punkt) Der Punkt, der durch den Satz von 
Miquel definiert ist, wo sich drei Kreise 
schneiden. 

 Miquel circles (Umkreis von 
Miquel) 

Die Umkreise, die durch den Satz von 
Miquel definiert werden 

   

Napoleon Point 
(Napoleon-Punkt) 

First (Erster) Das Zentrum des gleichseitigen 
Dreiecks, das im Napoleon-Satz für 
gleichseitige äußere Dreiecke definiert 
wird 

 Second (Zweiter) Das Zentrum des gleichseitigen 
Dreiecks, das im Napoleon-Satz für 
gleichseitige innere Dreiecke definiert 
wird 

  

Neutral Geometry 
(neutrale Geometrie) 

Ein Satz von Postulaten, in dem parallele Geraden nicht erwähnt werden; 
absolute Geometrie 

  

Non–Euclidean 
(Nichteuklidische) 

Eine Satzmenge, die einen Satz beinhaltet, der dem Parallelenaxiom 
widerspricht 

  

Opposite 
(gegenüberliegend) 

In a Triangle (in einem 
Dreieck) 

Ein Winkel und eine Seite, die einander 
gegenüberliegen 

 Of a Line (von einer Gerade) Endpunkte eines Abschnitts, der von 
der Gerade durchgeschnitten wird 

 In a Quadrilateral (in einem 
Viereck) 

Zwei Seiten oder zwei Winkel, die 
einander gegenüberliegen 

   

Ordering (Ordnung) Eine Menge und Relation, ≤, die reflexiv, antisymmetrisch und transitiv 
ist 

 Total (Gesamtordnung) 𝑎 ≤ 𝑏 oder 𝑏 ≤ 𝑎 für alle Paare 𝑎, 𝑏 in 
der Menge 
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Orthic Reflection 
(Höhenfußpunktreflektio
n) 

Die Reflexion des Höhenschnittpunktes um eine Seite des Dreiecks herum 

 

Orthocenter 
(Höhenschnittpunkt) 
 

 

Der Schnittpunkt, an dem alle Höhen des Dreiecks sich überschneiden 

Orthogonal (Orthogonal 
oder Rechtwinklig) 

Zwei Bögen, so dass die Tangenten an ihrem Schnittpunkt senkrecht zu 
einander stehen 

  

Parallel (Parallele) Zwei Linien, die sich nicht überschneiden 
  
Pedal Point (Fußpunkt) Ein Punkt, von dem aus den Loten (Senkrechte) auf die Seiten oder die 

Erweiterungen der Seiten eines Dreiecks oder eines Vierecks 
fallengelassen werden 

  

Pencil (Geradenbüschel) Ein Dreieck, dessen Basen innerer und äußerer Winkelhalbierenden, die 
auf der Seite und der Seitenverlängerung liegen, mit der 
gegenüberliegenden Spitze verbunden werden  (Das ist ein großes Wort 
in fortgeschrittener Geometrie. Allerdings ist es noch nicht unsere Sache. 
Nur diese Figur zeichnen, und dann Geradenbüschel nennen reicht für 
Oberschülern.) 

  

Perimeter (Umfang oder 
Perimeter) 

Die Summe der Längen der Seiten eines Dreiecks oder Vierecks 

  

Perpendicular (Lot) Eine gerade Linie, deren Schnittpunkt mit einer anderen Linie einen 
rechten Winkel bildet 

  

Polygon (Vieleck) Eine Vereinigung mehrerer Dreiecke, die an ihren Seiten so benachbart 
sind, dass sie konvex ist 

  

Postulate (Postulat) Die Axiome, die extra für Geometrie sind, nicht aber für andere Zweige 
der Mathematik 

 

Power of the Point 
(Potenz eines Punktes) 

 

Für einen Punkt 𝑃 und einen Kreis mit Mittelpunkt 𝑂 und Radius 𝑟; wenn 

𝑧 = |𝑂𝑃|, dann ist die Potenz des Punktes |𝑃| = |𝑟2 − 𝑧2|.  Wenn 𝑃 𝑥 ist, 
und 𝑦 entfernt vom Kreis auf einer Sehne oder einer Sekante liegt, 
dann 𝑥𝑦 = |𝑃|. 

  

Probability 
(Wahrscheinlichkeit) 
 

Projection (Projektion) 

Das Verhältnis die Maß einer Teilmenge zur Maß der Vollmenge 
 
 

Die Projektion von 𝐸𝐺 und 𝐹𝐺 auf 𝐸𝐹 im Dreieck 𝐸𝐹𝐺 ist 𝐸𝐺′  bzw.  𝐹𝐺′ 
Quadrature (Quadratur) Sätze, die Gleichheit der Flächen von Dreiecken oder Vereinigungen der 

Dreiecke beweisen 
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Quadrilateral (Viereck) Die Vereinigung von zwei Dreiecken, die an einer Seite benachbart sind, 

so dass sie konvex sind; 𝐸𝐹𝐺𝐻 
 Bi–Centric (Bizentrisches 

Viereck) 
Ein Viereck, das sowohl zyklisch als 
auch tangential ist 

Contact (Kontaktviereck) Die Berührungspunkte eines Inkreises 
eines tangentialen Vierecks, die 
nacheinander miteinander verbunden 
sind 

Cyclic (Zyklisches Viereck) Ein Viereck, das einen Umkreis hat 
Isosceles Kite 
(Gleichschenkliger Drachen) 

Ein Drachenviereck mit zwei 
gleichlangen Seiten, die gleichlang der 
Diagonale sind 

Kite (Drachenviereck) Zwei kongruente Dreiecke in der 
Abbildung während ihre andere Seite 
miteinander identisch und auch 
aufeinanderfolgend sind. 

Lambert (Lambert-Viereck) Ein Viereck mit drei rechten Winkeln 
Long (Langes) Das Viereck, dessen Ecken entfernte 

Zentren sind 
Medial Parallelogram 
(Mittenparallelogramm) 

Die verbundenen Mittelpunkte der 
benachbarten Seiten eines Vierecks 

Orthodiagonal 
(Orthodiagonales Viereck) 

Ein Viereck, in dem die Diagonalen sich 
rechtwinklig kreuzen 

Parallelogram 
(Parallelogramm) 

Zwei kongruente Dreiecke in der 
Abbildung während ihre andere Seite 
miteinander identisch und auch 
einander gegenüberliegend sind. 

 Parent (Ausgangsviereck) Das Viereck um ein 
Mittenparallelogramm herum 

 Pedal (Fußpunktviereck) Die verbundene Fußpunkte, deren 
Höhen vom Pedalpunkt gezeichnet sind 

 Rectangle (Rechteck) Ein Viereck mit gleichen Winkeln 
 Rhombus (Raute) Ein Viereck mit allen gleichlangen 

Seiten 
 Right Kite (Drachen) Ein Dreieck, dessen zwei kongruente 

Dreiecke rechtwinklig sind 

 Right Rectangle (Rechteck) Ein Rechteck mit rechten Winkeln 
 Right Square (Quadrat) Ein Rechteck mit allen gleichlangen 

Seiten und vier rechten Winkeln 
 Saccheri (Saccheri-Viereck) Ein Viereck mit zwei gleichlangen 

einander gegenüberliegenden Seiten, 
die senkrecht zur Basis sind 

 Square (Quadratisches) Ein Rechteck mit gleichen Seiten 
 Tangential (Tangentiales) Ein Viereck, für das ein Inkreis existiert 
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Radius (Radius oder 
Halbmesser) 

Der Abstand zwischen dem Mittelpunk eines Kreises und der Kreislinie; 
Radien im Plural 

  

Random (zufällig) Die Punkte in einem Abschnitt oder innerhalb eines Dreiecks oder Kreises 
sind gleichmäßig verteilt 
 

Ray (Strahl) Eine Gerade, die in einer Richtung erweitert wird; wird als  𝐸𝐹⃗⃗⃗⃗  ⃗ 

bezeichnet, wenn 𝐸𝐹 ein Teil davon ist 
 

Reflection (Reflexion) Punktspiegelung: Zeichnen Sie eine gerade Linie durch einen gegebenen 
Punkt und einen beliebigen Punkt. Danach verlängern Sie die Linie um die 
gleiche Länge, die es zwischen zwei Punkte gibt; 
Punktspiegelung: spiegelt den Punkt in Bezug auf den Lotfußpunkt auf 
einer Gerade wider; 
Achsenspiegelung (Geradenspiegelung): spiegelt zwei Punkte in Bezug auf 
einen Punkt wider und zeichnet eine gerade Linie durch die beiden Punkte; 
Kreisspiegelung: spiegelt den Mittelpunkt eines gegebenen Kreises in 
Bezug auf einen Punkt wider und bildet einen gleichen Kreis 

  

Reflexive Relation 
(Reflexive Beziehung)  

Eine binäre Beziehung über eine Menge, sodass jedes Element mit sich 
selbst zusammenhängt 

  

Relation (Relation) Ein Operator (wahr/falsch) für ein geordnetes Paar von Elementen aus 
einer gegebenen Menge 

  

Secant (Sekante) Eine Gerade, die durch genau zwei Punkte eines Kreises geht 
  

Segment (Abschnitt) Alle Punkte auf dem kürzesten Weg zwischen zwei Punkten; 𝐸𝐹 
  

Semi (Halbe(r)) Difference (Differenz) Die halbe Differenz von zwei Längen 
oder zwei Winkeln 

Perimeter (Umfang) Der halbe Umfang eines Dreiecks 

Sum (Summe) Die halbe Summe von zwei Längen oder 
zwei Winkeln 

   

Side (Seite) Triangle (Dreieck) Eines der drei Abschnitte, die ein 
Dreieck bilden 

Quadrilateral (Viereck) Eine Figur eines seiner Dreiecke, der 
keine gemeinsame Seite mit dem 
anderen Dreieck hat 

Consecutive (Benachbarte) Die Viereckseiten, die sich eine Ecke 
teilen 

  

Similar (Ähnlich)  ~ Zwei Dreiecke, bei denen alle entsprechenden Winkel gleich sind 
  

Steiner Line (Steiner-
Gerade) 

Eine Gerade, die parallel zur Wallace Gerade ist, sodass die Wallace 

Gerade in der Mitte zwischen der entsprechenden Gerade und dem 
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Pedalpunkt zur Wallace Gerade liegt, und sie ist auch genannt als die 

Ortholinie oder orthozentrische Linie. 
  

Subtend (Subtendieren 
) 

Eine Sehne, die eine äquivalente Klasse von eingeschribenen 
Winkeln auf einer Seite davon sich bildet.    

  

Subtend at Center 

(Subtendieren am 

Mittelpunkt) 

Eine Sehne, die ein Winkel mit seinem Scheitel am Kreismittelpunkt sich 

bildet  

 

  

Summit (Oberseite) 
 

Die Seite eines Saccheri-Vierecks, die der Basis gegenüber liegt  

Symmetric Relation 
(Symmetrische Relation) 

Ein Verhältnis, das für zwei Elemente, wenn sie in beliebiger Reihenfolge 
betrachtet werden, festgelegt werden kann 

  

Synthetic (Syntetisch) Wissen, das nach dem Löschen der Hilfslinien und Bögen verbleibt 
  

T & V (T & V) Die Quer- und Vertikalwinkelsätze, die in irgendeiner Kombination 
verwendet werden 

  

Tangent (Tangente) Eine Gerade, die einen Kreis berührt. Wenn eine Länge erwähnt ist, 
bedeutet dies die Länge des Abschnitts zwischen dem Berührungspunkt 
und dem Punkt, der die Tangente definiert. 

 Cut (Sekante) Eine Gerade durch einen Kreis, die 
zwischen den äußeren Tangenten liegt 

External (Externe) Eine Gerade, die zwei Kreise tangiert, 
die nicht zwischen ihren Zentren liegt, 
oder ein Abschnitt, der zwischen den 
Berührungspunkten liegt 

Internal (Interne) Eine Gerade, die zwei disjunkten Kreise 
tangiert, die zwischen ihren Zentren 
verläuft, oder ein Teil, der zwischen den 
Berührungspunkten liegt 

  

Theorem (Theorem oder 
Satz) 

Eine Aussage, die einen Beweis durch Postulate oder andere bereits 
bewiesene Theoreme erfordert 

  

Torricelli (Torricelli) Diese Begriffe gelten nur für Dreiecke mit Winkeln von weniger als 2𝜑. 
 Apex (Spitze) Die Spitze eines gleichseitigen Dreiecks, 

die übe der Außenseite einer 
Dreiecksseite gezeichnet wird; Wird 

𝐸𝐹𝐺 gegeben, 𝐸′′ liegt 𝐸 gegenüber. 
 2nd Apex (Zweite Spitze) Die Spitze eines gleichseitigen Dreiecks, 

die über der Innenseite einer 
Dreiecksseite gezeichnet wird; in 
diesem Buch ist sie nicht beschriftet. 

 Point (Punkt) Der Schwerpunkt, an dem kopunktale 
Torricelli-Segmente sich schneiden; 𝑂 
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 2nd Point (Zweiter Punkt) Der Schwerpunkt, an dem die zweiten 
kopunktalen Torricelli-Segmente sich 
schneiden; 𝑉 

 Segment (Segment) Verbinden Sie einen Eckpunkt eines 
Dreiecks mit dem Torricellispitze; z.B. 

𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′ 
 2nd Segment (Zweites 

Segment) 
Verbinden Sie einen Eckpunkt eines 
Dreiecks mit der zweiten Torricelli-
Spitze  

 (In der Literatur werden diese Dinge oft auch nach Pierre de Fermat 
benannt.) 
 

Touch (Tangieren) Eine Gerade und ein Kreis oder zwei Kreise überschneiden miteinander in 
nur einem Punkt, so dass sie nicht miteinander durchschneiden  

 Touching Point 
(Berührungspunkt) 

Der Punkt, an dem sich eine Gerade 
und ein Kreis oder zwei Kreise berühren 

  

Transformation 
(Transformation) 

Die Beziehung zwischen zwei Punktemengen, die eins zu eins und 
surjektiv ist; das heißt, genau ein Punkt der einen Menge ist jedem Punkt 
anderer Menge zugeordnet. 
 

Transitive Relation 
(Transitive Relation) 

Wenn eine Relation wahr für 𝑎 und 𝑏 ist und für 𝑏 und 𝑐, dann ist sie 
wahr für 𝑎 und 𝑐 

  

Transversal 
(Querlaufend) 

Eine Linie, die zu keiner von zwei gegebenen Linien parallel ist 

  

Traverse (Traverse) Seitliche Drehung eines Maschinengewehrs auf seinem Stativ 
 Top (Winkel des horizontalen 

Feuers) 
Der maximale Winkel, den eine  
Maschinengewehr durchqueren kann 

   

Triangle (Dreieck) Die Abschnitte, die drei nicht kollineare Punkte verbinden, sogenannte 

Eckpunkte; z.B. 𝐸𝐹𝐺  
 Acute (Spitzwinkliges) Ein Dreieck, bei dem alle Winkel spitz 

sind 
Antipedal 
(Antifußpunktdreieck) 

Ein Dreieck, für das ein angegebenes 
Dreieck relativ zu einem angegebenen 
Fußpunkt ein Fußpunktdreieck ist  

Contact (Kontaktdreieck) Ein Fußpunktdreieck, wenn ein 
Inkreismittelpunkt gleichzeitig ein 
Fußpunkt ist 

Crossed (Gekreuztes) Zwei Sekanten, die sich innerhalb 
zweier paralleler Linien schneiden; 
lassen Sie die Enden weg, um Dreiecke 
zu sehen 

Degenerate (Entartetes) Die Eckpunkte sind kollinear; es ist kein 
Dreieck 
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Double–Long 
(Doppel-Langes) 

Das Dreieck, dessen Ecken exzentrisch 
sind; exzentrisch 

Egyptian (3-4-5-Dreieck) Ein Dreieck mit den Seiten 3e, 4e und 
5e, wobei e eine beliebige 
Einheitsstrecke ist 

Equilateral (Gleichseitiges) Ein Dreieck, bei dem alle drei Seiten 
gleich lang sind 

Half Equilateral 
(Halbes Gleichseitiges) 

Ein gleichseitiges Dreieck, das durch 
seine Höhe halbiert wird 

 Isosceles (Gleichschenkliges) Ein Dreieck, bei dem zwei Seiten 
gleichlang sind 

Long (Langes) Das Dreieck, dessen Ecken entfernte 
Zentren sind 

Medial (Mittendreieck) Drei Mittelparallelen eines Dreiecks 
bilden seine Seiten 

Nested (Verschachteltes) Zwei Sekanten, die sich außerhalb 
zweier paralleler Linien schneiden; 
lassen Sie die Enden weg, um das 
Dreieck zu sehen 

Obtuse (Stumpfes) Ein Dreieck mit einem stumpfen Winkel 
 Orthic 

(Höhenfußpunktdreieck) 
Verbinden Sie die Fußpunkte der drei 
Höhen eines Dreiecks 

Parent (Ausgangsdreieck) Ein Dreieck, aus dem ein Mittendreieck 
stammt 

Pedal (Fußpunktdreieck) Die verbundene Fußpunkte, deren 
Höhen vom Pedalpunkt gezeichnet sind 

Right (Rechtwinkliges) Ein Dreieck mit einem rechten Winkel 
Scalene (Ungleichseitiges) Ein Dreieck mit unterschiedlichen 

Seitenlangen 
Tangential  
(Tangentendreieck) 

Seine Seiten sind tangierend zum 
Umkreis auf den Eckpunkte von ¯EFG 

Too Obtuse (zu stumpf) Ein Dreieck mit einem Winkel, der 
gleich oder größer als 2𝜑 ist 

Viviani (Viviani) 𝐸𝑃𝑃𝐹 und 𝐹𝑃𝑃𝐸, wenn 𝐸𝐹𝐺 

gleichschenkliges Dreieck mit Basis  𝐸𝐹 
und einem Punkt 𝑃 irgendwo 
dazwischen 𝐸 und 𝐹 ist 

  

Trichotomy 
(Trichotomie) 

Beweis durch Widerspruch, wenn es drei Ausweichmöglichkeiten gibt 

  

Tri–Segment 
(Tri-Abschnitt) 

Triangle (Dreieck) Ein Abschnitt, der die Trisektion-Punkte 
entweder in der Nähe der Basis oder in 
der Nähe der Spitze verbindet 

Undefined Terms 
(undefinierte Begriffe) 

Zu den intuitiven Konzepten gehören Ebene, Punkt, kürzester Weg, 
Gerade 
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Under Defined 
(Unterspezifiziert) 

Keine ausreichenden Informationen; die Anzahl der möglichen Lösungen 
ist unendlich 

  

Vertex (Scheitel oder 
Spitze) 

Der Schnittpunkt zweier Linien, Strahlen oder Seiten eines Dreiecks oder 
Vierecks 

  

Visible Under an Angle 
(Sichtbar unter dem 
Winkel) 

Alle Punkte innerhalb des Winkels; Feuerfeld 

  

Wallace-Line 
(Wallacesche Gerade) 

Ein Höhenfußpunktdreieck entartet zu einer Geraden, wenn sein 
Höhenschnittpunkt auf dem Umkreis liegt 
(In der Literatur wird es oft Simson-Gerade genannt.) 
 

Width (Breite) Die Länge der Senkrechte zwischen zwei Geraden 
 Shoulder (einer Achsel) Die Höhe eines Dreiecks eines Vierecks, 

das durch seine Diagonale halbiert wird 
 

 

  



Victor Aguilar  Geometry without Multiplication 

413 
 

Англо–русский глоссарий 
 

Adjacent 
(примыкающие или 
прилежащие) 

Два неперекрывающихся треугольника с общей стороной (общей по 
всей длине) или два угла с общим лучом (общая вершина и 
направление) 

  

Altitude (высота)   Перпендикуляр, опущенный из вершины треугольника на 
продолжение противолежащей стороны 

  

Analytic 
(аналитический) 

Знания, содержащиеся в данной информации 

  

Angle (угол) Два луча, называемые сторонами, имеющие общий конец, 
называемый вершиной. ∠𝐹 если речь идет об одном угле в 𝐹, или 

∠𝐸𝐹𝐺 для угла между 𝐹𝐸⃗⃗⃗⃗  ⃗, 𝐹𝐺⃗⃗⃗⃗  ⃗ 
 Acute (острый) Угол, который меньше прямого угла 

Alternate Interior (внутренние 
накрест лежащие) 

Углы на противоположных сторонах 
секущей и между двумя данными 
прямыми 

Apex (при апексе) Угол, лежащий напротив основания 
треугольника 

Base (при основании) В треугольнике, имеющем 
основание, углы на двух концах 
основания 

Central (центральный) Угол, вершина которого является 
центром окружности 

Complementary 
(дополнительные) 

Два угла, которые в сумме дают 
один прямой угол 

Conjugate (сопряженные) Углы, которые в сумме дают два 
развернутых угла 

Consecutive (односторонние) Два угла на концах стороны, оба из 
которых являются внутренними 
(внешними) 

Elevation (возвышения) Один луч лежит в горизонтальной 
плоскости, а второй выше нее 

Exterior (внешний) Угол, смежный внутреннему углу 
Inscribed (вписанный) Угол внутри окружности, вершина 

которого лежит на этой окружности 
Interior (внутренний) Угол внутри треугольника или 

четырехугольника при вершине 
Obtuse (тупой) Угол, который больше прямого угла 

и меньше развёрнутого 
Parallelism (параллельности) В гиперболической геометрии; 

2 atan(𝑒−𝑥), где 𝑥 высота  
Right (прямой) Разделенный пополам развернутый 

угол 
Skew (асимметрии) Разность углов при основании 

треугольника 
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Straight (развёрнутый)     Угол, лучи которого лежат на одной 
прямой и расходятся в 
противоположные стороны 

Supplementary (дополняющие 
до развёрнутого) 

Два угла, которые в сумме дают 
один развернутый угол 

Vertical (вертикальные) Углы, лежащие напротив друг друга 
при пересечении двух прямых 

  

Anticenter (антицентр) 
 
 

Apex (апекс)  

Точка, в которой сходятся серединные высоты; существует для 
циклических четырехугольников 
 

Вершина треугольника, противолежащая основанию 
  

Arc (дуга) Часть окружности; в равных окружностях центральные углы и дуги, на 
которые они опираются, являются преобразованием друг друга   

  

Area (площадь) Мера, характеризующая размер треугольника или объединения 
неперекрывающихся треугольников 

  

Auxiliary 
(вспомогательный) 

Не заданные прямые или дуги, пересечение которых выходит за 
пределы аналитики 

  

Axiom (аксиома) Утверждение, которое принимают без доказательства ради изучения 
его следствий 

  

Base (основание) Сторона равнобедренного треугольника, заключенная между 
равными углами 
Сторона треугольника, которую обозначили таким образом, или та 
сторона, на которой треугольник построен 

  

Between (между) 1. Если 𝐹 находится между 𝐸 и 𝐺, то 𝐹 также находится между 𝐺 и 𝐸, 
и существует прямая, содержащая точки 𝐸, 𝐹, 𝐺 ("Между" 
подразумевает, что данные три точки различны.); 

2. Если 𝐸 и 𝐺 две точки на прямой, то существует по меньшей мере 
одна точка 𝐹, лежащая между 𝐸 и 𝐺, и по меньшей мере одна 
точка 𝐻 такая, что 𝐺 лежит между 𝐸 и 𝐻;  

3. Среди любых трех точек, лежащих на одной прямой, ровно одна 
находится между двумя другими 

  

Bi–Conditional 
(биусловие) 

Высказывание вида 𝑝 тогда и только тогда, когда 𝑞.  Оно истинно, 
если 𝑝 и 𝑞 оба истинны или 𝑝 и 𝑞 оба ложны. Из 𝑝 следует 𝑞; также  
из 𝑞 следует 𝑝.  В доказательстве одной импликации нельзя 
использовать другую, и наоборот. Тогда и только тогда сокращенно 
обозначается ттт. 

  

Bi–Medial (бимедиаль) Пересечение диагоналей четырехугольника 
  

Bimedian (бимедиана) Отрезок, соединяющий средние точки противолежащих сторон 
четырехугольника 
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Bisect (делить 

пополам)  
1

2
 

Делить отрезок или угол на две равные части, называемые 
половинами 

  

Center Line (центровая 
линия) 

Медиатриса основания равнобедренного треугольника или 
полуокружности 

  

Centroid (центроид) Точка равновесия однородной пластины.  Доказательство того, что 
серединная точка треугольника является его центроидом, требует 
вычислений, поэтому данные термины не являются 
взаимозаменяемыми. 

  

Chord (хорда) Отрезок между двумя точками на окружности 
 Common (общая) Отрезок между точками 

пересечения двух окружностей 
  

Circle (окружность) Все точки, равноудаленные от данной точки, которая называется 
центром 

  

Circum (описанная) Circle (окружность) Окружность, которая пересекает 
фигуру в ее вершинах 

 Center (центр) Центр описанной окружности 
 Radius (радиус) Радиус описанной окружности;  𝑅 
 

Closing the Horizon 
(Закрывающий 
горизонт) 
 

 

Все углы вокруг точки должны в сумме давать 2𝜎 
 
 

Collinear (лежащие на 
одной прямой) 

Множество точек, все из которых лежат на одной прямой 

  

Concentric 
(концентрические) 

Две или более окружности с одинаковым центром, но разными 
радиусами 

  

Concurrent (иметь 
общую точку 
пересечения) 

Три или более прямые или дуги, которые пересекаются в одной 
точке 

  

Concyclic (лежащие на 
одной окружности) 

Четыре или более точки на одной окружности 

  

Condition (условие) Ограничения, которым фигура либо соответствует, либо нет 
  

Conformal 
(конформный) 

Преобразование, сохраняющее углы; например, масштабирование и 
инверсия относительно окружности 

  

Congruent   
(конгруэнтный)  ≅ 

Два треугольника, у которых площади, стороны и внутренние углы 
равны 
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Contradiction, Proof by 
(доказательство от 
противного) 

Чтобы доказать, что из высказывания 𝑝 следует высказывание 𝑞, 
предполагаем, что 𝑝 истинно, а 𝑞 не истинно, и показываем, что это 
невозможно   

  

Converse (обратный) Если дано высказывание, что из 𝑝 следует 𝑞, высказывание, что из 𝑞 
следует 𝑝 

  

Convex (выпуклый) Любой отрезок, лежащий между двумя точками, которые являются 
внутренними по отношению к двум сторонам, находится внутри 
фигуры 

  

Defect (дефект) В гиперболической геометрии; 𝜎 − (𝛼 + 𝛽 + 𝛾) для треугольника 
данного размера 

  

Diagonal (диагональ) Отрезки, соединяющие не прилежащие к одной стороне вершины 
четырехугольника 

 Definitional (определяющая) Общая сторона двух треугольников 
в четырехугольнике 

  

Diameter (диаметр) Хорда, которая проходит через центр окружности 
 Diametrically Opposed 

(диаметрально 
противоположные) 

Концы диаметра 

  

Dichotomy (дихотомия) Доказательство от противного, когда имеется две альтернативы 
 

Discussion 
(обсуждение) 
 

 

Необходимые и достаточные условия решения и сколько решений  

Disjoint 
(неперекрывающиеся) 

Фигуры, которые не накладываются друг на друга; их площади 
образуют аддитивную группу  (Сюда входят касающиеся окружности 
и примыкающие треугольники) 

  

Disjoint 
(неперекрывающиеся) 

Вероятность того, что какая-либо точка лежит внутри обеих фигур, 
равна нулю 

  

Edubabble (педтрёп) Напыщенное пустословие и заумные фразы, которыми стремятся 
запутать и пустить пыль в глаза.  (Американские учителя старших 
классов не изучают свой предмет в университете – эти знания они 
черпают из учебника своих учеников – вместо этого их пичкают 
педагогическим трепом) 

  

Endpoint (конец) Точка в конце отрезка, дуги или луча 
  

Equal (равные)  = Сравнимые величины, которые не меньше и не больше друг друга 
  

Equidistant 
(равноудаленные) 

Две пары точек, которые определяют два отрезка равной длины 
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 Lines (прямые) Любые два перпендикуляра между 
ними имеют равную длину 

   

Equivalence 
(эквивалентность) 

Class (класс эквивалентности) Множество объектов, которые 
равны, конгруэнтны, подобны или 
параллельны 

 Relation (отношение 
эквивалентности) 

Множество и рефлексивное, 
симметричное и транзитивное 
отношение 

  

Equivalent 
(эквивалентные) 

Условия, любые два из которых представляют собой биусловие 

  

Euler (Эйлер) Center (центр) Центр окружности Эйлера 
 Circle (окружность Эйлера) В треугольнике: окружность, 

проходящая через средние точки 
сторон, основания высот и средние 
точки отрезков, соединяющих 
ортоцентр с вершинами.  В 
некоторых учебниках её также 
называют окружностью девяти 
точек. 

 Segment (отрезок Эйлера) Отрезок, соединяющий ортоцентр с 
центром описанной окружности 

   

Ex (вневписанная) Circle (окружность) Окружность, касающаяся одной 
стороны треугольника и 
продолжений прилежащих к ней 
сторон 

 Center (эксцентр) Центр вневписанной окружности 
 Foot (основание внешней 

биссектрисы) 
Место, где биссектриса внешнего 
угла пересекает продолжение 
противолежащей стороны; 
𝐸×, 𝐹×, 𝐺× 

 Radii (радиусы) Радиусы вневписанных 
окружностей; для 𝜔𝑋, 𝜔𝑌, 𝜔𝑍 это 
𝑟𝑋, 𝑟𝑌, 𝑟𝑍 

  

Extend (продолжить, 
продлить) 

Если дано 𝐸𝐹, построить 𝐸𝐺, такой что 𝐹 внутри 𝐸𝐺 или 𝐸 внутри 𝐹𝐺 

  

Field of Fire (зона 
обстрела) 

Все точки, которые являются внутренними по отношению к 
максимальному поперечному повороту пулемёта 
 

Figure (фигура) Множество точек. Они могут быть отдельными или соединяться в 
прямые, отрезки или дуги 

  

Foot (основание) 
 

Пересечение, когда из точки на прямую опускают перпендикуляр 
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Frustum, Triangle 
(усечённый 
треугольник) 

Часть треугольника между основанием и сечением, параллельным 
основанию 

  

Fully Defined 
(однозначно 
определенный) 

Фигура, обладающая данными свойствами, существует и 
единственна 

  

Geometric Mean 
(среднее 
геометрическое) 

Если 
𝑎

𝑏
=

𝑏

𝑐
 верно для вещественных чисел 𝑎, 𝑏, 𝑐, то 𝑏 является 

средним геометрическим 𝑎 и 𝑐 

  

Half–Scale 
(половинный) 

Треугольник, стороны которого составляют половину 
соответствующих сторон другого треугольника 

  
Harmonic Division 
(гармоническое 
деление) 

Разделить отрезок 𝐸𝐹̅̅ ̅̅  на две части таким образом, чтобы меньшая 
часть относилась к большей, как большая ко всему отрезку 𝐸𝐹̅̅ ̅̅ ;     
𝐸𝐺∗

𝐹𝐺∗
=

𝐸𝐺×

𝐹𝐺×
 

  

Homothetic 
(гомотетичный) 

Center (центр гомотетии) 𝐸′′𝐸⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐹′′𝐹⃡⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝐺′′𝐺⃡⃗ ⃗⃗ ⃗⃗  ⃗ является центром 

гомотетии, которой для 𝐸𝐹𝐺  
получают  гомотетичное удвоение  

𝐸′′𝐹′′𝐺′′ 
Double (гомотетичное 
удвоение) 

Треугольник, у которого стороны 
вдвое длиннее сторон другого 
треугольника, а продолжения 
сторон попарно параллельны 
продолжениям сторон этого 
треугольника 

Triple (гомотетичное 
утроение) 

Аналогично гомотетичному 
удвоению, но с тройным 
увеличением длины 

  

Hypotenuse 
(гипотенуза) 

Сторона прямоугольного треугольника напротив прямого угла 
 

  

In (вписанная) 
 
 
 
 
 
 
 
 
Inside (внутри) 

Circle (окружность) Окружность, которая касается всех 
сторон фигуры 

Center (инцентр) Центр вписанной окружности 
Diameter (диаметр) Диаметр вписанной окружности; 𝑑 
Foot (основание внутренней 
биссектрисы) 

Место, где биссектриса угла 
пересекает противолежащую 
сторону; 𝐸∗, 𝐹∗, 𝐺∗ 

Radius (радиус вписанной 
окружности) 
Segment (отрезок) 
 

Радиус вписанной окружности;  𝑟 
 
Член множества точек отрезка, но 
не конец отрезка 
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Figure (фигура) 
 
 
 
Triangle (треугольники) 

Такая точка, что любая проведенная 
через неё прямая пересекает фигуру 
ровно в двух точках, причём данная 
точка лежит между ними 
Треугольник, каждая точка которого 
лежит либо внутри другого 
треугольника, либо на одной из его 
сторон, но треугольники не 
совпадают 

  

Isometric 
(изометрический) 

Преобразование, которое сохраняет длины; согласно теореме о 
конгруэнтности треугольников по трем сторонам, оно также 
сохраняет углы 

  

Kill (поражения) Chord (хорда поражения) Отрезок, проведенный от одной 
стороны угла к другой  

Circle (окружность 
поражения) 

Окружность наибольшего радиуса, 
которая касается или находится 
внутри двух углов 

  

Legs (катеты или 
боковые стороны) 

Triangle (в треугольнике) Стороны, отличные от основания 
или гипотенузы 

 Frustum, Triangle 
(в усечённом треугольнике) 

Те стороны, которые не 
параллельны  

  

Lemma (лемма) 
 
 

Length (длина) 

Теорема, используемая для доказательства других, более важных 
теорем 
 

Мера, характеризующая размер отрезка; расстояние между его 
концами 

  

Line (прямая) Отрезок, продленный с обоих концов; обозначается  𝐸𝐹⃡⃗⃗⃗  ⃗, если  𝐸𝐹 
отрезок 

  

Line of Centers (линия 
центров) 

Прямая, которая проходит через центры двух окружностей 

 

Lines, Supplementary 
(дополняющие 
прямые) 
 

 

Если при пересечении двух прямых секущей внутренние накрест 
лежащие углы дополняют друг друга до развернутого, то данные две 
прямые являются дополняющими относительно этой секущей 
 

Locus (геометрическое 
место точек) 

Все точки, которые удовлетворяют условию 

  

Long (отдалённый/ в 
отдалении от) 

Внутри внутреннего угла треугольника, но за пределами 
треугольника 
Внутри зоны обстрела пулемета, но вне его хорды поражения 

 Center (центр) Пересечение биссектрисы угла и 
описанной окружности 
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Circle (окружность) Вокруг отдалённого центра через 
центр вписанной окружности и 
центр вневписанной окружности 

  

Magnitude (величина) Множество, на котором одновременно задано отношение 
эквивалентности, =, и отношение линейного порядка, ≤ 

  

Maltitude 
(антимедиатриса) 

Высота из средней точки; перпендикуляр, опущенный из средней 
точки стороны четырёхугольника на противолежащую сторону 

  

Measure (мера) Размер множеств; подсчёты дискретных точек, длины отрезков, 
площади треугольников или объединений неперекрывающихся 
треугольников  

  

Medial Point 
(медиальная точка) 

Точка, в которой сходятся медианы или бимедианы 

  

Median (медиана) Отрезок, проведенный от вершины треугольника к средней точке 
противолежащей стороны 

  

Mediator (медиатриса) Серединный перпендикуляр отрезка 
  

Midpoint (средняя 
точка) 

Точка, которой отрезок делится пополам 

  

Mirror Property 
(зеркальное свойство) 

Свет, отскакивающий от зеркала в некоторую точку, проходит такое 
же расстояние, какое прошел бы до ее отражения 

  

Mid–Segment (средняя 
линия) 

Triangle (треугольника) Отрезок, соединяющий средние 
точки двух сторон 

Triangle Frustum (усечённого 
треугольника) 

Отрезок, соединяющий средние 
точки боковых сторон 

   

Miquel (Микель) Miquel point (точка Микеля) Точка, определенная теоремой 
Микеля, где сходятся три 
окружности 

 Miquel circles (окружности 
Микеля) 

Описанные окружности, 
определенные теоремой Микеля 

   

Napoleon Point (точка 
Наполеона) 

First (первая) Центр равностороннего 
треугольника, определенного 
теоремой Наполеона для внешних 
равносторонних треугольников 

 Second (вторая) Центр равностороннего 
треугольника, определенного 
теоремой Наполеона для 
внутренних равносторонних 
треугольников 
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Neutral Geometry 
(нейтральная 
геометрия) 

Набор постулатов, в котором не упоминаются параллельные прямые; 
абсолютной геометрии 

  

Non–Euclidean 
(неевклидов) 

Набор постулатов, содержащий один постулат, который 
противоречит постулату о параллельности 

 

Opposite 
(противоположные, 
противолежащие) 

 

In a Triangle (в треугольнике) 
 

Угол и сторона лежащие напротив 
друг друга 

 Of a Line (о прямой) Концы отрезка, пересекаемого 
данной прямой 

 In a Quadrilateral (в 
четырёхугольнике) 

Две стороны или два угла, лежащие 
напротив друг друга 

   

Ordering (отношение 
порядка) 

Множество и отношение, ≤, которое является рефлексивным, анти-
симметричным и транзитивным 

 Total (отношение линейного 
порядка) 

𝑎 ≤ 𝑏 или 𝑏 ≤ 𝑎 для любых 𝑎, 𝑏 
множества 

  

Orthic Reflection 
(ортоцентрическое 
отражение) 

Отражение ортоцентра относительно стороны треугольника 

  

Orthocenter 
(ортоцентр) 

Точка, в которой сходятся высоты треугольника 

  

Orthogonal 
(ортогональные) 

Две дуги, такие что касательные к их пересечению перпендикулярны   

  

Parallel (параллельные) Две прямые, которые не пересекаются  
  

Pedal Point (подерная 
точка) 

Точка, из которой опущены перпендикуляры на стороны или 
продолжения сторон либо треугольника, либо четырехугольника 

  

Pencil (пучок) Треугольник, у которого основания внутренней и внешней 
биссектрис, лежащие, соответственно, на стороне и продолжении 
этой стороны, соединены с противолежащей вершиной.  (На острие 
геометрической науки пучкам уделяют много внимания, но мы пока 
до этого уровня не дошли. Для средней школы достаточно просто 
начертить эту фигуру и назвать ее пучком) 

  

Perimeter (периметр) Сумма длин сторон треугольника или четырехугольника 
 

Perpendicular 
(перпендикуляр) 

 

Прямая, которая при пересечении с другой прямой образует прямой 
угол 

Polygon 
(многоугольник) 

Объединение нескольких примыкающих друг к другу треугольников, 
такое что результат объединения является выпуклым 
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Postulate (постулат) Аксиомы, характерные для геометрии, в отличие от других отраслей 
математики 

 

Power of the Point 
(степень точки) 
 
 

Probability 
(Вероятность) 

 

Для точки 𝑃 и окружности с центром 𝑂 и радиусом 𝑟; если 𝑧 = |𝑂𝑃|, 

то степень точки |𝑃| = |𝑟2 − 𝑧2|.  Если 𝑃 — это 𝑥, а 𝑦 лежит на 
расстоянии от окружности на хорде или секущей, то 𝑥𝑦 = |𝑃| 
 

Отношение меры подмножества к мере всего множества 

  

Projection (проекция) В треугольнике 𝐸𝐹𝐺 проекцией 𝐸𝐺 и 𝐹𝐺 на 𝐸𝐹 является 𝐸𝐺′ и 𝐹𝐺′, 
соответственно 

  

Quadrature 
(квадратура) 

Теоремы, доказывающие равенство площадей треугольников или 
объединений треугольников 

  

Quadrilateral 
(четырехугольник) 

Объединение двух примыкающих друг к другу треугольников, такое 

что результат объединения является выпуклым; 𝐸𝐹𝐺𝐻 
 Bi–Centric (бицентричный) Четырехугольник, который 

одновременно является 
циклическим и тангенциальным 

Contact (контактный) Точки касания вписанной 
окружности тангенциального 
четырехугольника, последовательно 
соединенные друг с другом 

Cyclic (циклический) Четырехугольник, для которого 
существует описанная окружность 

Isosceles Kite 
(равнобедренный дельтоид) 

Дельтоид, у которого одна пара 
равных сторон равна диагонали 

Kite (дельтоид) Объединение двух конгруэнтных 
треугольников; равные необщие 
стороны также являются смежными. 

Lambert (Ламберта) Четырехугольник с тремя прямыми 
углами 

Long (отдалённый) Четырехугольник, вершины 
которого являются отдаленными 
центрами 

Medial Parallelogram 
(серединный 
параллелограмм) 

Соединённые средние точки 

смежных сторон четырёхугольника 

Orthodiagonal 
(ортодиагональный) 

Четырехугольник, диагонали 
которого перпендикулярны 

Parallelogram 
(параллелограмм) 

Объединение двух конгруэнтных 
треугольников; равные необщие 
стороны являются 
противолежащими. 
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 Parent (исходный) Четырехугольник, построенный 
вокруг серединного 
параллелограмма 

 Pedal (подерный) Соединенные основания 
перпендикуляров, опущенных из 
подерной точки 

 Rectangle (прямоугольник) Четырехугольник с равными углами 
 Rhombus (ромб) Четырехугольник, у которого все 

стороны равны 
 Right Kite (прямоугольный 

дельтоид) 
Дельтоид, два конгруэнтных 
треугольника которого являются 
прямоугольными 

 Right Rectangle (прямой 
прямоугольник) 

Прямоугольник с прямыми углами 

 Right Square (прямой квадрат) 
 

Прямой прямоугольник с равными 
сторонами 

 Saccheri (Саккери) Четырехугольник, у которого две 
противолежащие стороны равны и 
перпендикулярны основанию  

 Square (квадрат) Прямоугольник с равными 
сторонами 

 Tangential (тангенциальный) Четырехугольник, для которого 
существует вписанная окружность 

  

Radius (радиус) Отрезок, который проходит от центра окружности к окружности 
  

Random (случайный) Точки на отрезке или внутри треугольника или окружности 
распределены равномерно 

  
Ray (луч) Отрезок, продленный в одном направлении; обозначается 𝐸𝐹⃗⃗⃗⃗  ⃗, если 

𝐸𝐹 отрезок  
  

Reflection (отражение) Отражение точки: проводим прямую через данную точку и 
произвольную точку и затем продолжаем эту прямую на расстояние, 
равное расстоянию между двумя точками; 
Отражение точки: отражаем точку относительно основания 
перпендикуляра, опущенного на прямую;  
Отражение прямой: отражаем две точки относительно некоторой 
точки и проводим через них прямую; 
Отражение окружности: отражаем центр данной окружности 
относительно точки и строим равную окружность 

  

Reflexive Relation 
(рефлексивное 
отношение) 

Такое бинарное отношение на множестве, в котором всякий элемент 
находится в отношении с собой 

  
Relation (отношение) Истинностный оператор на упорядоченной паре элементов данного 

множества  
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Secant (секущая) Прямая, которая пересекает окружность ровно в двух точках 
  

Segment (отрезок) Все точки вдоль кратчайшего пути между двумя точками; 𝐸𝐹 
  

Semi (полу-) Difference (разность) Половина разности двух длин или 
двух углов 

Perimeter (периметр) Половина периметра треугольника 
Sum (сумма) Половина суммы двух длин или 

двух углов 
   

Side (сторона) Triangle (треугольника) Один из трех отрезков, образующих 
треугольник 

Quadrilateral 
(четырехугольника) 

Необщий отрезок одного из его 
треугольников 

Consecutive (смежные) Стороны четырехугольника, у 
которых общий конец  

  

Similar (подобные)  ~ Два треугольника, у которых все соответствующие углы равны 
  

Steiner Line (прямая 
Штейнера) 

Прямая, параллельная прямой Уоллеса, такая что прямая Уоллеса 
проходит посередине между ней и своей подерной точкой; её также 
называют ортопрямой или ортоцентрической прямой 

  

Subtend (стягивать) Хорда, создающая класс эквивалентности вписанных углов по одну 
сторону от себя 

  

Subtend at Center 
(стягивать 
центральный угол) 

Хорда, создающая угол с вершиной в центре окружности  

  

Summit (верхняя 
сторона) 

Сторона четырёхугольника Саккери, противоположная основанию 

  

Symmetric Relation 
(симметричное 
отношение) 

Отношение, которое может быть установлено применительно к двум 
элементам в любом порядке 

  

Synthetic 
(синтетический) 

Знания, которые остаются после того, как мы стираем 
вспомогательные прямые и дуги 

  

T & V (CB) Теоремы о секущей и о вертикальных углах, применяемые в том или 
ином сочетании 

  

Tangent (касательная) Прямая, которая касается окружности; если речь идёт о длине, 
имеется в виду длина отрезка между точкой касания и точкой, 
которая определяет касательную 

 Cut (усеченная) Отрезок внутренней касательной, 
лежащий между внешними 
касательными 
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External (внешняя) Прямая, касательная к двум 
окружностям, которая не проходит 
между их центрами, либо отрезок, 
лежащий между точками касания 

Internal (внутренняя) Прямая, касательная к двум 
неперекрывающимся окружностям, 
которая проходит между их 
центрами, либо отрезок, лежащий 
между точками касания 

  

Theorem (теорема) Высказывание, требующее доказательства с использованием 
постулатов или уже доказанных теорем 

  

Torricelli (Торричелли) Эти термины относятся только к треугольникам с углами меньше 2𝜑 

 Apex (апекс Торричелли) Апекс равностороннего 
треугольника, построенного 
снаружи стороны треугольника; 

если дано 𝐸𝐹𝐺, 𝐸′′ лежит напротив 
𝐸 

2nd Apex (2-й апекс 
Торричелли) 

Апекс равностороннего 
треугольника, построенного на 
стороне треугольника внутри 
последнего; в нашей книге не имеет 
обозначений 

Point (точка Торричелли) Точка, в которой сходятся отрезки 
Торричелли; 𝑂 

2nd Point (2-я точка 
Торричелли) 

Точка, в которой сходятся 2-е 
отрезки Торричелли; 𝑉 

Segment (отрезок 
Торричелли) 

Соединяем вершину треугольника с 
апексом Торричелли; например 

𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′ 
 2nd Segment (2-й отрезок 

Торричелли) 
Соединяем вершину треугольника 
со 2-м апексом Торричелли 

 (В литературе эти понятия часто называют именем Пьера Ферма)  
  

Touch (касаться) Прямая и окружность или две окружности касаются, когда они 
пересекают друг друга ровно в одной точке; то есть, они не заходят 
друг за друга 

 Touching Point (точка касания) Точка, в которой касаются прямая и 
окружность или две окружности 

  

Transformation 
(преобразование) 

Отношение между двумя множествами точек, которое является 
взаимно однозначным и сюръективным; то есть, каждой точке 
одного множества ставится в соответствие ровно одна точка другого 
множества 

Transitive Relation 
(транзитивное 
отношение) 

Если отношение истинно для 𝑎 и 𝑏 и для 𝑏 и 𝑐, то оно истинно для 𝑎 и 
𝑐 



Geometry without Multiplication  Victor Aguilar 

426 
 

Transversal (секущая) Прямая, которая не параллельна ни одной из двух данных прямых 
  

Traverse 
(горизонтальный 
поворот) 

Поперечное вращение пулемета на треноге 

 Top (угол горизонтального 
обстрела) 

Максимальный угол, на который 
пулемет может повернуться в 
поперечном направлении 

  

Triangle (треугольник) Отрезки, соединяющие три не лежащие на одной прямой точки, 

называемые вершинами; например 𝐸𝐹𝐺 
 Acute (остроугольный) Треугольник, у которого все углы 

острые 
Antipedal (антиподерный) Треугольник, относительно которого 

данный треугольник является 
подерным для данной подерной 
точки  

Contact (контактный) Подерный треугольник, если центр 
вписанной окружности является 
подерной точкой 

Crossed (накрест лежащие)  
 

Две секущие, которые пересекаются 
между двумя параллельными 
прямыми; отсекаем хвосты, чтобы 
увидеть треугольники 

Degenerate (вырожденный) Вершины лежат на одной прямой; 
это не треугольник 

Double–Long (дважды 
отдаленный) 

Треугольник, вершины которого 
являются центрами вневписанных 
окружностей; эксцентральный 

Egyptian (египетский) Треугольник, длины сторон 
которого равны 3, 4 и 5 единицам 

Equilateral (равносторонний) Треугольник, у которого все 
стороны равны 

Half Equilateral (полу-
равносторонний) 

Равносторонний треугольник, 
рассеченный по своей центральной 
линии 

 Isosceles (равнобедренный) Треугольник с двумя равными 
сторонами 

Long (отдалённый) Треугольник, вершины которого 
являются отдаленными центрами 

Medial (серединный) Три средних линии треугольника в 
качестве его сторон 

Nested (соответственные)  Две секущие, которые пересекаются 
вне двух параллельных прямых; 
отсекаем хвосты, чтобы увидеть 
треугольники 

Obtuse (тупоугольный) Треугольник с одним тупым углом 
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 Orthic (ортотреугольник) Соединяем основания высот 
треугольника 

Parent (исходный) Треугольник, из которого получают 
серединный треугольник 

Pedal (подерный) Соединенные основания 
перпендикуляров, опущенных из 
подерной точки 

Right (прямоугольный) Треугольник с одним прямым углом 
Scalene (разносторонний) Треугольник, у которого все 

стороны не равны 
Tangential (тангенциальный) Стороны касаются описанной 

окружности в вершинах 𝐸𝐹𝐺 
Too Obtuse (слишком 
тупоугольный) 

Треугольник, у которого один угол 
больше или равен 2𝜑 

Viviani (Вивиани) 𝐸𝑃𝑃𝐹 и 𝐹𝑃𝑃𝐸, если 𝐸𝐹𝐺 
равнобедренный треугольник  с 

основанием 𝐸𝐹 и подерной точкой 
𝑃 где угодно между 𝐸 и 𝐹 

  

Trichotomy 
(трихотомия) 

Доказательство от противного, когда имеется три альтернативы 

  

Tri–Segment  
(три-сегмент) 

Triangle (треугольника) Отрезок, соединяющий точки 
трисекции, либо обе вблизи 
основания, либо обе вблизи апекса 

  

Undefined Terms 
(неопределённые 
термины)  

Интуитивные понятия:  плоскость, точка, кратчайший путь, 
развернутый  

  

Under Defined 
(неоднозначно 
определённый) 

Дано недостаточно информации; имеется бесконечное количество 
решений 

 

Vertex (вершина) 
 

Пересечение двух прямых, лучей, или сторон треугольника или 
четырехугольника 

  

Visible Under an Angle 
(виден под углом) 

Все точки внутри угла; зона обстрела 

  

Wallace Line (прямая 
Уоллеса) 

Подерный треугольник представляет собой прямую, если подерная 
точка лежит на описанной окружности   
(В литературе это часто называют прямой Симсона) 

  

Width (ширина) Если даны две параллельные прямые, длина перпендикуляра между 
ними 

 Shoulder (плеча) Высота определяющего 
треугольника прямоугольника 
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STUDENT NOTES 



 
 

Most textbook authors just randomly pick a bunch of letters!  Indeed, organization is my principal 

contribution to geometry; there is no Aguilar theorem, though my friend Professor Zlatanović did 

contribute original work.  I have collected results proven by geometers all over the world since 

[1868] 1899, when Wentworth published Plane Geometry, the last serious American high school 

geometry textbook.  In [1935] 1958, Wolfe and Phelps published Practical Shop Mathematics, 

which has a chapter on geometry with “fifty propositions… of much greater value to the high 

school student who is not going to college than is the usual geometry course consisting of about 

one hundred and fifty theorems (p. v).”  Being more readily available than Plane Geometry (until 

it was reprinted in 2007, as was Altshiller-Court and Roger Johnson), many aspiring engineers 

read Wolfe and Phelps at home when their high school abandoned geometry by turning it into 

remedial algebra.  Geometry–Do is like bringing Wentworth back, but with over 300 theorems, 

theorem names instead of numerical citations, mathlete training, and absolute geometry. 


